

C++ Quick Reference

C++ Data Types
DData Type Descrip t ion
char Character
unsigned char Unsigned Character
int Integer
short int Short integer
short Same as short int
unsigned short int Unsigned short integer
unsigned short Same as unsigned short int
unsigned int Unsigned integer
unsigned Same as unsigned int
long int Long integer
long Same as long int
unsigned long int Unsigned long integer
unsigned long Same as unsigned long int
float Single precision floating point
double double precision floating point
long double Long double precision floating

point

Common ly Used Operators
AAss ign ment Operators
= Assignment
+= Combined addition/assignment
-= Combined subtraction/assignment
*= Combined multiplication/assignment
/= Combined division/assignment
%= Combined modulus/assignment
AAri th met ic Operators
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus (remainder)
RRela t iona l Operators
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to
LLogical Operators
&& AND
|| OR
! NOT
IIncrement /Decrement
++ Increment
-- DecrementForms of the if SStatement

Simp le iif Example
if (expression) if (x < y)

statement; x++;

iif /e l se Example
if (expression) if (x < y)

statement; x++;
else else

statement; x--;

iif /e l se if Example
if (expression) if (x < y)

statement; x++;
else if (expression) else if (x < z)

statement; x--;
else else

statement; y++;

TTo condi t iona l ly--execute more than one
ssta tement, enclose the sta tement s in braces:
Form EExample
if (expression) if (x < y)
{ {

statement; x++;
statement; cout << x;

} }

Condi t iona l Operator ?:
FForm:
expression ? expression : expression
EExample :
x = a < b ? a : b;
TT he s tatement ab o ve w orks l ike :
if (a < b)

x = a;
else

x = b;

The while LLoop
Form: EExample :
while (expression) while (x < 100)

statement; cout << x++ << endl;

while (expression) while (x < 100)
{ {

statement; cout << x << endl;
statement; x++;

} }

Web Sites
For the Starting Out with C++ Series

aw.com/gaddisbooks
For Addison-Wesley Computing

aw.com/computing

The do--while LLoop
Form: EExample :
do do

statement; cout << x++ << endl;
while (expression); while (x < 100);

do do
{ {

statement; cout << x << endl;
statement; x++;

} while (expression); } while (x < 100);

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Introduction to Flowcharting, p. 19
Designing a Program with Pseudocode, p. 19
Designing the Account Balance Program, p. 25
Predicting the Result of Problem 33, p. 25

Chapter 2 Using cout, p. 31
Variable Definitions, p. 37
Assignment Statements and Simple Math Expressions, p. 59
Solving the Restaurant Bill problem, p. 75

Chapter 3 Reading Input with cin, p. 79
Formatting Numbers with setprecision, p. 115
Writing Data to a File, p. 140
Reading Data from a File, p. 141
Solving the Stadium Seating Problem, p. 152

Chapter 4 The if Statement, p. 164
The if/else Statement, p. 177
The if/else if Statement, p. 187
Solving the Time Calculator Problem, p. 235

Chapter 5 The while Loop, p. 246
The for Loop, p. 262
Solving the Calories Burned Problem, p. 291

Chapter 6 Functions and Arguments, p. 309
Value-Returning Functions, p. 322
Solving the Markup Problem, p. 365

Chapter 7 Accessing Array Elements with a Loop, p. 378
Passing an Array to a Function, p. 401
Solving the Chips and Salsa Problem, p. 443

Chapter 8 The Binary Search, p. 454
The Selection Sort, p. 469
Solving the Charge Account Validation Modification Problem, p. 487

Chapter 9 Dynamically Allocating an Array, p. 519
Solving the getString Function Problem, p. 538

Chapter 10 Writing a C-String-Handling Function, p. 564
Using the string Class, p. 570
Solving the Backward String Problem, p. 584

(continued on next page)

(continued) LOCATION OF VIDEONOTES IN THE TEXT

Chapter 11 Creating a Structure, p. 591
Passing a Structure to a Function, p. 610
Solving the Weather Statistics Problem, p. 644

Chapter 12 Passing File Stream Objects to Functions, p. 661
Working with Multiple Files, p. 673
Solving the File Encryption Filter Problem, p. 703

Chapter 13 Writing a Class, p. 712
Defining an Instance of a Class, p. 717
Solving the Employee Class Problem, p. 792

Chapter 14 Operator Overloading, p. 819
Class Aggregation, p. 848
Solving the NumDays Problem, p. 864

Chapter 15 Redefining a Base Class Function in a Derived Class, p. 893
Polymorphism, p. 903
Solving the Employee and ProductionWorker Classes Problem, p. 936

From Control Structures
through Objects

6th Edition Brief Version

Tony Gaddis

Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Managing Editor: Jeffrey Holcomb
Senior Production Supervisor: Marilyn Lloyd
Marketing Manager: Erin Davis
Marketing Coordinator: Kathryn Ferranti
Senior Media Buyer: Ginny Michaud
Media Assistant: Katelyn Boller
Senior Manufacturing Buyer: Carol Melville
Project Coordination: Sherrill Redd/Aptara, Inc.
Production Services: Aptara®, Inc.
Art Director, Cover: Linda Knowles
Cover Designer: Joyce Cosentino Wells/JWells Design
Cover Image: Getty Images/Photographer: David Muir

Access the latest information about Addison-Wesley Computer Science titles from our World Wide Web site:
http://www.pearsonhighered.com/cs

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The publisher does not offer any
warranty or representation, nor does it accept any liabilities with respect to the programs or applications.

The interior of this book was composed in Aptara, Inc. The basal text font is set in Sabon 10/12.5; the chapter
titles, headings, running heads, and folios are all set in Stone Sans; the programming code is set in Courier10
Pitch BT 9/11.

Library of Congress Cataloging-in-Publication Data

Copyright © 2010 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written per-
mission of the publisher. Printed in the United States of America.

For information on obtaining permission for use of material in this work, please submit a written request to
Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116,
fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

ISBN 13: 978-0-136-02253-4
ISBN 10: 0-136-02253-7

1 2 3 4 5 6 7 8 9 10—EB—12 11 10 09

http://www.pearsonhighered.com/cs
http://www.pearsoned.com/legal/permissions.htm
www.pearsonhighered.com

v

Contents at a Glance

Preface xiii

CHAPTER 1 Introduction to Computers and Programming 1

CHAPTER 2 Introduction to C++ 27

CHAPTER 3 Expressions and Interactivity 79

CHAPTER 4 Making Decisions 159

CHAPTER 5 Looping 241

CHAPTER 6 Functions 297

CHAPTER 7 Arrays 373

CHAPTER 8 Searching and Sorting Arrays 451

CHAPTER 9 Pointers 491

CHAPTER 10 Characters, Strings, and the string Class 541

CHAPTER 11 Structured Data 589

CHAPTER 12 Advanced File Operations 651

CHAPTER 13 Introduction to Classes 705

CHAPTER 14 More About Classes 801

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 871

Appendix A: The ASCII Character Set 945

Appendix B: Operator Precedence and Associativity 949

Index 951

Student CD The following appendices are on the accompanying Student CD.

Appendix C: Introduction to Flowcharting

Appendix D: Using UML in Class Design

Appendix E: Namespaces

Appendix F: Writing Managed C++ Code for the .NET Framework

Appendix G: Passing Command Line Arguments

Appendix H: Header File and Library Function Reference

vi Contents at a Glance

Appendix I: Binary Numbers and Bitwise Operations

Appendix J: Multi-Source File Programs

Appendix K: Stream Member Functions for Formatting

Appendix L: Introduction to Microsoft Visual C++ 2008 Express Edition

Appendix M: Answers to Checkpoints

Appendix N: Answers to Odd Numbered Review Questions

vii

Contents

Table of Location of videonotes

Preface xiii

CHAPTER 1 Introduction to Computers and Programming 1

1.1 Why Program? 1
1.2 Computer Systems: Hardware and Software 2
1.3 Programs and Programming Languages 6
1.4 What Is a Program Made of? 12
1.5 Input, Processing, and Output 16
1.6 The Programming Process 17
1.7 Procedural and Object-Oriented Programming 21

CHAPTER 2 Introduction to C++ 27

2.1 The Parts of a C++ Program 27
2.2 The cout Object 31
2.3 The #include Directive 36
2.4 Variables and Literals 37
2.5 Identifiers 41
2.6 Integer Data Types 42
2.7 The char Data Type 47
2.8 Floating-Point Data Types 52
2.9 The bool Data Type 55
2.10 Determining the Size of a Data Type 56
2.11 Variable Assignments and Initialization 57
2.12 Scope 58
2.13 Arithmetic Operators 59
2.14 Comments 65
2.15 Focus on Software Engineering: Programming Style 67
2.16 If You Plan to Continue in Computer Science: Standard and Prestandard C++ 69

CHAPTER 3 Expressions and Interactivity 79

3.1 The cin Object 79
3.2 Mathematical Expressions 87
3.3 When You Mix Apples and Oranges: Type Conversion 96

viii Contents

3.4 Overflow and Underflow 98
3.5 Type Casting 100
3.6 Named Constants 103
3.7 Multiple Assignment and Combined Assignment 108
3.8 Formatting Output 112
3.9 Formatted Input 121
3.10 Focus on Object-Oriented Programming: More About Member Functions 126
3.11 More Mathematical Library Functions 127
3.12 Focus on Debugging: Hand Tracing a Program 131
3.13 Focus on Problem Solving: A Case Study 133
3.14 Introduction to File Input and Output 136

CHAPTER 4 Making Decisions 159

4.1 Relational Operators 159
4.2 The if Statement 164
4.3 Flags 172
4.4 Expanding the if Statement 173
4.5 The if/else Statement 177
4.6 Nested if Statements 180
4.7 The if/else if Statement 187
4.8 Menus 191
4.9 Logical Operators 195
4.10 Checking Numeric Ranges with Logical Operators 202
4.11 Focus on Software Engineering: Validating User Input 203
4.12 More About Variable Definitions and Scope 205
4.13 Comparing Strings 209
4.14 The Conditional Operator 214
4.15 The switch Statement 218
4.16 Testing for File Open Errors 227

CHAPTER 5 Looping 241

5.1 The Increment and Decrement Operators 241
5.2 Introduction to Loops: The while Loop 246
5.3 Using the while Loop for Input Validation 253
5.4 Counters 255
5.5 The do-while Loop 257
5.6 The for Loop 262
5.7 Keeping a Running Total 272
5.8 Sentinels 275
5.9 Using a Loop to Read Data from a File 276
5.10 Focus on Software Engineering: Deciding Which Loop to Use 279
5.11 Nested Loops 279
5.12 Breaking Out of a Loop 282
5.13 The continue Statement 284

CHAPTER 6 Functions 297

6.1 Focus on Software Engineering: Modular Programming 297
6.2 Defining and Calling Functions 299
6.3 Function Prototypes 307

Contents ix

6.4 Sending Data into a Function 309
6.5 Passing Data by Value 314
6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 316
6.7 The return Statement 320
6.8 Returning a Value from a Function 322
6.9 Returning a Boolean Value 330
6.10 Local and Global Variables 332
6.11 Static Local Variables 340
6.12 Default Arguments 343
6.13 Using Reference Variables as Parameters 346
6.14 Overloading Functions 352
6.15 The exit() Function 356
6.16 Stubs and Drivers 359

CHAPTER 7 Arrays 373

7.1 Arrays Hold Multiple Values 373
7.2 Accessing Array Elements 375
7.3 No Bounds Checking in C++ 382
7.4 Array Initialization 385
7.5 Processing Array Contents 390
7.6 Focus on Software Engineering: Using Parallel Arrays 398
7.7 Arrays as Function Arguments 401
7.8 Two-Dimensional Arrays 412
7.9 Arrays of Strings 419
7.10 Arrays with Three or More Dimensions 421
7.11 Focus on Problem Solving and Program Design: A Case Study 423
7.12 If You Plan to Continue in Computer Science: Introduction to the

STL vector 425

CHAPTER 8 Searching and Sorting Arrays 451

8.1 Focus on Software Engineering: Introduction to Search Algorithms 451
8.2 Focus on Problem Solving and Program Design:

A Case Study 458
8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 464
8.4 Focus on Problem Solving and Program Design: A Case Study 472
8.5 If You Plan to Continue in Computer Science: Sorting and

Searching vectors 480

CHAPTER 9 Pointers 491

9.1 Getting the Address of a Variable 491
9.2 Pointer Variables 493
9.3 The Relationship Between Arrays and Pointers 500
9.4 Pointer Arithmetic 504
9.5 Initializing Pointers 506
9.6 Comparing Pointers 507
9.7 Pointers as Function Parameters 509
9.8 Focus on Software Engineering: Dynamic Memory Allocation 518
9.9 Focus on Software Engineering: Returning Pointers from Functions 522
9.10 Focus on Problem Solving and Program Design: A Case Study 529

x Contents

CHAPTER 10 Characters, Strings, and the string Class 541

10.1 Character Testing 541
10.2 Character Case Conversion 545
10.3 Review of the Internal Storage of C-Strings 548
10.4 Library Functions for Working with C-Strings 551
10.5 String/Numeric Conversion Functions 559
10.6 Focus on Software Engineering: Writing Your Own

C-String-Handling Functions 564
10.7 The C++ string Class 570
10.8 Focus on Problem Solving and Program Design: A Case Study 580

CHAPTER 11 Structured Data 589

11.1 Abstract Data Types 589
11.2 Focus on Software Engineering: Combining Data

into Structures 591
11.3 Accessing Structure Members 594
11.4 Initializing a Structure 599
11.5 Arrays of Structures 603
11.6 Focus on Software Engineering: Nested Structures 606
11.7 Structures as Function Arguments 610
11.8 Returning a Structure from a Function 613
11.9 Pointers to Structures 616
11.10 Focus on Software Engineering: When to Use ., When to Use ->,

and When to Use * 619
11.11 Unions 621
11.12 Enumerated Data Types 625

CHAPTER 12 Advanced File Operations 651

12.1 File Operations 651
12.2 File Output Formatting 658
12.3 Passing File Stream Objects to Functions 661
12.4 More Detailed Error Testing 663
12.5 Member Functions for Reading and Writing Files 666
12.6 Focus on Software Engineering: Working with Multiple Files 673
12.7 Binary Files 674
12.8 Creating Records with Structures 680
12.9 Random-Access Files 684
12.10 Opening a File for Both Input and Output 692

CHAPTER 13 Introduction to Classes 705

13.1 Procedural and Object-Oriented Programming 705
13.2 Introduction to Classes 712
13.3 Defining an Instance of a Class 717
13.4 Why Have Private Members? 728
13.5 Focus on Software Engineering: Separating Class Specification

from Implementation 729
13.6 Inline Member Functions 735
13.7 Constructors 738
13.8 Passing Arguments to Constructors 742
13.9 Destructors 750

Contents xi

13.10 Overloading Constructors 754
13.11 Private Member Functions 758
13.12 Arrays of Objects 760
13.13 Focus on Problem Solving and Program Design: An OOP Case Study 764
13.14 Focus on Object-Oriented Programming: Creating an Abstract Array

Data Type 771
13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 775
13.16 Focus on Object-Oriented Design: Finding the Classes and Their

Responsibilities 778

CHAPTER 14 More About Classes 801

14.1 Instance and Static Members 801
14.2 Friends of Classes 809
14.3 Memberwise Assignment 814
14.4 Copy Constructors 815
14.5 Operator Overloading 819
14.6 Object Conversion 846
14.7 Aggregation 848
14.8 Focus on Object-Oriented Design: Class Collaborations 854

CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions 871

15.1 What Is Inheritance? 871
15.2 Protected Members and Class Access 880
15.3 Constructors and Destructors in Base and Derived Classes 886
15.4 Redefining Base Class Functions 893
15.5 Class Hierarchies 897
15.6 Polymorphism and Virtual Member Functions 903
15.7 Abstract Base Classes and Pure Virtual Functions 918
15.8 Multiple Inheritance 925

Appendix A: The ASCII Character Set 945

Appendix B: Operator Precedence and Associativity 949

Index 951

Student CD The following appendices are on the accompanying Student CD.

Appendix C: Introduction to Flowcharting

Appendix D: Using UML in Class Design

Appendix E: Namespaces

Appendix F: Writing Managed C++ Code for the .NET Framework

Appendix G: Passing Command Line Arguments

Appendix H: Header File and Library Function Reference

Appendix I: Binary Numbers and Bitwise Operations

Appendix J: Multi-Source File Programs

Appendix K: Stream Member Functions for Formatting

Appendix L: Introduction to Microsoft Visual C++ 2008 Express Edition

Appendix M: Answers to Checkpoints

Appendix N: Answers to Odd Numbered Review Questions

xii

Preface

Welcome to the Brief Version of Starting Out with C++: From Control Structures through
Objects, 6th edition. This book is intended for use in a one or two-semester C++ program-
ming course. Students new to programming, as well as those with prior course work in
other languages, will find this text beneficial. The fundamentals of programming are cov-
ered for the novice, while the details, pitfalls, and nuances of the C++ language are
explored in-depth for both the beginner and more experienced student. The book is writ-
ten with clear, easy-to-understand language and it covers all the necessary topics for an
introductory programming course. This text is rich in example programs that are concise,
practical, and real-world oriented, ensuring that the student not only learns how to imple-
ment the features and constructs of C++, but why and when to use them.

Changes in the Sixth Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the pre-
vious edition. Many improvements have been made, which are summarized here:

• Improved Organization in Chapter 4
The section covering the if/else if statement has been simplified, and now
appears immediately following the section on nested if statements. These sections
have been rewritten to highlight the similarities between an if/else if statement
and a nested if statement.

• New Chapter on Sorting and Searching Arrays
The bonus chapter on sorting and searching arrays that was previously included
on the Student CD is now included in the book as Chapter 8. The chapter covers
the Bubble Sort, Selection Sort, Linear Search, and Binary Search algorithms.
There is also a section on sorting and searching STL vector objects.

• New In the Spotlight Sections
Many of the chapters have new sections titled In the Spotlight. Each of these pro-
vides a programming problem and a detailed, step-by-step analysis showing the
student how to solve it.

• Online videonotes
An extensive series of online videos have been developed to accompany this
text. Throughout the book, video note icons alert the student to videos covering

Preface xiii

specific topics. Additionally, one Programming Challenge at the end of each chap-
ter now has an accompanying video note explaining how to develop the prob-
lem’s solution. The videos are available at www.pearsonhighered.com/gaddis.

• Additional Programming Problems
Additional Programming Challenge problems have been added to most chapters.
Several of these are simple games that will challenge and motivate students.

Organization of the Text
This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, some flexibility is provided. The diagram
shown in Figure P-1 suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. You may
choose to skip this chapter if the class has already mastered those topics. Chapters 2
through 7 cover basic C++ syntax, data types, expressions, selection structures, repetition
structures, functions, and arrays. Each of these chapters builds on the previous chapter
and should be covered in the order presented.

After Chapter 7 has been covered, you may proceed to Chapter 8, or jump to either Chap-
ter 9 or Chapter 12. (If you jump to Chapter 12 at this point, you will need to postpone
sections 12.7, 12.8, and 12.10 until Chapters 9 and 11 have been covered.)

After Chapter 9 has been covered, either of Chapters 10 or 11 may be covered. After
Chapter 11, you may cover Chapters 13 through 15 in sequence.

This text’s approach starts with a firm foundation in structured, procedural programming
before delving fully into object-oriented programming and advanced data structures.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the funda-
mentals of programming, problem solving, and software design. The components of pro-
grams, such as key words, variables, operators, and punctuation are covered. The tools of
the trade, such as pseudocode, flow charts, and hierarchy charts are also presented.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing data types, identifiers, variable
declarations, constants, comments, program output, simple arithmetic operations, and C-
strings. Programming style conventions are introduced and good programming style is
modeled here, as it is throughout the text. An optional section explains the difference
between ANSI standard and pre-standard C++ programs.

www.pearsonhighered.com/gaddis

xiv Preface

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric, char-
acter, and C-string data. The use of arithmetic operators and the creation of mathemati-
cal expressions are covered in greater detail, with emphasis on operator precedence.
Debugging is introduced, with a section on hand tracing a program. Sections are also
included on using sequential files, on simple output formatting, on data type conversion
and type casting, and on using library functions that work with numbers.

Chapter 4: Making Decisions

Here the student learns about relational operators, relational expressions and how to con-
trol the flow of a program with the if, if/else, and if/else if statements. The condi-
tional operator and the switch statement are also covered. Crucial applications of these
constructs are covered, such as menu-driven programs and the validation of input.

Figure P-1

Chapter 8
Searching And
Sorting Arrays

Chapter 9
Pointers

Chapter 10
Characters, Strings,
and the string Class

Chapter 12
Advanced File
Operations*

Chapters 2–7
Basic Language

Elements

Chapter 11
Structures

Chapter 13
Introduction to

Classes

Chapter 14
More About Classes

Chapter 15
Inheritance and
Polymorphism

*A few subtopics in
Chapter 12 require
Chapters 9 and 11.

Chapter 1
Introduction

Preface xv

Chapter 5: Looping

This chapter covers repetition control structures. The while loop, do-while loop, and for
loop are taught, along with common uses for these devices. Counters, accumulators, run-
ning totals, sentinels, and other application-related topics are discussed. A section on file I/O
discusses how to use a loop to read from a file until the end of the file is encountered.

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void
and value returning functions. Argument passing is covered, with emphasis on when argu-
ments should be passed by value versus when they need to be passed by reference. Scope
of variables is covered and sections are provided on local versus global variables and on
static local variables. Overloaded functions are also introduced and demonstrated.

Chapter 7: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided including examples illustrating
how to find the sum, average, highest and lowest values in an array and how to sum the
rows, columns, and all elements of a two-dimensional array. Programming techniques using
parallel arrays are also demonstrated and the student is shown how to use a data file as an
input source to populate an array. STL vectors are introduced and compared to arrays.

Chapter 8: Sorting and Searching Arrays

Here the student learns the basics of sorting arrays and searching for data stored in them.
The chapter covers the Bubble Sort, Selection Sort, Linear Search, and Binary Search algo-
rithms. There is also a section on sorting and searching STL vector objects.

Chapter 9: Pointers

This chapter explains how to use pointers. Pointers are compared to and contrasted with
reference variables. Other topics include pointer arithmetic, initialization of pointers, rela-
tional comparison of pointers, pointers and arrays, pointers and functions, dynamic mem-
ory allocation, and more.

Chapter 10: Characters, C-strings, and the Standard string Class

This chapter focuses on library functions that manipulate or test characters or strings. A
review of the internal storage of C-strings is given. An extensive discussion of the standard
string class is also presented.

Chapter 11: Structured Data

The student is introduced to abstract data types and taught how to create them using struc-
tures, unions, and enumerated data types. Discussions and examples include using pointers
to structures, passing structures to functions, and returning structures from functions.

xvi Preface

Chapter 12: Advanced File Operations

This chapter covers sequential access, random access, text, and binary files. The various
modes for opening files are discussed, as well as the many methods for reading and writing
file contents. Advanced output formatting is also covered.

Chapter 13: Introduction to Classes

The student now shifts focus to the object-oriented paradigm. This chapter covers the
fundamental concepts of classes. Member variables and functions are discussed. The
student learns about private and public access specifications, and reasons to use each.
The topics of constructors, overloaded constructors, and destructors are also presented.
The chapter presents a section modeling classes with UML, and how to find the classes
in a particular problem.

Chapter 14: More About Classes

This chapter continues the study of classes. Static members, friends, memberwise assign-
ment, and copy constructors are discussed. The chapter also includes in-depth sections on
operator overloading, object conversion, and object aggregation. There is also a section
on class collaborations and the use of CRC cards.

Chapter 15: Inheritance and Polymorphism

The study of classes continues in this chapter with the subjects of inheritance, polymor-
phism, and virtual member functions. The topics covered include base and derived class
constructors and destructors, virtual member functions, base class pointers, static and
dynamic binding, multiple inheritance, and class hierarchies.

Appendix A: ASCII Character Set

A list of the ASCII and Extended ASCII characters and their codes.

Appendix B: Operator Precedence and Associativity

A chart showing the C++ operators and their precedence.

The following appendices are on the accompanying Student CD:

Appendix C: Introduction to Flowcharting

A brief introduction to flowcharting. This tutorial discusses sequence, selection, case, rep-
etition, and module structures.

Appendix D: Using UML in Class Design

This appendix shows the student how to use the Unified Modeling Language to design
classes. Notation for showing access specification, data types, parameters, return values,
overloaded functions, composition, and inheritance are included.

Preface xvii

Appendix E: Namespaces

This appendix explains namespaces and their purpose. Examples showing how to define a
namespace and access its members are given.

Appendix F: Writing Managed C++ Code for the .NET Framework

This appendix introduces the student to the concepts surrounding managed C++ in
Microsoft’s .NET environment.

Appendix G: Passing Command Line Arguments

Teaches the student how to write a C++ program that accepts arguments from the com-
mand line. This appendix will be useful to students working in a command line environ-
ment, such as Unix, Linux, or the Windows MS-DOS prompt console.

Appendix H: Header File and Library Function Reference

This appendix provides a reference for the C++ library functions and header files discussed
in the book.

Appendix I: Binary Numbers and Bitwise Operations

A guide to the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

Appendix J: Multi-Source File Programs

Provides a tutorial on creating programs that consist of multiple source files. Function
header files, class specification files, and class implementation files are discussed.

Appendix K: Stream Member Functions for Formatting

Covers stream member functions for formatting such as setf.

Appendix L: Introduction to Microsoft Visual C++ 2008 Express Edition

A tutorial on how to start a project in Microsoft Visual C++ 2008 Express Edition, com-
pile a program, save source files, and more.

Appendix M: Answers to Checkpoints

Students may test their own progress by comparing their answers to the checkpoint exer-
cises against this appendix. The answers to all Checkpoints are included.

Appendix N: Answers to Odd-Numbered Review Questions

Another tool that students can use to gauge their progress.

xviii Preface

Features of the Text

Concept
Statements

Each major section of the text starts with a concept statement.
This statement summarizes the ideas of the section.

Example Programs The text has over 300 complete example programs, each
designed to highlight the topic currently being studied. In most
cases, these are practical, real-world examples. Source code for
these programs is provided so that students can run the
programs themselves.

Program Output After each example program there is a sample of its screen
output. This immediately shows the student how the program
should function.

In the Spotlight Each of these sections provides a programming problem and a
detailed, step by step analysis showing the student how to solve
it.

videonotes A series of online videos, developed specifically for this book,
are available for viewing at http://www.pearsonhighered.
com/gaddis. Icons appear throughout the text alerting the
student to videos about specific topics.

Checkpoints Checkpoints are questions placed throughout each chapter as a
self-test study aid. Answers for all Checkpoint questions are
provided on the student CD so students can check how well
they have learned a new topic.

Notes Notes appear at appropriate places throughout the text. They
are short explanations of interesting or often misunderstood
points relevant to the topic at hand.

Warnings Warnings are notes that caution the student about certain C++
features, programming techniques, or practices that can lead to
malfunctioning programs or lost data.

Case Studies Case studies that simulate real-world applications appear in
many chapters throughout the text, with complete code
provided for each one on the student CD. These case studies are
designed to highlight the major topics of the chapter in which
they appear.

Review Questions
and Exercises

Each chapter presents a thorough and diverse set of review
questions, such as fill-in-the-blank and short answer, that check
the student’s mastery of the basic material presented in the
chapter. These are followed by exercises requiring problem
solving and analysis, such as the Algorithm Workbench, Predict
the Output, and Find the Errors sections. Answers to the odd
numbered review questions and review exercises are provided
on the student CD.

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis

Preface xix

Supplements

Student CD

This CD includes:

• Turbo C++ 2006 Explorer Edition

• Answers to all Checkpoint questions (Appendix M)

• Answers to all odd-numbered Review Questions and Exercises (Appendix N)

• Complete source code for every program included in the book

• Additional case studies, complete with source code

• A full set of appendices that accompany the book

If a CD did not come with your book or you can’t locate your CD, you can access most of
these items at http://www.aw.com/cssupport/

Other CDs Upon Request

Professors should contact their campus Addison-Wesley representative for the specific
ISBN to order this book packaged with Microsoft Visual C++ 2008 Express Edition.

MyCodeMate—Your Own T.A. Just a Click Away

Addison-Wesley’s MyCodeMate is a book-specific Web resource that provides tutorial help
and evaluation of student programs. Example programs throughout the book and selected

Programming
Challenges

Each chapter offers a pool of programming exercises designed
to solidify the student’s knowledge of the topics currently being
studied. In most cases the assignments present real-world
problems to be solved. When applicable, these exercises include
input validation rules.

Group Projects There are several group programming projects throughout the
text, intended to be constructed by a team of students. One
student might build the program’s user interface, while another
student writes the mathematical code, and another designs and
implements a class the program uses. This process is similar to
the way many professional programs are written and
encourages team work within the classroom.

C++ Quick
Reference Guide

For easy access, a quick reference guide to the C++ language is
printed on the last page of the book and the inside back cover.

http://www.aw.com/cssupport/

xx Preface

Programming Challenges from every chapter have been integrated into MyCodeMate. Using
this tool, a student is able to write and compile programs from any computer with Internet
access, and receive guidance and feedback on how to proceed and on how to address com-
piler error messages. Instructors can track each student’s progress on Programming Chal-
lenges from the text or can develop projects of their own. A complimentary subscription to
MyCodeMate is offered when the access code is ordered in a package with a new copy of
this text. Subscriptions can also be purchased online. For more information visit http://
www.mycodemate.com, or contact your campus Addison-Wesley representative.

Instructor Resources

The following supplements are available to qualified instructors only:

• Answers to all Review Questions in the text

• Solutions for all Programming Challenges in the text

• PowerPoint presentation slides for every chapter

• Computerized test bank

• Answers to all Student Lab Manual questions

• Solutions for all Student Lab Manual programs

Visit the Addison-Wesley Instructor Resource Center (http://www.pearsonhighered.com/
irc) or send an email to computing@aw.com for information on how to access them.

Textbook Web site

A Web site for the Starting Out with C++ series of books is located at the following URL:
www.pearsonhighered.com/gaddisbooks

Get this book the way you want it!
This book is part of Pearson Education’s custom database for Computer Science textbooks.
Use our online PubSelect system to select just the chapters you need from this, and other,
Pearson Education CS textbooks. You can edit the sequence to exactly match your course
organization and teaching approach. Visit www.pearsoncustom.com/cs for details.

Which Gaddis C++ book is right for you?
The Starting Out with C++ Series includes three books, one of which is sure to fit your
course:

• Starting Out with C++: From Control Structures through Objects

• Starting Out with C++: Early Objects
• Brief Version of Starting Out with C++: From Control Structures through

Objects.

http://www.mycodemate.com
http://www.mycodemate.com
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc
www.pearsonhighered.com/gaddisbooks
www.pearsoncustom.com/cs

Preface xxi

The following chart will help you determine which book is right for your course.

Acknowledgments
There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and
expertise.

� FROM CONTROL STRUCTURES
THROUGH OBJECTS

� BRIEF VERSION

� EARLY OBJECTS

LATE INTRODUCTION OF OBJECTS
Classes are introduced in Chapter 13, after control
structures, functions, arrays, and pointers. Advanced
OOP topics, such as inheritance and polymorphism,
are covered in Chapters 14 and 15.

EARLIER INTRODUCTION OF OBJECTS
Classes are introduced in Chapter 7, after control
structures and functions, but before arrays and
pointers. Their use is then integrated into the
remainder of the text. Advanced OOP topics, such as
inheritance and polymorphism, are covered in
Chapters 11 and 15.

USE OF C-STRINGS
Null-terminated C-strings are used throughout, with
the C++ string class covered briefly.

USE OF string OBJECTS
Standard library string class objects are used
throughout, with C-strings covered briefly.

INTRODUCTION OF DATA STRUCTURES AND
RECURSION
Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the full text.
Recursion is covered after stacks and queues, but
before binary trees. These topics are not covered in
the brief text.

INTRODUCTION OF DATA STRUCTURES AND
RECURSION
Linked lists, stacks and queues, and binary trees are
introduced in the final chapters of the text, after the
chapter on recursion.

Ahmad Abuhejleh
University of Wisconsin, River Falls

Robert Baird
Salt Lake Community College

David Akins
El Camino College

Don Biggerstaff
Fayetteville Technical Community College

Steve Allan
Utah State University

Michael Bolton
Northeastern Oklahoma State University

Vicki Allan
Utah State University

Bill Brown
Pikes Peak Community College

Karen M. Arlien
Bismark State College

Charles Cadenhead
Richland Community College

Mary Astone
Troy University

Randall Campbell
Morningside College

Ijaz A. Awan
Savannah State University

Wayne Caruolo
Red Rocks Community College

xxii Preface

Cathi Chambley-Miller
Aiken Technical College

Mike Holland
Northern Virginia Community College

C.C. Chao
Jacksonville State University

Mary Hovik
Lehigh Carbon Community College

Joseph Chao
Bowling Green State University

Richard Hull
Lenoir-Rhyne College

Royce Curtis
Western Wisconsin Technical College

Chris Kardaras
North Central College

Joseph DeLibero
Arizona State University

Willard Keeling
Blue Ridge Community College

Jeanne Douglas
University of Vermont

A.J. Krygeris
Houston Community College

Michael Dowell
Augusta State U

Sheila Lancaster
Gadsden State Community College

Judy Etchison
Southern Methodist University

Ray Larson
Inver Hills Community College

Dennis Fairclough
Utah Valley State College

Jennifer Li
Ohlone College

Richard Flint
North Central College

Norman H. Liebling
San Jacinto College

Ann Ford
Florida State University

Zhu-qu Lu
University of Maine, Presque Isle

James Gifford
University of Wisconsin, Stevens Point

Heidar Malki
University of Houston

Leon Gleiberman
Touro College

Debbie Mathews
J. Sargeant Reynolds

Ranette Halverson, Ph.D.
Midwestern State University

Rick Matzen
Northeastern State University

Carol Hannahs
University of Kentucky

Robert McDonald
East Stroudsburg University

Dennis Heckman
Portland Community College

James McGuffee
Austin Community College

Ric Heishman
George Mason University

Dean Mellas
Cerritos College

Michael Hennessy
University of Oregon

Lisa Milkowski
Milwaukee School of Engineering

Ilga Higbee
Black Hawk College

Marguerite Nedreberg
Youngstown State University

Patricia Hines
Brookdale Community College

Lynne O’Hanlon
Los Angeles Pierce College

Preface xxiii

I also want to thank everyone at Pearson Addison-Wesley for making the Starting Out
with series so successful. I have worked so closely with the team at Pearson Adddison-
Wesley that I consider them among my closest friends. I am extremely grateful that
Michael Hirsch is my editor. Stephanie Sellinger, editorial assistant, managed the revision
of this book and made the entire process a pleasure. I am also thankful to have Erin Davis

Frank Paiano
Southwestern Community College

Caroline St. Claire
North Central College

Theresa Park
Texas State Technical College

Kirk Stephens
Southwestern Community College

Mark Parker
Shoreline Community College

Cherie Stevens
South Florida Community College

Tino Posillico
SUNY Farmingdale

Dale Suggs
Campbell University

Frederick Pratter
Eastern Oregon University

Mark Swanson
Red Wing Technical College

Susan L. Quick
Penn State University

Martha Tillman
College of San Mateo

Alberto Ramon
Diablo Valley College

Ralph Tomlinson
Iowa State University

Bazlur Rasheed
Sault College of Applied Arts and Technology

David Topham
Ohlone College

Farshad Ravanshad
Bergen Community College

Robert Tureman
Paul D. Camp Community College

Dolly Samson
Weber State University

Arisa K. Ude
Richland College

Ruth Sapir
SUNY Farmingdale

Peter van der Goes
Rose State College

Jason Schatz
City College of San Francisco

Stewart Venit
California State University, Los Angeles

Dr. Sung Shin
South Dakota State University

Judy Walters
North Central College

Bari Siddique
University of Texas at Brownsville

John H. Whipple
Northampton Community College

William Slater
Collin County Community College

Aurelia Williams
Norfolk State University

Shep Smithline
University of Minnesota

Vida Winans
Illinois Institute of Technology

xxiv Preface

as marketing manager. Her energy and creativity are truly inspiring. The production team
worked tirelessly to make this book a reality, and includes Marilyn Lloyd, Jeff Holcomb,
Katelyn Boller, Carol Melville, and Linda Knowles. Thanks to you all!

Last, but not least, I want to thank my family for all the patience, love, and support they
have shown me throughout this and my many other projects.

About the Author
Tony Gaddis is the principal author of the Starting Out with series of textbooks. He has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. Tony is a highly acclaimed instructor who was previously selected as
the North Carolina Community College Teacher of the Year, and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory textbooks covering Programming Logic
and Design, Alice, C++, JavaTM, Microsoft® Visual Basic®, and Python, all published by
Addison-Wesley.

1

C
H

A
P

T
E

R

1
Introduction to Computers
and Programming

1.1 Why Program?

CONCEPT: Computers can do many different jobs because they are programmable.

Every profession has tools that make its job easier to do. Carpenters use hammers, saws,
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics
technicians use probes, scopes, and meters. Some tools are unique and can be categorized
as belonging to a single profession. For example, surgeons have certain tools that are
designed specifically for surgical operations. Those tools probably aren’t used by anyone
other than surgeons. There are some tools, however, that are used in several professions.
Screwdrivers, for instance, are used by mechanics, carpenters, and many others.

The computer is a tool that is used by so many professions that it cannot be easily categorized.
It can perform so many different jobs that it is perhaps the most versatile tool ever made.
To the accountant, computers balance books, analyze profits and losses, and prepare tax
reports. To the factory worker, computers control manufacturing machines and track pro-
duction. To the mechanic, computers analyze the various systems in an automobile and
pinpoint hard-to-find problems.

TOPICS

1.1 Why Program?
1.2 Computer Systems: Hardware

and Software
1.3 Programs and Programming

Languages

1.4 What Is a Program Made of?
1.5 Input, Processing, and Output
1.6 The Programming Process
1.7 Procedural and Object-Oriented

Programming

2 Chapter 1 Introduction to Computers and Programming

What makes the computer so useful? Quite simply, the computer can do such a wide variety of
tasks because it can be programmed. It is a machine specifically designed to follow instructions.

Because of the computer’s programmability, it doesn’t belong to any single profession.
Computers are designed to do whatever task their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms com-
puters into the specialized tools of many trades. Without programmers, the users of computers
would have no software, and without software, computers would not be able to do anything.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be carefully designed. Listed below are a few of the things that must be
designed for any real-world computer program:

• The logical flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• The program’s “user-friendliness”
• Manuals and other forms of written documentation

There is also a scientific, or engineering, side to programming. Because programs rarely
work right the first time they are written, a lot of testing, correction, and redesigning is
required. This demands patience and persistence from the programmer. Writing software
demands discipline as well. Programmers must learn special languages like C++ because
computers do not understand English or other human languages. Languages such as C++
have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming make writing computer software
like designing a car: Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

1.2 Computer Systems: Hardware and Software

CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the
instruments in a symphony orchestra, each device plays its own part. A typical computer
system consists of the following major components:
1. The central processing unit (CPU)

2. Main memory

3. Secondary storage devices

4. Input devices

5. Output devices

1.2 Computer Systems: Hardware and Software 3

The organization of a computer system is depicted in Figure 1-1.

The CPU
At the heart of a computer is its central processing unit, or CPU. The CPU’s job is to fetch
instructions, follow the instructions, and produce some result. Internally, the central pro-
cessing unit consists of two parts: the control unit and the arithmetic and logic unit (ALU).
The control unit coordinates all of the computer’s operations. It is responsible for determin-
ing where to get the next instruction and regulating the other major components of the com-
puter with control signals. The arithmetic and logic unit, as its name suggests, is designed to
perform mathematical operations. The organization of the CPU is shown in Figure 1-2.

Figure 1-1

Figure 1-2

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Central Processing Unit

Instruction
(Input)

Arithmetic and
Logic Unit

Control Unit

Result
(Output)

4 Chapter 1 Introduction to Computers and Programming

A program is a sequence of instructions stored in the computer’s memory. When a com-
puter is running a program, the CPU is engaged in a process known formally as the fetch/
decode/execute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruc-
tion in the sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit
decodes the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer
(such as the ALU, a disk drive, or some other device). The signal causes
the component to perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory
Commonly known as random-access memory, or RAM, the computer’s main memory is a
device that holds information. Specifically, RAM holds the sequences of instructions in the
programs that are running and the data those programs are using.

Memory is divided into sections, or cells, that each hold an equal amount of data. Each
cell is made of eight “switches” that may be either on or off. A switch that is in the on
position usually represents the number 1, while a switch in the off position usually repre-
sents the number 0. The computer stores data by setting the switches in a memory cell to a
pattern that represents a character of information. Each of these switches is known as a
bit, which stands for binary digit. Each cell, which is a collection of eight bits, is known as
a byte. Each byte is assigned a unique number known as an address. The addresses are
ordered from lowest to highest. A byte is identified by its address in much the same way a
post office box is identified by an address. Figure 1-3 shows a group of memory cells with
their addresses. In the illustration, sample data is stored in memory. The number 149 is
stored in the cell with the address 16, and the number 72 is stored at address 23.

RAM is usually a volatile type of memory, used only for temporary storage. When the
computer is turned off, the contents of RAM are erased.

Secondary Storage
Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in second-
ary memory and loaded into main memory as needed. Important information, such as
word processing documents, payroll data, and inventory figures, is saved to secondary
storage as well.

Figure 1-3

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29

149

72

1.2 Computer Systems: Hardware and Software 5

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. For many years floppy disk drives were popu-
lar. A floppy disk drive records data onto a small floppy disk, which can be removed from
the drive. The use of floppy disk drives has declined dramatically in recent years, in favor
of superior devices such as USB drives. USB drives are small devices that plug into the
computer’s USB (universal serial bus) port, and appear to the system as a disk drive. USB
drives, which use flash memory to store data, are inexpensive, reliable, and small enough
to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and
because recordable CD and DVD drives are now commonplace, they are good mediums
for creating backup copies of data.

Input Devices
Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk
drives, CD/DVD drives, and USB drives can also be considered input devices because pro-
grams and information are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any information the computer sends to the outside world. It might be a sales
report, a list of names, or a graphic image. The information is sent to an output device,
which formats and presents it. Common output devices are monitors, printers, and speak-
ers. Output sent to a monitor is sometimes called “softcopy,” while output sent to a
printer is called “hardcopy.” Disk drives, USB drives, and CD/DVD recorders can also be
considered output devices because the CPU sends them information to be saved.

Software
As previously mentioned, software refers to the programs that run on a computer. There
are two general categories of software: operating systems and application software. An
operating system is a set of programs that manages the computer’s hardware devices and
controls their processes. Operating systems fall into one of the following categories.

Single tasking A single tasking operating system is capable of running only one pro-
gram at a time. The computer devotes all its hardware resources and
CPU time to each program as it executes. MS-DOS is an example of a
single tasking operating system.

6 Chapter 1 Introduction to Computers and Programming

Multitasking A multitasking operating system is capable of running multiple pro-
grams at once. Through a technique called time sharing, the system
divides the allocation of hardware resources and the attention of the
CPU among all the executing programs. UNIX, Windows XP, and
Windows Vista are multitasking operating systems.

In addition, operating systems fall into one of the following categories, which describe the
number of users they can accommodate.

Single user This type of system allows only one user to operate the computer at a
time. MS-DOS and older versions of Windows are single user operating
systems.

Multiuser Multiuser systems allow several users to run programs and operate the
computer at once. Most variations of the UNIX operating system are
multiuser systems.

Application software refers to programs that make the computer useful to the user. These
programs solve specific problems or perform general operations that satisfy the needs of
the user. Word processing, spreadsheet, and database programs are all examples of appli-
cation software.

Checkpoint
1.1 Why is the computer used by so many different people, in so many different

professions?

1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What is the difference between a single tasking system and a multitasking system?

1.9 What is the difference between a single user system and a multiuser system?

1.3 Programs and Programming Languages

CONCEPT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What Is a Program?
Computers are designed to follow instructions. A computer program is a set of instruc-
tions that tells the computer how to solve a problem or perform a task. For example, sup-
pose we want the computer to calculate someone’s gross pay. Here is a list of things the
computer should do:

1.3 Programs and Programming Languages 7

1. Display a message on the screen asking “How many hours did you work?”

2. Wait for the user to enter the number of hours worked. Once the user enters a num-
ber, store it in memory.

3. Display a message on the screen asking “How much do you get paid per hour?”

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it in
memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in
memory.

6. Display a message on the screen that tells the amount of money earned. The message
must include the result of the calculation performed in Step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-
defined steps for performing a task or solving a problem. Notice these steps are sequen-
tially ordered. Step 1 should be performed before Step 2, and so forth. It is important that
these instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm, it is not ready to be executed on a computer. A computer’s CPU can only process
instructions that are written in machine language. If you were to look at a machine lan-
guage program, you would see a stream of binary numbers (numbers consisting of only 1s
and 0s). The binary numbers form machine language instructions, which the CPU inter-
prets as commands. Here is an example of what a machine language instruction might
look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine lan-
guage. If you wrote a machine language program for computer A and then wanted to run
it on computer B, which has a different type of CPU, you would have to rewrite the pro-
gram in computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language, such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

The “Program Output with Example Input” shows what the program will display on the
screen when it is running. In the example, the user enters 10 for the number of hours
worked and 15 for the hourly pay rate. The program displays the earnings, which are $150.

NOTE: The line numbers that are shown in Program 1-1 are not part of the program.
This book shows line numbers in all program listings to help point out specific parts of
the program.

8 Chapter 1 Introduction to Computers and Programming

Programming Languages
In a broad sense, there are two categories of programming languages: low-level and
high-level. A low-level language is close to the level of the computer, which means it
resembles the numeric machine language of the computer more than the natural lan-
guage of humans. The easiest languages for people to learn are high-level languages.
They are called “high-level” because they are closer to the level of human-readability
than computer-readability. Figure 1-4 illustrates the concept of language levels.

Many high-level languages have been created. Table 1-1 lists a few of the well-known ones.

In addition to the high-level features necessary for writing applications such as payroll sys-
tems and inventory programs, C++ also has many low-level features. C++ is based on the
C language, which was invented for purposes such as writing operating systems and com-
pilers. Since C++ evolved from C, it carries all of C’s low-level capabilities with it.

Program 1-1

 1 // This program calculates the user's pay.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 double hours, rate, pay;
 8
 9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
How many hours did you work? 10 [Enter]
How much do you get paid per hour? 15 [Enter]
You have earned $150

1.3 Programs and Programming Languages 9

Figure 1-4

Table 1-1

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code. A general programming language
originally designed to be simple enough for beginners to learn.

FORTRAN Formula Translator. A language designed for programming complex mathematical
algorithms.

COBOL Common Business-Oriented Language. A language designed for business applications.

Pascal A structured, general-purpose language designed primarily for teaching programming.

C A structured, general-purpose language developed at Bell Laboratories. C offers both
high-level and low-level features.

C++ Based on the C language, C++ offers object-oriented features not found in C. Also
invented at Bell Laboratories.

C# Pronounced “C sharp.” A language invented by Microsoft for developing applications
based on the Microsoft .NET platform.

Java An object-oriented language invented at Sun Microsystems. Java may be used to
develop programs that run over the Internet, in a Web browser.

JavaScript JavaScript can be used to write small programs that run in Web pages. Despite its name,
JavaScript is not related to Java.

Python Python is a general purpose language created in the early 1990s. It has become popular
in both business and academic applications.

Ruby Ruby is a general purpose language that was created in the 1990s. It is increasingly
becoming a popular language for programs that run on Web servers.

Visual
Basic

A Microsoft programming language and software development environment that
allows programmers to quickly create Windows-based applications.

10100010 11101011

Low level (machine language)

cout << "Enter the number ";
cout << "of hours worked: ";
cin >> hours;
cout << "Enter the hourly ";
cout << "pay rate: ";
cin >> payRate;

High level (Close to human language)

10 Chapter 1 Introduction to Computers and Programming

C++ is popular not only because of its mixture of low- and high-level features, but also
because of its portability. This means that a C++ program can be written on one type of
computer and then run on many other types of systems. This usually requires the pro-
gram to be recompiled on each type of system, but the program itself may need little or
no change.

Source Code, Object Code, and Executable Code
When a C++ program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The state-
ments written by the programmer are called source code, and the file they are saved in is
called the source file.

After the source code is saved to a file, the process of translating it to machine language
can begin. During the first phase of this process, a program called the preprocessor reads
the source code. The preprocessor searches for special lines that begin with the # symbol.
These lines contain commands that cause the preprocessor to modify the source code in
some way. During the next phase the compiler steps through the preprocessed source
code, translating each source code instruction into the appropriate machine language
instruction. This process will uncover any syntax errors that may be in the program. Syn-
tax errors are illegal uses of key words, operators, punctuation, and other language ele-
ments. If the program is free of syntax errors, the compiler stores the translated machine
language instructions, which are called object code, in an object file.

Although an object file contains machine language instructions, it is not a complete pro-
gram. Here is why: C++ is conveniently equipped with a library of prewritten code for per-
forming common operations or sometimes-difficult tasks. For example, the library contains
hardware-specific code for displaying messages on the screen and reading input from the
keyboard. It also provides routines for mathematical functions, such as calculating the
square root of a number. This collection of code, called the run-time library, is extensive.
Programs almost always use some part of it. When the compiler generates an object file,
however, it does not include machine code for any run-time library routines the programmer
might have used. During the last phase of the translation process, another program called
the linker combines the object file with the necessary library routines. Once the linker has
finished with this step, an executable file is created. The executable file contains machine
language instructions, or executable code, and is ready to run on the computer.

Figure 1-5 illustrates the process of translating a C++ source file into an executable file.

The entire process of invoking the preprocessor, compiler, and linker can be initiated with
a single action. For example, on a Linux system, the following command causes the C++
program named hello.cpp to be preprocessed, compiled, and linked. The executable
code is stored in a file named hello.

g++ -o hello hello.cpp

NOTE: Programs written for specific graphical environments often require significant
changes when moved to a different type of system. Examples of such graphical
environments are Windows, the X-Window System, and the Mac OS X operating system.

1.3 Programs and Programming Languages 11

Appendix F on the Student CD explains how compiling works in .Net.

Many development systems, particularly those on personal computers, have integrated
development environments (IDEs). These environments consist of a text editor, compiler,
debugger, and other utilities integrated into a package with a single set of menus. Prepro-
cessing, compiling, linking, and even executing a program is done with a single click of a
button, or by selecting a single item from a menu. Figure 1-6 shows a screen from the
Microsoft Visual C++ IDE.

Checkpoint
1.10 What is an algorithm?

1.11 Why were computer programming languages invented?

1.12 What is the difference between a high-level language and a low-level language?

1.13 What does portability mean?

1.14 Explain the operations carried out by the preprocessor, compiler, and linker.

1.15 Explain what is stored in a source file, an object file, and an executable file.

1.16 What is an integrated development environment?

Figure 1-5

Source Code

Preprocessor

Modified
Source Code

Compiler

Object Code

Executable Code

Linker

Source code is entered
with a text editor by
the programmer.

#include <iostream>
using namespace std;

int main()
{
 cout<<"Hello World\n";
 return 0;
}

12 Chapter 1 Introduction to Computers and Programming

1.4 What Is a Program Made of?

CONCEPT: There are certain elements that are common to all programming languages.

Language Elements
All programming languages have a few things in common. Table 1-2 lists the common ele-
ments you will find in almost every language.

Let’s look at some specific parts of Program 1-1 (the pay-calculating program) to see
examples of each element listed in the table above. For your convenience, Program 1-1 is
listed again.

Figure 1-6

1.4 What Is a Program Made of? 13

Key Words (Reserved Words)
Three of C++’s key words appear on lines 3 and 5: using, namespace, and int. The
word double, which appears on line 7, is also a C++ key word. These words, which are
always written in lowercase, each have a special meaning in C++ and can only be used for
their intended purposes. As you will see, the programmer is allowed to make up his or her

Table 1-2

Language
Element Description

Key Words Words that have a special meaning. Key words may only be used for their
intended purpose. Key words are also known as reserved words.

Programmer-Defined
Identifiers

Words or names defined by the programmer. They are symbolic names that
refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement, or
separate items in a list.

Syntax Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation symbols
must appear.

Program 1-1

 1 // This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double hours, rate, pay;
8
9 // Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours;
12
13 // Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate;
16
17 // Calculate the pay.
18 pay = hours * rate;
19
20 // Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23 }

14 Chapter 1 Introduction to Computers and Programming

own names for certain things in a program. Key words, however, are reserved and cannot
be used for anything other than their designated purposes. Part of learning a programming
language is learning what the key words are, what they mean, and how to use them.

Programmer-Defined Identifiers
The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and
21 are programmer-defined identifiers. They are not part of the C++ language but rather
are names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

Operators
On line 18 the following code appears:

pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data
known as operands. The * operator multiplies its two operands, which in this example are
the variables hours and rate. The = symbol is called the assignment operator. It takes the
value of the expression on the right and stores it in the variable whose name appears on
the left. In this example, the = operator stores in the pay variable the result of the hours
variable multiplied by the rate variable. In other words, the statement says, “Make the
pay variable equal to hours times rate, or “pay is assigned the value of hours times
rate.”

Punctuation
Notice that lines 3, 7, 10, 11, 14, 15, 18, 21, and 22 all end with a semicolon. A semico-
lon in C++ is similar to a period in English: It marks the end of a complete sentence (or
statement, as it is called in programming jargon). Semicolons do not appear at the end of
every line in a C++ program, however. There are rules that govern where semicolons are
required and where they are not. Part of learning C++ is learning where to place semico-
lons and other punctuation symbols.

Lines and Statements
Often, the contents of a program are thought of in terms of lines and statements. A “line”
is just that—a single line as it appears in the body of a program. Program 1-1 is shown
with each of its lines numbered. Most of the lines contain something meaningful; however,
some of the lines are empty. The blank lines are only there to make the program more
readable.

NOTE: The #include <iostream> statement in line 2 is a preprocessor directive.

NOTE: In C++, key words are written in all lowercase.

1.4 What Is a Program Made of? 15

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

This statement causes the computer to display the message “How many hours did you
work?” on the screen. Statements can be a combination of key words, operators, and pro-
grammer-defined symbols. Statements often occupy only one line in a program, but some-
times they are spread out over more than one line.

Variables
A variable is a named storage location in the computer’s memory for holding a piece of
information. The information stored in variables may change while the program is run-
ning (hence the name “variable”). Notice that in Program 1-1 the words hours, rate, and
pay appear in several places. All three of these are the names of variables. The hours vari-
able is used to store the number of hours the user has worked. The rate variable stores
the user’s hourly pay rate. The pay variable holds the result of hours multiplied by rate,
which is the user’s gross pay.

Variables are symbolic names that represent locations in the computer’s random-access
memory (RAM). When information is stored in a variable, it is actually stored in RAM.
Assume a program has a variable named length. Figure 1-7 illustrates the way the vari-
able name represents a memory location.

In Figure 1-7, the variable length is holding the value 72. The number 72 is actually
stored in RAM at address 23, but the name length symbolically represents this storage
location. If it helps, you can think of a variable as a box that holds information. In Figure
1-7, the number 72 is stored in the box named length. Only one item may be stored in
the box at any given time. If the program stores another value in the box, it will take the
place of the number 72.

NOTE: Notice the variables in Program 1-1 have names that reflect their purpose. In
fact, it would be easy to guess what the variables were used for just by reading their
names. This is discussed further in Chapter 2.

Figure 1-7

0

10

20

1

11

21

2

12

22

3

13

23

4

14

24

5

15

25

6

16

26

7

17

27

8

18

28

9

19

29
72

length

16 Chapter 1 Introduction to Computers and Programming

Variable Definitions
In programming, there are two general types of data: numbers and characters. Numbers
are used to perform mathematical operations and characters are used to print data on the
screen or on paper.

Numeric data can be categorized even further. For instance, the following are all whole
numbers, or integers:

5
7
-129
32154

The following are real, or floating-point numbers:

3.14159
6.7
1.0002

When creating a variable in a C++ program, you must know what type of data the pro-
gram will be storing in it. Look at line 7 of Program 1-1:

double hours, rate, pay;

The word double in this statement indicates that the variables hours, rate, and pay will
be used to hold double precision floating-point numbers. This statement is called a vari-
able definition. It is used to define one or more variables that will be used in the program,
and to indicate the type of data they will hold. The variable definition causes the variables to
be created in memory, so all variables must be defined before they can be used. If you
review the listing of Program 1-1, you will see that the variable definitions come before
any other statements using those variables.

1.5 Input, Processing, and Output

CONCEPT: The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing
some process on the information gathered, and then producing output. Input is information
a program collects from the outside world. It can be sent to the program from the user, who
is entering data at the keyboard or using the mouse. It can also be read from disk files or
hardware devices connected to the computer. Program 1-1 allows the user to enter two pieces

NOTE: Programmers often use the term “variable declaration” to mean the same thing
as “variable definition.” Strictly speaking, there is a difference between the two terms. A
definition statement always causes a variable to be created in memory. Some types of
declaration statements, however, do not cause a variable to be created in memory. You
will learn more about declarations later in this book.

1.6 The Programming Process 17

of information: the number of hours worked and the hourly pay rate. Lines 11 and 15 use
the cin (pronounced “see in”) object to perform these input operations:

cin >> hours;
cin >> rate;

Once information is gathered from the outside world, a program usually processes it in
some manner. In Program 1-1, the hours worked and hourly pay rate are multiplied in line
18 and the result is assigned to the pay variable:

pay = hours * rate;

Output is information that a program sends to the outside world. It can be words or
graphics displayed on a screen, a report sent to the printer, data stored in a file, or infor-
mation sent to any device connected to the computer. Lines 10, 14, and 21 in Program 1-1
all perform output:

cout << "How many hours did you work? ";
cout << "How much do you get paid per hour? ";
cout << "You have earned $" << pay << endl;

These lines use the cout (pronounced “see out”) object to display messages on the com-
puter’s screen. You will learn more details about the cin and cout objects in Chapter 2.

Checkpoint
1.17 Describe the difference between a key word and a programmer-defined identifier.

1.18 Describe the difference between operators and punctuation symbols.

1.19 Describe the difference between a program line and a statement.

1.20 Why are variables called “variable”?

1.21 What happens to a variable’s current contents when a new value is stored there?

1.22 What must take place in a program before a variable is used?

1.23 What are the three primary activities of a program?

1.6 The Programming Process

CONCEPT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Designing and Creating a Program
Now that you have been introduced to what a program is, it’s time to consider the process
of creating a program. Quite often, when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the steps listed in Figure 1-8 may help. These are the
steps recommended for the process of writing a program.

18 Chapter 1 Introduction to Computers and Programming

The steps listed in Figure 1-8 emphasize the importance of planning. Just as there are good
ways and bad ways to paint a house, there are good ways and bad ways to create a pro-
gram. A good program always begins with planning.

With the pay-calculating program as our example, let’s look at each of the steps in more
detail.

1. Clearly define what the program is to do.

This step requires that you identify the purpose of the program, the information that is to
be input, the processing that is to take place, and the desired output. Let’s examine each of
these requirements for the example program:

Purpose To calculate the user’s gross pay.

Input Number of hours worked, hourly pay rate.

Process Multiply number of hours worked by hourly pay rate. The result is the
user’s gross pay.

Output Display a message indicating the user’s gross pay.

2. Visualize the program running on the computer.

Before you create a program on the computer, you should first create it in your mind. Step
2 is the visualization of the program. Try to imagine what the computer screen looks like
while the program is running. If it helps, draw pictures of the screen, with sample input
and output, at various points in the program. For instance, here is the screen produced by
the pay-calculating program:

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these concerns, you will have
already determined most of the program’s output.

Figure 1-8

1. Clearly define what the program is to do.
2. Visualize the program running on the computer.
3. Use design tools such as a hierarchy chart, flowcharts,

or pseudocode to create a model of the program.
4. Check the model for logical errors.
5. Type the code, save it, and compile it.
6. Correct any errors found during compilation. Repeat

Steps 5 and 6 as many times as necessary.
7. Run the program with test data for input.
8. Correct any errors found while running the program.

Repeat Steps 5 through 8 as many times as necessary.
9. Validate the results of the program.

 How many hours did you work? 10
 How much do you get paid per hour? 15
 You have earned $150

1.6 The Programming Process 19

3. Use design tools such as a hierarchy chart, flowcharts, or pseudocode to create a
model of the program.

While planning a program, the programmer uses one or more design tools to create a
model of the program. Three common design tools are hierarchy charts, flowcharts, and
pseudocode. A hierarchy chart is a diagram that graphically depicts the structure of a pro-
gram. It has boxes that represent each step in the program. The boxes are connected in a
way that illustrates their relationship to one another. Figure 1-9 shows a hierarchy chart
for the pay-calculating program.

A hierarchy chart begins with the overall task, and then refines it into smaller subtasks.
Each of the subtasks is then refined into even smaller sets of subtasks, until each is small
enough to be easily performed. For instance, in Figure 1-9, the overall task “Calculate
Gross Pay” is listed in the top-level box. That task is broken into three subtasks. The first
subtask, “Get Payroll Data from User,” is broken further into two subtasks. This process
of “divide and conquer” is known as top-down design.

A flowchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program performs, and the order in which the operations are to
occur. For more information see Appendix C, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm in a language that’s “almost” a programming language, but still very similar to
natural language. For example, here is pseudocode that describes the pay-calculating
program:

Get payroll data.
Calculate gross pay.
Display gross pay.

Although the pseudocode above gives a broad view of the program, it doesn’t reveal all
the program’s details. A more detailed version of the pseudocode follows.

Figure 1-9

Calculate
Gross Pay

Display
Gross Pay

Get Payroll Data
from User

Multiply Hours
Worked by
Pay Rate

Read Number of
Hours Worked

Read Hourly
Pay Rate

Introduction to
Flowcharting

Designing a
Program with

Pseudocode

20 Chapter 1 Introduction to Computers and Programming

Display “How many hours did you work?”.
Input hours.
Display “How much do you get paid per hour?”.
Input rate.
Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

Notice the pseudocode contains statements that look more like commands than the
English statements that describe the algorithm in Section 1.4 (What Is a Program Made
of?). The pseudocode even names variables and describes mathematical operations.

4. Check the model for logical errors.

Logical errors are mistakes that cause the program to produce erroneous results. Once a
hierarchy chart, flowchart, or pseudocode model of the program is assembled, it should be
checked for these errors. The programmer should trace through the charts or pseudocode,
checking the logic of each step. If an error is found, the model can be corrected before the
next step is attempted.

5. Type the code, save it, and compile it.

Once a model of the program (hierarchy chart, flowchart, or pseudocode) has been cre-
ated, checked, and corrected, the programmer is ready to write source code on the com-
puter. The programmer saves the source code to a file, and begins the process of
translating it to machine language. During this step the compiler will find any syntax
errors that may exist in the program.

6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times as
necessary.

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated
until the program is free of compile-time errors.

7. Run the program with test data for input.

Once an executable file is generated, the program is ready to be tested for run-time errors.
A run-time error is an error that occurs while the program is running. These are usually
logical errors, such as mathematical mistakes.

Testing for run-time errors requires that the program be executed with sample data or
sample input. The sample data should be such that the correct output can be predicted. If
the program does not produce the correct output, a logical error is present in the program.

8. Correct any run-time errors found while running the program. Repeat Steps 5
through 8 as many times as necessary.

When run-time errors are found in a program, they must be corrected. You must identify
the step where the error occurred and determine the cause. Desk-checking is a process that
can help locate run-time errors. The term desk-checking means the programmer starts
reading the program, or a portion of the program, and steps through each statement. A
sheet of paper is often used in this process to jot down the current contents of all variables
and sketch what the screen looks like after each output operation. When a variable’s con-
tents change, or information is displayed on the screen, this is noted. By stepping through
each statement, many errors can be located and corrected. If an error is a result of incor-
rect logic (such as an improperly stated math formula), you must correct the statement or
statements involved in the logic. If an error is due to an incomplete understanding of the

1.7 Procedural and Object-Oriented Programming 21

program requirements, then you must restate the program purpose and modify the hierarchy
and/or flowcharts, pseudocode, and source code. The program must then be saved, re-
compiled and retested. This means Steps 5 though 8 must be repeated until the program
reliably produces satisfactory results.

9. Validate the results of the program.

When you believe you have corrected all the run-time errors, enter test data and determine
whether the program solves the original problem.

What Is Software Engineering?
The field of software engineering encompasses the whole process of crafting computer
software. It includes designing, writing, testing, debugging, documenting, modifying, and
maintaining complex software development projects. Like traditional engineers, software
engineers use a number of tools in their craft. Here are a few examples:

• Program specifications
• Charts and diagrams of screen output
• Hierarchy charts and flowcharts
• Pseudocode
• Examples of expected input and desired output
• Special software designed for testing programs

Most commercial software applications are very large. In many instances one or more
teams of programmers, not a single individual, develop them. It is important that the pro-
gram requirements be thoroughly analyzed and divided into subtasks that are handled by
individual teams, or individuals within a team.

In Step 3 of the programming process, you were introduced to the hierarchy chart as a
tool for top-down design. The subtasks that are identified in a top-down design can easily
become modules, or separate components of a program. If the program is very large or
complex, a team of software engineers can be assigned to work on the individual modules.
As the project develops, the modules are coordinated to finally become a single software
application.

1.7 Procedural and Object-Oriented Programming

CONCEPT: Procedural programming and object-oriented programming are two ways
of thinking about software development and program design.

C++ is a language that can be used for two methods of writing computer programs: proce-
dural programming and object-oriented programming. This book is designed to teach you
some of both.

In procedural programming, the programmer constructs procedures (or functions, as they
are called in C++). The procedures are collections of programming statements that per-
form a specific task. The procedures each contain their own variables and commonly
share variables with other procedures. This is illustrated by Figure 1-10.

22 Chapter 1 Introduction to Computers and Programming

Procedural programming is centered on the procedure, or function. Object-oriented
programming (OOP), on the other hand, is centered on the object. An object is a program-
ming element that contains data and the procedures that operate on the data. It is a self-
contained unit. This is illustrated in Figure 1-11.

The objects contain, within themselves, both information and the ability to manipulate
the information. Operations are carried out on the information in an object by sending the
object a message. When an object receives a message instructing it to perform some opera-
tion, it carries out the instruction. As you study this text, you will encounter many other
aspects of object-oriented programming.

Checkpoint
1.24 What four items should you identify when defining what a program is to do?

1.25 What does it mean to “visualize a program running”? What is the value of such
an activity?

1.26 What is a hierarchy chart?

1.27 Describe the process of desk-checking.

1.28 Describe what a compiler does with a program’s source code.

Figure 1-10

Figure 1-11

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Program

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object A
Variables

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object B
Variables

PROCEDURE A
 Variables
 Programming
END OF PROCEDURE A

PROCEDURE B
 Variables
 Programming
END OF PROCEDURE B

Object C
Variables

Program

Review Questions and Exercises 23

1.29 What is a run-time error?

1.30 Is a syntax error (such as misspelling a key word) found by the compiler or when
the program is running?

1.31 What is the purpose of testing a program with sample data or input?

1.32 Briefly describe the difference between procedural and object-oriented programming.

Review Questions and Exercises

Short Answer
1. Both main memory and secondary storage are types of memory. Describe the differ-

ence between the two.

2. What is the difference between operating system software and application software?

3. Indicate all the categories that the following operating systems belong to.

System A This system allows multiple users to run multiple programs simulta-
neously.

System B Only one user may access the system at a time, but multiple programs
can be run simultaneously.

System C Only one user may access the system at a time, and only one program
can be run on the system at a time.

4. Why must programs written in a high-level language be translated into machine lan-
guage before they can be run?

5. Why is it easier to write a program in a high-level language than in machine language?

6. Explain the difference between an object file and an executable file.

7. What is the difference between a syntax error and a logical error?

Fill-in-the-Blank

8. Computers can do many different jobs because they can be __________.

9. The job of the __________ is to fetch instructions, carry out the operations com-
manded by the instructions, and produce some outcome or resultant information.

10. Internally, the CPU consists of the __________ and the __________.

11. A(n) __________ is an example of a secondary storage device.

12. The two general categories of software are __________ and __________.

13. A program is a set of __________.

14. Since computers can’t be programmed in natural human language, algorithms must be
written in a(n) __________ language.

15. __________ is the only language computers really process.

16. __________ languages are close to the level of humans in terms of readability.

17. __________ languages are close to the level of the computer.

18. A program’s ability to run on several different types of computer systems is called
__________.

24 Chapter 1 Introduction to Computers and Programming

19. Words that have special meaning in a programming language are called __________.

20. Words or names defined by the programmer are called __________.

21. __________ are characters or symbols that perform operations on one or more
operands.

22. __________ characters or symbols mark the beginning or ending of programming
statements, or separate items in a list.

23. The rules that must be followed when constructing a program are called __________.

24. A(n) __________ is a named storage location.

25. A variable must be __________ before it can be used in a program.

26. The three primary activities of a program are __________, __________, and
__________.

27. __________ is information a program gathers from the outside world.

28. __________ is information a program sends to the outside world.

29. A(n) __________ is a diagram that graphically illustrates the structure of a program.

Algorithm Workbench

Draw hierarchy charts or flowcharts that depict the programs described below. (See
Appendix C for instructions on creating flowcharts.)

30. Available Credit

The following steps should be followed in a program that calculates a customer’s
available credit:

1. Display the message “Enter the customer’s maximum credit.”

2. Wait for the user to enter the customer’s maximum credit.

3. Display the message “Enter the amount of credit used by the customer.”

4. Wait for the user to enter the customer’s credit used.

5. Subtract the used credit from the maximum credit to get the customer’s available
credit.

6. Display a message that shows the customer’s available credit.

31. Sales Tax

Design a hierarchy chart or flowchart for a program that calculates the total of a retail
sale. The program should ask the user for:

– The retail price of the item being purchased
– The sales tax rate

Once these items have been entered, the program should calculate and display:
– The sales tax for the purchase
– The total of the sale

Review Questions and Exercises 25

32. Account Balance

Design a hierarchy chart or flowchart for a program that calculates the current bal-
ance in a savings account. The program must ask the user for:

– The starting balance
– The total dollar amount of deposits made
– The total dollar amount of withdrawals made
– The monthly interest rate

Once the program calculates the current balance, it should be displayed on the screen.

Predict the Result

Questions 33–35 are programs expressed as English statements. What would each display
on the screen if they were actual programs?

33. The variable x starts with the value 0.
The variable y starts with the value 5.
Add 1 to x.
Add 1 to y.
Add x and y, and store the result in y.
Display the value in y on the screen.

34. The variable j starts with the value 10.
The variable k starts with the value 2.
The variable l starts with the value 4.
Store the value of j times k in j.
Store the value of k times l in l.
Add j and l, and store the result in k.
Display the value in k on the screen.

35. The variable a starts with the value 1.
The variable b starts with the value 10.
The variable c starts with the value 100.
The variable x starts with the value 0.
Store the value of c times 3 in x.
Add the value of b times 6 to the value already in x.
Add the value of a times 5 to the value already in x.
Display the value in x on the screen.

Find the Error

36. The following pseudocode algorithm has an error. The program is supposed to ask the
user for the length and width of a rectangular room, and then display the room’s area.
The program must multiply the width by the length in order to determine the area.
Find the error.

area = width × length.
Display "What is the room's width?".
Input width.
Display "What is the room's length?".
Input length.
Display area.

Designing the
Account
Balance

Program

Predicting the
Result of

Problem 33

This page intentionally left blank

27

C
H

A
P

T
E

R

2 Introduction to C++

2.1 The Parts of a C++ Program

CONCEPT: C++ programs have parts and components that serve specific purposes.

Every C++ program has an anatomy. Unlike human anatomy, the parts of C++ programs
are not always in the same place. Nevertheless, the parts are there and your first step in
learning C++ is to learn what they are. We will begin by looking at Program 2-1.

Let’s examine the program line by line. Here’s the first line:

// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double slash to the end of the line. That means you can type anything you want on that
line and the compiler will never complain! Although comments are not required, they are
very important to programmers. Most programs are much more complicated than the
example in Program 2-1, and comments help explain what’s going on.

TOPICS

2.1 The Parts of a C++ Program
2.2 The cout Object
2.3 The #include Directive
2.4 Variables and Literals
2.5 Identifiers
2.6 Integer Data Types
2.7 The char Data Type
2.8 Floating-Point Data Types
2.9 The bool Data Type
2.10 Determining the Size

of a Data Type

2.11 Variable Assignments
and Initialization

2.12 Scope
2.13 Arithmetic Operators
2.14 Comments
2.15 Focus on Software Engineering:

Programming Style
2.16 If You Plan to Continue

in Computer Science: Standard
and Prestandard C++

28 Chapter 2 Introduction to C++

Line 2 looks like this:

#include <iostream>

Because this line starts with a #, it is called a preprocessor directive. The preprocessor reads
your program before it is compiled and only executes those lines beginning with a # symbol.
Think of the preprocessor as a program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostream file contains code that allows a C++ program to display output
on the screen and read input from the keyboard. Because this program uses cout to dis-
play screen output, the iostream file must be included. The contents of the iostream file
are included in the program at the point the #include statement appears. The iostream
file is called a header file, so it should be included at the head, or top, of the program.

Line 3 reads:

using namespace std;

Programs usually contain several items with unique names. In this chapter you will learn
to create variables. In Chapter 6 you will learn to create functions. In Chapter 13 you will
learn to create objects. Variables, functions, and objects are examples of program entities
that must have names. C++ uses namespaces to organize the names of program entities.
The statement using namespace std; declares that the program will be accessing enti-
ties whose names are part of the namespace called std. (Yes, even namespaces have
names.) The reason the program needs access to the std namespace is because every name
created by the iostream file is part of that namespace. In order for a program to use the
entities in iostream, it must have access to the std namespace.

Line 5 reads:

int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that collectively has a name. The name of this function is

Program 2-1

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is great fun!";
8 return 0;
9 }

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output
Programming is great fun!

2.1 The Parts of a C++ Program 29

main, and the set of parentheses that follows the name indicate that it is a function. The
word int stands for “integer.” It indicates that the function sends an integer value back to
the operating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must
have a function called main. It is the starting point of the program. If you are ever reading
someone else’s C++ program and want to find where it starts, just look for the function
named main.

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of
the function main. All the statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening brace you’ll see the closing
brace. Everything between the two braces is the contents of the function main.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters
inside the quotation marks is called a string literal or string constant.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semi-
colon marks the end of a complete statement in C++. Comments are ignored by the com-
piler, so the semicolon isn’t required at the end of a comment. Preprocessor directives, like
#include statements, simply end at the end of the line and never require semicolons. The
beginning of a function, like int main(), is not a complete statement, so you don’t place
a semicolon there either.

NOTE: C++ is a case-sensitive language. That means it regards uppercase letters as being
entirely different characters than their lowercase counterparts. In C++, the name of the
function main must be written in all lowercase letters. C++ doesn’t see “Main” the same
as “main,” or “INT” the same as “int.” This is true for all the C++ key words.

WARNING! Make sure you have a closing brace for every opening brace in
your program!

NOTE: This is the only line in the program that causes anything to be printed on the
screen. The other lines, like #include <iostream> and int main(), are necessary for
the framework of your program, but they do not cause any screen output. Remember, a
program is a set of instructions for the computer. If something is to be displayed on the
screen, you must use a programming statement for that purpose.

30 Chapter 2 Introduction to C++

It might seem that the rules for where to put a semicolon are not clear at all. Rather than
worry about it now, just concentrate on learning the parts of a program. You’ll soon get a
feel for where you should and should not use semicolons.

Line 8 reads:

return 0;

This sends the integer value 0 back to the operating system upon the program’s comple-
tion. The value 0 usually indicates that a program executed successfully.

Line 9 contains the closing brace:

}

This brace marks the end of the main function. Since main is the only function in this pro-
gram, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 2-1 pro-
vides a short summary of how they were used.

Checkpoint
2.1 The following C++ program will not compile because the lines have been mixed

up.

int main()
}
// A crazy mixed up program
return 0;
#include <iostream>
cout << "In 1492 Columbus sailed the ocean blue.";
{
using namespace std;

Table 2-1 Special Characters

Character Name Description
 // Double slash Marks the beginning of a comment.
 # Pound sign Marks the beginning of a preprocessor directive.
 < > Opening and closing brackets Encloses a filename when used with the

#include directive.
 () Opening and closing parentheses Used in naming a function, as in int main()
 { } Opening and closing braces Encloses a group of statements, such as the

contents of a function.
 " " Opening and closing quotation marks Encloses a string of characters, such as a message

that is to be printed on the screen.
 ; Semicolon Marks the end of a complete programming

statement.

2.2 The cout Object 31

When the lines are properly arranged the program should display the following
on the screen:

In 1492 Columbus sailed the ocean blue.

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.2 The cout Object

CONCEPT: Use the cout object to display information on the computer’s screen.

In this section you will learn to write programs that produce output on the screen. The
simplest type of screen output that a program can display is console output, which is
merely plain text. The word console is an old computer term. It comes from the days
when a computer operator interacted with the system by typing on a terminal. The termi-
nal, which consisted of a simple screen and keyboard, was known as the console.

On modern computers, running graphical operating systems such as Windows or Mac OS
X, console output is usually displayed in a window such as the one shown in Figure 2-1.
In C++ you use the cout object to produce console output. (You can think of the word
cout as meaning console output.)

cout is classified as a stream object, which means it works with streams of data. To print
a message on the screen, you send a stream of characters to cout. Let’s look at line 7 from
Program 2-1:

cout << "Programming is great fun!";

Notice that the << operator is used to send the string “Programming is great fun!” to cout.
When the << symbol is used this way, it is called the stream insertion operator. The item
immediately to the right of the operator is sent to cout and then displayed on the screen.

Figure 2-1 A Console Window

Using cout

32 Chapter 2 Introduction to C++

The stream insertion operator is always written as two less-than signs with no space
between them. Because you are using it to send a stream of data to the cout object, you
can think of the stream insertion operator as an arrow that must point toward cout. This
is illustrated in Figure 2-2.

Program 2-2 is another way to write the same program.

As you can see, the stream-insertion operator can be used to send more than one item to
cout. The output of this program is identical to that of Program 2-1. Program 2-3 shows
yet another way to accomplish the same thing.

An important concept to understand about Program 2-3 is that, although the output is
broken up into two programming statements, this program will still display the message

Figure 2-2

Program 2-2

1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is " << "great fun!";
8 return 0;
9 }

Program Output
Programming is great fun!

Program 2-3

 1 // A simple C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "Programming is ";
8 cout << "great fun!";
9 return 0;
10 }

Program Output
Programming is great fun!

cout << "Programming is great fun!";

cout "Programming is great fun!";

Think of the stream insertion operator as an
arrow that points toward cout.

2.2 The cout Object 33

on a single line. Unless you specify otherwise, the information you send to cout is dis-
played in a continuous stream. Sometimes this can produce less-than-desirable results.
Program 2-4 is an example.

The layout of the actual output looks nothing like the arrangement of the strings in the
source code. First, notice there is no space displayed between the words “sellers” and
“during,” or between “June:” and “Computer.” cout displays messages exactly as they
are sent. If spaces are to be displayed, they must appear in the strings.

Second, even though the output is broken into five lines in the source code, it comes out as
one long line of output. Because the output is too long to fit on one line on the screen, it
wraps around to a second line when displayed. The reason the output comes out as one
long line is because cout does not start a new line unless told to do so. There are two
ways to instruct cout to start a new line. The first is to send cout a stream manipulator
called endl (which is pronounced “end-line” or “end-L”). Program 2-5 is an example.

Program 2-4

1 // An unruly printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers";
8 cout << "during the month of June:";
9 cout << "Computer games";
10 cout << "Coffee";
11 cout << "Aspirin";
12 return 0;
13 }

Program Output
The following items were top sellersduring the month of June:Computer gamesCoff
eeAspirin

Program 2-5

1 // A well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers" << endl;
8 cout << "during the month of June:" << endl;
9 cout << "Computer games" << endl;
10 cout << "Coffee" << endl;
11 cout << "Aspirin" << endl;
12 return 0;
13 }

(program output continues)

34 Chapter 2 Introduction to C++

Every time cout encounters an endl stream manipulator it advances the output to the
beginning of the next line for subsequent printing. The manipulator can be inserted any-
where in the stream of characters sent to cout, outside the double quotes. The following
statements show an example.

cout << "My pets are" << endl << "dog";
cout << endl << "cat" << endl << "bird" << endl;

Another way to cause cout to go to a new line is to insert an escape sequence in the string
itself. An escape sequence starts with the backslash character (\), and is followed by one
or more control characters. It allows you to control the way output is displayed by embed-
ding commands within the string itself. Program 2-6 is an example.

The newline escape sequence is \n. When cout encounters \n in a string, it doesn’t print it
on the screen, but interprets it as a special command to advance the output cursor to the
next line. You have probably noticed inserting the escape sequence requires less typing
than inserting endl. That’s why many programmers prefer it.

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

NOTE: The last character in endl is the lowercase letter L, not the number one.

Program 2-6

1 // Yet another well-adjusted printing program
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << "The following items were top sellers\n";
8 cout << "during the month of June:\n";
9 cout << "Computer games\nCoffee";
10 cout << "\nAspirin\n";
11 return 0;
12 }

Program Output
The following items were top sellers
during the month of June:
Computer games
Coffee
Aspirin

Program 2-5 (continued)

2.2 The cout Object 35

A common mistake made by beginning C++ students is to use a forward slash (/) instead
of a backslash (\) when trying to write an escape sequence. This will not work. For exam-
ple, look at the following code.

// Error!
cout << "Four Score/nAnd seven/nYears ago./n";

In this code, the programmer accidentally wrote /n when he or she meant to write \n. The
cout object will simply display the /n characters on the screen. This code will display the
following output:

Four Score/nAnd seven/nYears ago./n

Another common mistake is to forget to put the \n inside quotation marks. For example,
the following code will not compile.

// Error! This code will not compile.
cout << "Good" << \n;
cout << "Morning" << \n;

This code will result in an error because the \n sequences are not inside quotation marks.
We can correct the code by placing the \n sequences inside the string literals, as shown here:

// This will work.
cout << "Good\n";
cout << "Morning\n";

There are many escape sequences in C++. They give you the ability to exercise greater con-
trol over the way information is output by your program. Table 2-2 lists a few of them.

Table 2-2 Common Escape Sequences

Escape
Sequence Name Description
 \n Newline Causes the cursor to go to the next line for subsequent printing.
 \t Horizontal tab Causes the cursor to skip over to the next tab stop.
 \a Alarm Causes the computer to beep.
 \b Backspace Causes the cursor to back up, or move left one position.
 \r Return Causes the cursor to go to the beginning of the current line, not the

next line.
 \\ Backslash Causes a backslash to be printed.
 \' Single quote Causes a single quotation mark to be printed.
 \" Double quote Causes a double quotation mark to be printed.

WARNING! When using escape sequences, do not put a space between the backslash
and the control character.

36 Chapter 2 Introduction to C++

2.3 The #include Directive

CONCEPT: The #include directive causes the contents of another file to be inserted
into the program.

Now is a good time to expand our discussion of the #include directive. The following
line has appeared near the top of every example program.

#include <iostream>

The header file iostream must be included in any program that uses the cout object. This
is because cout is not part of the “core” of the C++ language. Specifically, it is part of the
input–output stream library. The header file, iostream, contains information describing
iostream objects. Without it, the compiler will not know how to properly compile a pro-
gram that uses cout.

Preprocessor directives are not C++ statements. They are commands to the preprocessor,
which runs prior to the compiler (hence the name “preprocessor”). The preprocessor’s job
is to set programs up in a way that makes life easier for the programmer.

For example, any program that uses the cout object must contain the extensive setup infor-
mation found in iostream. The programmer could type all this information into the pro-
gram, but it would be too time consuming. An alternative would be to use an editor to “cut
and paste” the information into the program, but that would quickly become tiring as well.
The solution is to let the preprocessor insert the contents of iostream automatically.

An #include directive must always contain the name of a file. The preprocessor inserts
the entire contents of the file into the program at the point it encounters the #include
directive. The compiler doesn’t actually see the #include directive. Instead it sees the code
that was inserted by the preprocessor, just as if the programmer had typed it there.

The code contained in header files is C++ code. Typically it describes complex objects like
cout. Later you will learn to create your own header files.

Checkpoint
2.2 The following C++ program will not compile because the lines have been mixed up.

cout << "Success\n";
cout << " Success\n\n";
int main()
cout << "Success";
}
using namespace std;
// It's a mad, mad program

WARNING! Do not put semicolons at the end of processor directives. Because
preprocessor directives are not C++ statements, they do not require semicolons. In many
cases an error will result from a preprocessor directive terminated with a semicolon.

2.4 Variables and Literals 37

#include <iostream>
cout << "Success\n";
{
return 0;

When the lines are properly arranged the program should display the following
on the screen:

Program Output
Success
Success Success

Success

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

2.3 Study the following program and show what it will print on the screen.

// The Works of Wolfgang
#include <iostream>
using namespace std;

int main()
{
 cout << "The works of Wolfgang\ninclude the following";
 cout << "\nThe Turkish March" << endl;
 cout << "and Symphony No. 40 ";
 cout << "in G minor." << endl;
 return 0;
}

2.4 On paper, write a program that will display your name on the first line, your street
address on the second line, your city, state, and ZIP code on the third line, and
your telephone number on the fourth line. Place a comment with today’s date at
the top of the program. Test your program by entering, compiling, and running it.

2.4 Variables and Literals

CONCEPT: Variables represent storage locations in the computer’s memory. Literals
are constant values that are assigned to variables.

As you discovered in Chapter 1, variables allow you to store and work with data in the com-
puter’s memory. They provide an “interface” to RAM. Part of the job of programming is to
determine how many variables a program will need and what types of information they will
hold. Program 2-7 is an example of a C++ program with a variable. Take a look at line 7:

int number;

This is called a variable definition. It tells the compiler the variable’s name and the type of
data it will hold. This line indicates the variable’s name is number. The word int stands
for integer, so number will only be used to hold integer numbers. Later in this chapter you
will learn all the types of data that C++ allows.

Variable
Definitions

38 Chapter 2 Introduction to C++

Notice that variable definitions end with a semicolon. Now look at line 9:

number = 5;

This is called an assignment. The equal sign is an operator that copies the value on its right
(5) into the variable named on its left (number). After this line executes, number will be set
to 5.

Look at line 10.

cout << "The value in number is " << number << endl;

The second item sent to cout is the variable name number. When you send a variable
name to cout it prints the variable’s contents. Notice there are no quotation marks
around number. Look at what happens in Program 2-8.

Program 2-7

1 // This program has a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number;
8
9 number = 5;
10 cout << "The value in number is " << number << endl;
11 return 0;
12 }

Program Output
The value in number is 5

NOTE: You must have a definition for every variable you intend to use in a program. In
C++, variable definitions can appear at any point in the program. Later in this chapter,
and throughout the book, you will learn the best places to define variables.

NOTE: This line does not print anything on the computer’s screen. It runs silently
behind the scenes, storing a value in RAM.

Program 2-8

1 // This program has a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number;
8

(program continues)

2.4 Variables and Literals 39

When double quotation marks are placed around the word number it becomes a string lit-
eral, and is no longer a variable name. When string literals are sent to cout they are
printed exactly as they appear inside the quotation marks. You’ve probably noticed by
now that the endl stream manipulator has no quotation marks around it, for the same reason.

Sometimes a Number Isn’t a Number
As shown in Program 2-8, just placing quotation marks around a variable name changes
the program’s results. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Program
2-8 the number 5 was assigned to the variable number. It would have been incorrect to
perform the assignment this way:

number = "5";

In this line, 5 is no longer an integer, but a string literal. Because number was defined as an
integer variable, you can only store integers in it. The integer 5 and the string literal “5”
are not the same thing.

The fact that numbers can be represented as strings frequently confuses students who are
new to programming. Just remember that strings are intended for humans to read. They
are to be printed on computer screens or paper. Numbers, however, are intended primarily
for mathematical operations. You cannot perform math on strings. Before numbers can be
displayed on the screen, they must first be converted to strings. (Fortunately, cout handles
the conversion automatically when you send a number to it.)

Literals
A variable is called a “variable” because its value may be changed. A literal, on the other
hand, is a value that does not change during the program’s execution. Program 2-9 con-
tains both literals and a variable.

9 number = 5;
10 cout << "The value in number is " << "number" << endl;
11 return 0;
12 }

Program Output
The value in number is number

Program 2-9

1 // This program has literals and a variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {

(program continues)

Program 2-8 (continued)

40 Chapter 2 Introduction to C++

Of course, the variable is apples. It is defined as an integer. Table 2-3 lists the literals
found in the program.

What are literals used for? As you can see from this program, they are commonly used to
store known values in variables and display messages on the screen or a printout.

Checkpoint
2.5 Examine the following program.

// This program uses variables and literals.
#include <iostream>
using namespace std;

int main()
{

int little;
int big;

little = 2;
big = 2000;
cout << "The little number is " << little << endl;
cout << "The big number is " << big << endl;
return 0;

}

List all the variables and literals that appear in the program.

2.6 What will the following program display on the screen?

#include <iostream>
using namespace std;

7 int apples;
8
9 apples = 20;
10 cout << "Today we sold " << apples << " bushels of apples.\n";
11 return 0;
12 }

Program Output
Today we sold 20 bushels of apples.

Table 2-3

Literal Type of Literal
20 Integer literal
"Today we sold " String literal
"bushels of apples.\n" String literal
0 Integer literal

NOTE: Literals are also called constants.

Program 2-9 (continued)

2.5 Identifiers 41

int main()
{

int number;

number = 712;
cout << "The value is " << "number" << endl;
return 0;

}

2.5 Identifiers

CONCEPT: Choose variable names that indicate what the variables are used for.

An identifier is a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

You should always choose names for your variables that give an indication of what the
variables are used for. You may be tempted to define variables with names like this:

int x;

The rather nondescript name, x, gives no clue as to the variable’s purpose. Here is a better
example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of the variable’s use.
This way of coding helps produce self-documenting programs, which means you get an
understanding of what the program is doing just by reading its code. Because real-world
programs usually have thousands of lines, it is important that they be as self-documenting
as possible.

Table 2-4 The C++ Key Words

and continue goto public try
and_eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_eq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this xor
const for private throw xor_eq
const_cast friend protected true

42 Chapter 2 Introduction to C++

You probably have noticed the mixture of uppercase and lowercase letters in the name
itemsOrdered. Although all of C++’s key words must be written in lowercase, you may
use uppercase letters in variable names.

The reason the O in itemsOrdered is capitalized is to improve readability. Normally
“items ordered” is two words. Unfortunately you cannot have spaces in a variable name,
so the two words must be combined into one. When “items” and “ordered” are stuck
together you get a variable definition like this:

int itemsordered;

Capitalization of the first letter of the second word and succeeding words makes
itemsOrdered easier to read. It should be mentioned that this style of coding is not
required. You are free to use all lowercase letters, all uppercase letters, or any combination
of both. In fact, some programmers use the underscore character to separate words in a
variable name, as in the following.

int items_ordered;

Legal Identifiers
Regardless of which style you adopt, be consistent and make your variable names as sensi-
ble as possible. Here are some specific rules that must be followed with all identifiers.

• The first character must be one of the letters a through z, A through Z, or an
underscore character (_).

• After the first character you may use the letters a through z or A through Z, the
digits 0 through 9, or underscores.

• Uppercase and lowercase characters are distinct. This means ItemsOrdered is
not the same as itemsordered.

Table 2-5 lists variable names and tells whether each is legal or illegal in C++.

2.6 Integer Data Types

CONCEPT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric information,

Table 2-5 Some Variable Names

Variable Name Legal or Illegal?
dayOfWeek Legal.
3dGraph Illegal. Variable names cannot begin with a digit.
_employee_num Legal.
June1997 Legal.
Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

2.6 Integer Data Types 43

for example, there are whole numbers and fractional numbers. There are negative num-
bers and positive numbers. And there are numbers so large, and others so small, that they
don’t even have a name. Then there is textual information. Names and addresses, for
instance, are stored as groups of characters. When you write a program you must deter-
mine what types of information it will be likely to encounter.

If you are writing a program to calculate the number of miles to a distant star, you’ll need
variables that can hold very large numbers. If you are designing software to record micro-
scopic dimensions, you’ll need to store very small and precise numbers. Additionally, if you
are writing a program that must perform thousands of intensive calculations, you’ll want vari-
ables that can be processed quickly. The data type of a variable determines all of these factors.

Although C++ offers many data types, in the very broadest sense there are only two:
numeric and character. Numeric data types are broken into two additional categories:
integer and floating point. Integers are whole numbers like 12, 157, –34, and 2. Floating
point numbers have a decimal point, like 23.7, 189.0231, and 0.987. Additionally, the
integer and floating point data types are broken into even more classifications. Before we
discuss the character data type, let’s carefully examine the variations of numeric data.

Your primary considerations for selecting a numeric data type are:

• The largest and smallest numbers that may be stored in the variable
• How much memory the variable uses
• Whether the variable stores signed or unsigned numbers
• The number of decimal places of precision the variable has

The size of a variable is the number of bytes of memory it uses. Typically, the larger a vari-
able is, the greater the range it can hold.

Table 2-6 shows the C++ integer data types with their typical sizes and ranges.

Here are some examples of variable definitions:

int days;
unsigned speed;
short month;
unsigned short amount;
long deficit;
unsigned long insects;

NOTE: The data type sizes and ranges shown in Table 2-6 are typical on many systems.
Depending on your operating system, the sizes and ranges may be different.

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range
short 2 bytes –32,768 to +32,767
unsigned short 2 bytes 0 to +65,535
int 4 bytes –2,147,483,648 to +2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295
long 4 bytes –2,147,483,648 to +2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

44 Chapter 2 Introduction to C++

Unsigned data types can only store nonnegative values. They can be used when you know
your program will not encounter negative values. For example, variables that hold ages or
weights would rarely hold numbers less than 0.

Notice in Table 2-6 that the int and long data types have the same sizes and ranges, and
that the unsigned int data type has the same size and range as the unsigned long data
type. This is not always true because the size of integers is dependent on the type of system
you are using. Here are the only guarantees:

• Integers are at least as big as short integers.
• Long integers are at least as big as integers.
• Unsigned short integers are the same size as short integers.
• Unsigned integers are the same size as integers.
• Unsigned long integers are the same size as long integers.

Later in this chapter you will learn to use the sizeof operator to determine how large all
the data types are on your computer.

As mentioned before, variables are defined by stating the data type key word followed by
the name of the variable. In Program 2-10 an integer, an unsigned integer, and a long inte-
ger have been defined.

NOTE: An unsigned int variable can also be defined using only the word unsigned.
For example, the following variable definitions are equivalent.

 unsigned int days;
 unsigned days;

Program 2-10

1 // This program has variables of several of the integer types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int checking;
8 unsigned int miles;
9 long days;
10
11 checking = -20;
12 miles = 4276;
13 days = 189000;
14 cout << "We have made a long journey of " << miles;
15 cout << " miles.\n";
16 cout << "Our checking account balance is " << checking;
17 cout << "\nAbout " << days << " days ago Columbus ";
18 cout << "stood on this spot.\n";
19 return 0;
20 }

2.6 Integer Data Types 45

In most programs you will need more than one variable of any given data type. If a pro-
gram uses two integers, length and width, they could be defined separately, like this:

int length;
int width;

It is easier, however, to combine both variable definitions on one line:

int length, width;

You can define several variables of the same type like this, simply separating their names
with commas. Program 2-11 illustrates this.

Integer and Long Integer Literals
Look at lines 9, 10, and 11 in Program 2-11:

floors = 15;
rooms = 300;
suites = 30;

Each of these lines contains an integer literal. In C++, integer literals are normally stored
in memory just as an int. On a system that uses 2 byte integers and 4 byte longs, the lit-
eral 50000 is too large to be stored as an int, so it is stored as a long.

Program Output
We have made a long journey of 4276 miles.
Our checking account balance is -20
About 189000 days ago Columbus stood on this spot.

Program 2-11

1 // This program shows three variables defined on the same line.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int floors, rooms, suites;
8
9 floors = 15;
10 rooms = 300;
11 suites = 30;
12 cout << "The Grande Hotel has " << floors << " floors\n";
13 cout << "with " << rooms << " rooms and " << suites;
14 cout << " suites.\n";
15 return 0;
16 }

Program Output
The Grande Hotel has 15 floors
with 300 rooms and 30 suites.

46 Chapter 2 Introduction to C++

One of the pleasing characteristics of the C++ language is that it allows you to control
almost every aspect of your program. If you need to change the way something is stored in
memory, the tools are provided to do that. For example, what if you are in a situation
where you have an integer literal, but you need it to be stored in memory as a long inte-
ger? (Rest assured, this is a situation that does arise.) C++ allows you to force an integer
literal to be stored as a long integer by placing the letter L at the end of the number. Here
is an example:

32L

On a computer that uses 2-byte integers and 4-byte long integers, this literal will use 4
bytes. This is called a long integer literal.

If You Plan to Continue in Computer Science: Hexadecimal
and Octal Literals
Programmers commonly express values in numbering systems other than decimal (or base
10). Hexadecimal (base 16) and octal (base 8) are popular because they make certain pro-
gramming tasks more convenient than decimal numbers do.

By default, C++ assumes that all integer literals are expressed in decimal. You express
hexadecimal numbers by placing 0x in front of them. (This is zero-x, not oh-x.) Here is
how the hexadecimal number F4 would be expressed in C++:

0xF4

Octal numbers must be preceded by a 0 (zero, not oh). For example, the octal 31 would be
written

031

Checkpoint
2.7 Which of the following are illegal variable names, and why?

x
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.8 Is the variable name Sales the same as sales? Why or why not?

NOTE: You can use either an uppercase or lowercase L. The lowercase l looks too much
like the number 1, so you should always use the uppercase L.

NOTE: You will not be writing programs for some time that require this type of
manipulation. It is important, however, that you understand this material. Good
programmers should develop the skills for reading other people’s source code. You may find
yourself reading programs that use items like long integer, hexadecimal, or octal literals.

2.7 The char Data Type 47

2.9 Refer to the data types listed in Table 2-6 for these questions.
A) If a variable needs to hold numbers in the range 32 to 6,000, what data type

would be best?
B) If a variable needs to hold numbers in the range –40,000 to +40,000, what

data type would be best?
C) Which of the following literals uses more memory? 20 or 20L

2.10 On any computer, which data type uses more memory, an integer or an unsigned
integer?

2.7 The char Data Type

You might be wondering why there isn’t a 1-byte integer data type. Actually there is. It is
called the char data type, which gets its name from the word “character.” As its name sug-
gests, it is primarily for storing characters, but strictly speaking, it is an integer data type.

The reason an integer data type is used to store characters is because characters are inter-
nally represented by numbers. Each printable character, as well as many nonprintable char-
acters, is assigned a unique number. The most commonly used method for encoding
characters is ASCII, which stands for the American Standard Code for Information Inter-
change. (There are other codes, such as EBCDIC, which is used by many IBM mainframes.)

When a character is stored in memory, it is actually the numeric code that is stored. When
the computer is instructed to print the value on the screen, it displays the character that
corresponds with the numeric code.

You may want to refer to Appendix A, which shows the ASCII character set. Notice that
the number 65 is the code for A, 66 is the code for A, and so on. Program 2-12 demon-
strates that when you work with characters, you are actually working with numbers.

NOTE: On some systems the char data type is larger than 1 byte.

Program 2-12

1 // This program demonstrates the close relationship between
2 // characters and integers.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 char letter;
9
10 letter = 65;
11 cout << letter << endl;
12 letter = 66;
13 cout << letter << endl;
14 return 0;
15 }

(program output continues)

48 Chapter 2 Introduction to C++

Figure 2-3 illustrates that when characters, such as A, B, and C, are stored in memory, it is
really the numbers 65, 66, and 67 that are stored.

Character Literals
Although Program 2-12 nicely illustrates the way characters are represented by numbers,
it isn’t necessary to work with the ASCII codes themselves. Program 2-13 is another ver-
sion that works that same way.

Program 2-13 assigns character literals to the variable letter. Any time a program works
with a character, it internally works with the code that represents that character, so this
program is still assigning the values 65 and 66 to letter.

Program Output
A
B

Figure 2-3

Program 2-13

1 // This program uses character literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A';
10 cout << letter << endl;
11 letter = 'B';
12 cout << letter << endl;
13 return 0;
14 }

Program Output
A
B

Program 2-12 (continued)

is stored in memory as

A

65

B

66

C

67

2.7 The char Data Type 49

Notice in lines 9 and 11 that the character literals are enclosed in single quotation marks.
It is important that you do not confuse character literals with string literals, which are
enclosed in double quotation marks. String literals cannot be assigned to standard char
variables, because of the way string literals are stored internally.

Strings are a series of characters stored in consecutive memory locations. The problem with
strings is that they can be virtually any length. This means that there must be some way for
the program to know how long the string is. In C++ an extra byte is appended to the end of
most strings. In this last byte, the number 0 is stored. This null terminator or null character
marks the end of the string. Strings that are stored in memory in this fashion, with the null
terminator appended to their end, are called C-strings. They are called C-strings because this
storage technique was initially used in the C programming language.

Don’t confuse the null terminator with the character ‘0’. If you look at Appendix A, you
will see that ASCII code 48 corresponds to the character ‘0’, whereas the null terminator is
the same as the ASCII code 0. If you want to print the character 0 on the screen, you use
ASCII code 48. If you want to mark the end of a string, however, you use ASCII code 0.

Let’s look at an example of how a string is stored in memory. Figure 2-4 depicts the way
the string “Sebastian” would be stored.

First, notice the quotation marks are not stored with the string. They are simply a way of
marking the beginning and end of the string in your source code. Second, notice the very
last byte of the string. It contains the null terminator, which is represented by the \0 char-
acter. The addition of this last byte means that although the string “Sebastian” is 9 charac-
ters long, it occupies 10 bytes of memory.

The null terminator is another example of something that sits quietly in the background.
It doesn’t print on the screen when you display a string, but nevertheless, it is there silently
doing its job.

Now let’s compare the way a string and a char are stored. Suppose you have the literals
‘A’ and “A” in a program. Figure 2-5 depicts their internal storage.

Figure 2-4

NOTE: C++ automatically places the null terminator at the end of string literals.

Figure 2-5

S e b a s t i a n \0

A \0

A‘A’ is stored as

“A” is stored as

50 Chapter 2 Introduction to C++

As you can see, ‘A’ is a 1-byte element and “A” is a 2-byte element. Since characters are
really stored as ASCII codes, Figure 2-6 shows what is actually being stored in memory.

Because char variables are only large enough to hold one character, you cannot assign string
literals to them. For example, the following code defines a char variable named letter.
The character literal 'A' can be assigned to the variable, but the string literal "A" cannot.

char letter;
letter = 'A'; // This will work.
letter = "A"; // This will not work!

You are probably wondering what kind of variable is used to hold strings in C++. You
must define a variable that is made of several 1-byte elements, enough for the entire string
and its null terminator. We will discuss this in Chapter 3.

One final topic about characters should be discussed. You have learned that some strings
look like a single character but really aren’t. It is also possible to have a character that
looks like a string. A good example is the newline character, \n. Although it is represented
by two characters, a slash and an n, it is internally represented as one character. In fact, all
escape sequences, internally, are just 1 byte.

Program 2-14 shows the use of \n as a character literal, enclosed in single quotation
marks. If you refer to the ASCII chart in Appendix A, you will see that ASCII code 10 is
the linefeed character. This is the code C++ uses for the newline character.

Figure 2-6

Program 2-14

1 // This program uses character literals.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char letter;
8
9 letter = 'A';
10 cout << letter << '\n';
11 letter = 'B';
12 cout << letter << '\n';
13 return 0;
14 }

65 0

65‘A’ is stored as

“A” is stored as

2.7 The char Data Type 51

Let’s review some important points regarding characters and strings:

• Printable characters are internally represented by numeric codes. Most computers
use ASCII codes for this purpose.

• Characters normally occupy a single byte of memory.
• Strings are consecutive sequences of characters that occupy consecutive bytes of

memory.
• C-strings always have a null terminator at the end. This marks the end of the string.
• Character literals are enclosed in single quotation marks.
• String literals are enclosed in double quotation marks.
• Escape sequences are stored internally as a single character.

Checkpoint
2.11 What are the ASCII codes for the following characters? (Refer to Appendix A)

C
F
W

2.12 Which of the following is a character literal?

'B'
"B"

2.13 Assuming the char data type uses 1 byte of memory, how many bytes do the fol-
lowing literals use?

'Q'
"Q"
"Sales"
'\n'

2.14 Write a program that has the following character variables: first, middle, and
last. Store your initials in these variables and then display them on the screen.

2.15 What is wrong with the following program?

#include <iostream>
using namespace std;

int main()
{

char letter;

letter = "Z";
cout << letter << endl;
return 0;

}

Program Output
A
B

52 Chapter 2 Introduction to C++

2.8 Floating-Point Data Types

CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers.

Internally, floating-point numbers are stored in a manner similar to scientific notation.
Take the number 47,281.97. In scientific notation this number is 4.728197 × 104. (104 is
equal to 10,000, and 4.728197 × 10,000 is 47,281.97.) The first part of the number,
4.728197, is called the mantissa. The mantissa is multiplied by a power of ten.

Computers typically use E notation to represent floating-point values. In E notation, the
number 47,281.97 would be 4.728197E4. The part of the number before the E is the
mantissa, and the part after the E is the power of 10. When a floating point number is
stored in memory, it is stored as the mantissa and the power of 10.

Table 2-7 shows other numbers represented in scientific and E notation.

In C++ there are three data types that can represent floating-point numbers. They are

float
double
long double

The float data type is considered single precision. The double data type is usually twice
as big as float, so it is considered double precision. As you’ve probably guessed, the long
double is intended to be larger than the double. Of course, the exact sizes of these data
types are dependent on the computer you are using. The only guarantees are:

• A double is at least as big as a float.
• A long double is at least as big as a double.

Table 2-8 shows the sizes and ranges of floating-point data types usually found on PCs.

Table 2-7 Floating Point Representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 × 102 2.4791E2

0.00072 7.2 × 10–4 7.2E–4

2,900,000 2.9 × 106 2.9E6

Table 2-8 Floating Point Data Types on PCs

Data Type Key Word Description

Single precision float 4 bytes. Numbers between ±3.4E-38 and ±3.4E38

Double precision double 8 bytes. Numbers between ±1.7E-308 and ±1.7E308

Long double precision long double*

*Some compilers use 10 bytes for long doubles. This allows a range of ±3.4E-4932 to ±1.1E4832

8 bytes. Numbers between ±1.7E-308 and ±1.7E308

2.8 Floating-Point Data Types 53

You will notice there are no unsigned floating point data types. On all machines, vari-
ables of the float, double, and long double data types can store positive or negative
numbers.

Floating Point Literals
Floating point literals may be expressed in a variety of ways. As shown in Program 2-15,
E notation is one method. When you are writing numbers that are extremely large or
extremely small, this will probably be the easiest way. E notation numbers may be
expressed with an uppercase E or a lowercase e. Notice that in the source code the literals
were written as 1.495979E11 and 1.989E30, but the program printed them as 1.49598e+
011 and 1.989e+30. The two sets of numbers are equivalent. (The plus sign in front of the
exponent is also optional.) In Chapter 3 you will learn to control the way cout displays E
notation numbers.

You can also express floating-point literals in decimal notation. The literal 1.495979E11
could have been written as

149597900000.00

Obviously the E notation is more convenient for lengthy numbers, but for numbers like
47.39, decimal notation is preferable to 4.739E1.

All of the following floating-point literals are equivalent:

1.4959E11
1.4959e11
1.4959E+11
1.4959e+11
149590000000.00

Program 2-15

1 // This program uses floating point data types.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 float distance;
8 double mass;
9
10 distance = 1.495979E11;
11 mass = 1.989E30;
12 cout << "The Sun is " << distance << " meters away.\n";
13 cout << "The Sun\'s mass is " << mass << " kilograms.\n";
14 return 0;
15 }

Program Output
The Sun is 1.49598e+011 meters away.
The Sun's mass is 1.989e+030 kilograms.

54 Chapter 2 Introduction to C++

Floating-point literals are normally stored in memory as doubles. But remember, C++
provides tools for handling just about any situation. Just in case you need to force a literal
to be stored as a float, you can append the letter F or f to the end of it. For example, the
following literals would be stored as floats:

1.2F
45.907f

If you want to force a value to be stored as a long double, append an L or l to it, as in
the following examples:

1034.56L
89.2l

The compiler won’t confuse these with long integers because they have decimal points.
(Remember, the lowercase L looks so much like the number 1 that you should always use
the uppercase L when suffixing literals.)

Assigning Floating-Point Values to Integer Variables
When a floating-point value is assigned to an integer variable, the fractional part of the
value (the part after the decimal point) is discarded. For example, look at the following
code.

int number;
number = 7.5; // Assigns 7 to number

This code attempts to assign the floating-point value 7.5 to the integer variable number. As
a result, the value 7 will be assigned to number, with the fractional part discarded. When
part of a value is discarded, it is said to be truncated.

Assigning a floating-point variable to an integer variable has the same effect. For example,
look at the following code.

int i;
float f;
f = 7.5;
i = f; // Assigns 7 to i.

NOTE: Because floating-point literals are normally stored in memory as doubles, many
compilers issue a warning message when you assign a floating-point literal to a float
variable. For example, assuming num is a float, the following statement might cause the
compiler to generate a warning message:

 num = 14.725;

You can suppress the warning message by appending the f suffix to the floating-point
literal, as shown below:

 num = 14.725f;

2.9 The bool Data Type 55

When the float variable f is assigned to the int variable i, the value being assigned (7.5)
is truncated. After this code executes i will hold the value 7 and f will hold the value 7.5.

2.9 The bool Data Type

CONCEPT: Boolean variables are set to either true or false.

Expressions that have a true or false value are called Boolean expressions, named in
honor of English mathematician George Boole (1815–1864).

The bool data type allows you to create small integer variables that are suitable for hold-
ing true or false values. Program 2-16 demonstrates the definition and assignment of a
bool variable.

As you can see from the program output, the value true is represented in memory by the
number 1, and false is represented by 0. You will not be using bool variables until
Chapter 4, however, so just remember they are useful for evaluating conditions that are
either true or false.

NOTE: When a floating-point value is truncated, it is not rounded. Assigning the value
7.9 to an int variable will result in the value 7 being stored in the variable.

WARNING! Floating-point variables can hold a much larger range of values than
integer variables can. If a floating-point value is being stored in an integer variable, and
the whole part of the value (the part before the decimal point) is too large for the integer
variable, an invalid value will be stored in the integer variable.

Program 2-16

1 // This program demonstrates boolean variables.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 bool boolValue;
8
9 boolValue = true;
10 cout << boolValue << endl;
11 boolValue = false;
12 cout << boolValue << endl;
13 return 0;
14 }

Program Output
1
0

56 Chapter 2 Introduction to C++

2.10 Determining the Size of a Data Type

CONCEPT: The sizeof operator may be used to determine the size of a data type on
any system.

Chapter 1 discussed the portability of the C++ language. As you have seen in this chapter,
one of the problems of portability is the lack of common sizes of data types on all
machines. If you are not sure what the sizes of data types are on your computer, C++ pro-
vides a way to find out.

A special operator called sizeof will report the number of bytes of memory used by any
data type or variable. Program 2-17 illustrates its use. The first line that uses the operator
is line 10:

cout << "The size of an integer is " << sizeof(int);

The name of the data type or variable is placed inside the parentheses that follow the
operator. The operator “returns” the number of bytes used by that item. This operator
can be invoked anywhere you can use an unsigned integer, including in mathematical
operations.

Program 2-17

1 // This program determines the size of integers, long
2 // integers, and long doubles.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 long double apple;
9
10 cout << "The size of an integer is " << sizeof(int);
11 cout << " bytes.\n";
12 cout << "The size of a long integer is " << sizeof(long);
13 cout << " bytes.\n";
14 cout << "An apple can be eaten in " << sizeof(apple);
15 cout << " bytes!\n";
16 return 0;
17 }

Program Output
The size of an integer is 4 bytes.
The size of a long integer is 4 bytes.
An apple can be eaten in 8 bytes!

2.11 Variable Assignments and Initialization 57

Checkpoint
2.16 Yes or No: Is there an unsigned floating point data type? If so, what is it?

2.17 How would the following number in scientific notation be represented in E notation?

6.31 × 1017

2.18 Write a program that defines an integer variable named age and a float variable
named weight. Store your age and weight, as literals, in the variables. The program
should display these values on the screen in a manner similar to the following:

Program Output

My age is 26 and my weight is 180 pounds.

(Feel free to lie to the computer about your age and your weight—
it’ll never know!)

2.11 Variable Assignments and Initialization

CONCEPT: An assignment operation assigns, or copies, a value into a variable. When
a value is assigned to a variable as part of the variable’s definition, it is
called an initialization.

As you have already seen in several examples, a value is stored in a variable with an
assignment statement. For example, the following statement copies the value 12 into the
variable unitsSold.

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data.
The data that operators work with are called operands. The assignment operator has two
operands. In the previous statement, the operands are unitsSold and 12.

In an assignment statement, C++ requires the name of the variable receiving the assign-
ment to appear on the left side of the operator. The following statement is incorrect.

12 = unitsSold; // Incorrect!

In C++ terminology, the operand on the left side of the = symbol must be an lvalue. It is
called an lvalue because it is a value that may appear on the left side of an assignment
operator. An lvalue is something that identifies a place in memory whose contents may be
changed. Most of the time this will be a variable name. The operand on the right side of
the = symbol must be an rvalue. An rvalue is any expression that has a value. The assign-
ment statement takes the value of the rvalue and puts it in the memory location of the
object identified by the lvalue.

58 Chapter 2 Introduction to C++

You may also assign values to variables as part of the definition. This is called initializa-
tion. Program 2-18 shows how it is done.

As you can see, this simplifies the program and reduces the number of statements that
must be typed by the programmer. Here are examples of other definition statements that
perform initialization.

double interestRate = 12.9;
char stockode = 'D';
long customerNum = 459L;

Of course, there are always variations on a theme. C++ allows you to define several vari-
ables and only initialize some of them. Here is an example of such a definition:

int flightNum = 89, travelTime, departure = 10, distance;

The variable flightNum is initialized to 89 and departure is initialized to 10. The vari-
ables travelTime and distance remain uninitialized.

2.12 Scope

CONCEPT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be used. The rules that define a variable’s scope are complex, and you will
only be introduced to the concept here. In other sections of the book we will revisit this
topic and expand on it.

The first rule of scope you should learn is that a variable cannot be used in any part of the
program before the definition. Program 2-19 illustrates this.

Program 2-18

1 // This program shows variable initialization.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int month = 2, days = 28;
8
9 cout << "Month " << month << " has " << days << " days.\n";
10 return 0;
11 }

Program Output
Month 2 has 28 days.

2.13 Arithmetic Operators 59

The program will not work because line 7 attempts to send the contents of the variable
value to cout before the variable is defined. The compiler reads your program from top
to bottom. If it encounters a statement that uses a variable before the variable is defined,
an error will result. To correct the program, the variable definition must be put before any
statement that uses it.

2.13 Arithmetic Operators

CONCEPT: There are many operators for manipulating numeric values and
performing arithmetic operations.

C++ offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

Unary operators only require a single operand. For example, consider the following
expression:

-5

Of course, we understand this represents the value negative five. The literal 5 is preceded
by the minus sign. The minus sign, when used this way, is called the negation operator.
Since it only requires one operand, it is a unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. C++ only has one
ternary operator, which will be discussed in Chapter 4.

Arithmetic operations are very common in programming. Table 2-9 shows the common
arithmetic operators in C++.

Program 2-19

1 // This program can't find its variable.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 cout << value; // ERROR! value not defined yet!
8
9 int value = 100;
10 return 0;
11 }

Assignment
Statements and

Simple Math
Expressions

60 Chapter 2 Introduction to C++

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. In the following assignment statement, the variable amount will
be assigned the value 12:

amount = 4 + 8;

The subtraction operator returns the value of its right operand subtracted from its left
operand. This statement will assign the value 98 to temperature:

temperature = 112 - 14;

The multiplication operator returns the product of its two operands. In the following
statement, markUp is assigned the value 3:

markUp = 12 * 0.25;

The division operator returns the quotient of its left operand divided by its right operand.
In the next statement, points is assigned the value 5:

points = 100 / 20;

Table 2-9 Fundamental Arithmetic Operators

Operator Meaning Type Example
 + Addition Binary total = cost + tax;

 – Subtraction Binary cost = total - tax;

 * Multiplication Binary tax = cost * rate;

 / Division Binary salePrice = original / 2;

 % Modulus Binary remainder = value % 3;

WARNING! When both operands of a division statement are integers, the statement
will perform integer division. This means the result of the division will be an integer as
well. If there is a remainder, it will be discarded. For example, in the following statement,
parts is assigned the value 5:

 parts = 17 / 3;

This may seem like an annoyance, but it can actually be useful in some programs.
Remember, C++ gives you the tools to solve just about any problem! If you want to make
sure a statement, like the one shown above, performs regular division, express one of the
numbers as a floating point. Here is an example:

 parts = 17.0 / 3;

In the statement above, since 17.0 is interpreted as a floating point number, the division
operation will return a floating point number. The result of the division is 5.66667.

2.13 Arithmetic Operators 61

The modulus operator, which only works with integer operands, returns the remainder of
an integer division. The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

In Chapter 3 you will learn how to use these operators in more complex mathematical for-
mulas. For now we will concentrate on their basic usage. For example, suppose we need to
write a program that calculates and displays an employee’s total wages for the week. The
regular hours for the work week are 40, and any hours worked over 40 are considered
overtime. The employee earns $18.25 per hour for regular hours, and $27.78 per hour for
overtime hours. The employee has worked 50 hours this week. The following pseudocode
algorithm shows the program’s logic.

Regular wages = base pay rate × regular hours
Overtime wages = overtime pay rate × overtime hours
Total wages = regular wages + overtime wages
Display the total wages

Program 2-20 shows the C++ code for the program.

Program 2-20

1 // This program calculates hourly wages, including overtime.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double regularWages, // To hold regular wages
8 basePayRate = 18.25, // Base pay rate
9 regularHours = 40.0, // Hours worked less overtime
10 overtimeWages, // To hold overtime wages
11 overtimePayRate = 27.78, // Overtime pay rate
12 overtimeHours = 10, // Overtime hours worked
13 totalWages; // To hold total wages
14
15 // Calculate the regular wages.
16 regularWages = basePayRate * regularHours;
17
18 // Calculate the overtime wages.
19 overtimeWages = overtimePayRate * overtimeHours;
20
21 // Calculate the total wages.
22 totalWages = regularWages + overtimeWages;
23
24 // Display the total wages.
25 cout << "Wages for this week are $" << totalWages << endl;
26 return 0;
27 }

Program Output
Wages for this week are $1007.8

62 Chapter 2 Introduction to C++

Let’s take a closer look at the program. As mentioned in the comments, there are variables
for regular wages, base pay rate, regular hours worked, overtime wages, overtime pay
rate, overtime hours worked, and total wages.

Here is line 16, which multiplies basePayRate times regularHours and stores the result
in regularWages:

regularWages = basePayRate * regularHours;

Here is line 19, which multiplies overtimePayRate times overtimeHours and stores the
result in overtimeWages:

overtimeWages = overtimePayRate * overtimeHours;

Line 22 adds the regular wages and the overtime wages and stores the result in
totalWages:

totalWages = regularWages + overtimeWages;

Line 25 displays the message on the screen reporting the week’s wages.

In the Spotlight:
Calculating Percentages and Discounts
Determining percentages is a common calculation in computer programming. Although
the % symbol is used in general mathematics to indicate a percentage, most programming
languages (including C++) do not use the % symbol for this purpose. In a program, you
have to convert a percentage to a floating-point number, just as you would if you were
using a calculator. For example, 50 percent would be written as 0.5 and 2 percent would
be written as 0.02.

Let’s look at an example. Suppose you earn $6,000 per month and you are allowed to
contribute a portion of your gross monthly pay to a retirement plan. You want to deter-
mine the amount of your pay that will go into the plan if you contribute 5 percent, 7 per-
cent, or 10 percent of your gross wages. To make this determination you write the
program shown in Program 2-21.

Program 2-21

 1 // This program calculates the amount of pay that
 2 // will be contributed to a retirement plan if 5%,
 3 // 7%, or 10% of monthly pay is withheld.
 4 #include <iostream>
 5 using namespace std;

 6
 7 int main()
 8 {
 9 // Variables to hold the monthly pay and the
10 // amount of contribution.
11 double monthlyPay = 6000.0, contribution;
12
13 // Calculate and display a 5% contribution.

2.13 Arithmetic Operators 63

Line 11 defines two variables: monthlyPay and contribution. The monthlyPay vari-
able, which is initialized with the value 6000.0, holds the amount of your monthly pay.
The contribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 14 through 16 calculate and display 5 percent of the monthly pay.
The calculation is done in line 14, where the monthlyPay variable is multiplied by 0.05.
The result is assigned to the contribution variable, which is then displayed in line 15.

Similar steps are taken in Lines 18 through 21, which calculate and display 7 percent of
the monthly pay, and lines 24 through 26, which calculate and display 10 percent of the
monthly pay.

Calculating a Percentage Discount
Another common calculation is determining a percentage discount. For example, suppose
a retail business sells an item that is regularly priced at $59.95, and is planning to have a
sale where the item’s price will be reduced by 20 percent. You have been asked to write a
program to calculate the sale price of the item.

To determine the sale price you perform two calculations:

• First, you get the amount of the discount, which is 20 percent of the item’s regular
price.

• Second, you subtract the discount amount from the item’s regular price. This
gives you the sale price.

Program 2-22 shows how this is done in C++.

14 contribution = monthlyPay * 0.05;
15 cout << "5 percent is $" << contribution
16 << " per month.\n";

 17
18 // Calculate and display a 7% contribution.
19 contribution = monthlyPay * 0.07;
20 cout << "7 percent is $" << contribution
21 << " per month.\n";

 22
23 // Calculate and display a 10% contribution.
24 contribution = monthlyPay * 0.1;
25 cout << "10 percent is $" << contribution
26 << " per month.\n";

 27
28 return 0;
29 }

Program Output
5 percent is $300 per month.
7 percent is $420 per month.
10 percent is $600 per month.

64 Chapter 2 Introduction to C++

Line 11 defines three variables. The regularPrice variable holds the item’s regular price,
and is initialized with the value 59.95. The discount variable will hold the amount of the
discount once it is calculated. The salePrice variable will hold the item’s sale price.

Line 14 calculates the amount of the 20 percent discount by multiplying regularPrice
by 0.2. The result is stored in the discount variable. Line 18 calculates the sale price by
subtracting discount from regularPrice. The result is stored in the salePrice vari-
able. The cout statements in lines 21 through 23 display the item’s regular price, the
amount of the discount, and the sale price.

Checkpoint
2.19 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount;

Program 2-22

 1 // This program calculates the sale price of an item
 2 // that is regularly priced at $59.95, with a 20 percent
 3 // discount subtracted.
 4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 // Variables to hold the regular price, the
10 // amount of a discount, and the sale price.
11 double regularPrice = 59.95, discount, salePrice;
12
13 // Calculate the amount of a 20% discount.
14 discount = regularPrice * 0.2;

 15
16 // Calculate the sale price by subtracting the
17 // discount from the regular price.
18 salePrice = regularPrice - discount;

 19
20 // Display the results.
21 cout << "Regular price: $" << regularPrice << endl;
22 cout << "Discount amount: $" << discount << endl;
23 cout << "Sale price: $" << salePrice << endl;
24 return 0;
25 }

Program Output
Regular price: $59.95
Discount amount: $11.99
Sale price: $47.96

2.14 Comments 65

2.20 How would you consolidate the following definitions into one statement?

int x = 7;
int y = 16;
int z = 28;

2.21 What is wrong with the following program? How would you correct it?

#include <iostream>
using namespace std;

int main()
{
 number = 62.7;
 double number;
 cout << number << endl;
 return 0;
}

2.22 Is the following an example of integer division or floating-point division? What
value will be stored in portion?

portion = 70 / 3;

2.14 Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the compiler ignores
them. They are intended for people who may be reading the source code.

It may surprise you that one of the most important parts of a program has absolutely no
impact on the way it runs. In fact, the compiler ignores this part of a program. Of course,
I’m speaking of the comments.

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial, however, that you develop the habit of thoroughly annotat-
ing your code with descriptive comments. It might take extra time now, but it will almost
certainly save time in the future.

Imagine writing a program of medium complexity with about 8,000 to 10,000 lines of
C++ code. Once you have written the code and satisfactorily debugged it, you happily put
it away and move on to the next project. Ten months later you are asked to make a modi-
fication to the program (or worse, track down and fix an elusive bug). You open the file
that contains your source code and stare at thousands of statements that now make no
sense at all. If only you had left some notes to yourself explaining the program’s code. Of
course it’s too late now. All that’s left to do is decide what will take less time: figuring out
the old program or completely rewriting it!

This scenario might sound extreme, but it’s one you don’t want to happen to you. Real
world programs are big and complex. Thoroughly documented code will make your life eas-
ier, not to mention the other programmers who may have to read your code in the future.

66 Chapter 2 Introduction to C++

Single-Line Comments
You have already seen one way to place comments in a C++ program. You simply place
two forward slashes (//) where you want the comment to begin. The compiler ignores
everything from that point to the end of the line. Program 2-23 shows that comments may
be placed liberally throughout a program.

In addition to telling who wrote the program and describing the purpose of variables,
comments can also be used to explain complex procedures in your code.

Multi-Line Comments
The second type of comment in C++ is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by
a forward slash). Everything between these markers is ignored. Program 2-24 illustrates
how multi-line comments may be used. Notice that a multi-line comment starts in line 1
with the /* symbol, and it ends in line 6 with the */ symbol.

Program 2-23

1 // PROGRAM: PAYROLL.CPP
2 // Written by Herbert Dorfmann
3 // This program calculates company payroll
4 // Last modification: 8/20/2010
5 #include <iostream>
6 using namespace std;
7
8 int main()
9 {
10 double payRate; // Holds the hourly pay rate
11 double hours; // Holds the hours worked
12 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

Program 2-24

1 /*
2 PROGRAM: PAYROLL.CPP
3 Written by Herbert Dorfmann
4 This program calculates company payroll
5 Last modification: 8/20/2010
6 */
7
8 #include <iostream>
9 using namespace std;
10

2.15 Focus on Software Engineering: Programming Style 67

Unlike a comment started with //, a multi-line comment can span several lines. This
makes it more convenient to write large blocks of comments because you do not have to
mark every line. Consequently, the multi-line comment is inconvenient for writing single-
line comments because you must type both a beginning and ending comment symbol.

Remember the following advice when using multi-line comments:

• Be careful not to reverse the beginning symbol with the ending symbol.
• Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down, and will prevent the program from
compiling correctly.

2.15 Focus on Software Engineering: Programming Style

CONCEPT: Programming style refers to the way a programmer uses identifiers,
spaces, tabs, blank lines, and punctuation characters to visually arrange a
program’s source code. These are some, but not all, of the elements of
programming style.

In Chapter 1 you learned that syntax rules govern the way a language may be used. The
syntax rules of C++ dictate how and where to place key words, semicolons, commas,
braces, and other components of the language. The compiler’s job is to check for syntax
errors and, if there are none, generate object code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler doesn’t care that each statement is on a separate line, or that spaces separate
operators from operands. Humans, on the other hand, find it difficult to read programs
that aren’t written in a visually pleasing manner. Consider Program 2-25 for example.

11 int main()
12 {
13 double payRate; // Holds the hourly pay rate
14 double hours; // Holds the hours worked
15 int employNumber; // Holds the employee number

(The remainder of this program is left out.)

NOTE: Many programmers use a combination of single-line comments and multi-line
comments in their programs. Convenience usually dictates which style to use.

68 Chapter 2 Introduction to C++

Although the program is syntactically correct (it doesn’t violate any rules of C++), it is
very difficult to read. The same program is shown in Program 2-26, written in a more rea-
sonable style.

Programming style refers to the way source code is visually arranged. Ideally, it is a consis-
tent method of putting spaces and indentions in a program so visual cues are created.
These cues quickly tell a programmer important information about a program.

For example, notice in Program 2-26 that inside the function main’s braces each line is
indented. It is a common C++ style to indent all the lines inside a set of braces. You will
also notice the blank line between the variable definitions and the cout statements. This is
intended to visually separate the definitions from the executable statements.

Another aspect of programming style is how to handle statements that are too long to fit
on one line. Because C++ is a free-flowing language, it is usually possible to spread a state-
ment over several lines. For example, here is a cout statement that uses five lines:

Program 2-25

1 #include <iostream>
2 using namespace std;int main(){double shares=220.0;
3 double avgPrice=14.67;cout<<"There were "<<shares
4 <<" shares sold at $"<<avgPrice<<" per share.\n";
5 return 0;}

Program Output
There were 220 shares sold at $14.67 per share.

Program 2-26

1 // This example is much more readable than Program 2-25.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 double shares = 220.0;
8 double avgPrice = 14.67;
9
10 cout << "There were " << shares << " shares sold at $";
11 cout << avgPrice << " per share.\n";
12 return 0;
13 }

Program Output
There were 220 shares sold at $14.67 per share.

NOTE: Although you are free to develop your own style, you should adhere to common
programming practices. By doing so, you will write programs that visually make sense to
other programmers.

2.16 If You Plan to Continue in Computer Science: Standard and Prestandard C++ 69

cout << "The Fahrenheit temperature is "
 << fahrenheit
 << " and the Celsius temperature is "
 << celsius
 << endl;

This statement will work just as if it were typed on one line. Here is an example of vari-
able definitions treated similarly:

int fahrenheit,
 celsius,
 kelvin;

There are many other issues related to programming style. They will be presented
throughout the book.

2.16
If You Plan to Continue in Computer Science:
Standard and Prestandard C++

CONCEPT: C++ programs written before the language became standardized may
appear slightly different from programs written today.

C++ is now a standardized programming language, but it hasn’t always been. The lan-
guage has evolved over the years and, as a result, there is a “newer style” and an “older
style” of writing C++ code. The newer style is the way programs are written with standard
C++, while the older style is the way programs were typically written using prestandard
C++. Although the differences between the older and newer styles are subtle, it is impor-
tant that you recognize them. When you go to work as a computer science professional, it
is likely that you will see programs written in the older style. It is also possible that your
workplace’s programming tools only support the older conventions, and you may need to
write programs using the older style.

Older Style Header Files
In older style C++, all header files end with the “.h” extension. For example, in a pre-
standard C++ program the statement that includes the iostream.h header file is written as:

#include <iostream.h>

Absence of using namespace std;
Another difference between the newer and older styles is that older style programs typi-
cally do not use the using namespace std; statement. In fact, some older compilers do
not support namespaces at all, and will produce an error message if a program has that
statement.

70 Chapter 2 Introduction to C++

An Older Style Program
To illustrate these differences, look at the program below. It is a modification of Program
2-1, written in the older style.

// A simple C++ program
#include <iostream.h>

int main()
{

cout << "Programming is great fun!";
return 0;

}

Most standard C++ compilers support programs written in the older style. Prestandard
compilers, however, may not support programs written in the newer style.

Review Questions and Exercises

Short Answer
1. How many operands does each of the following types of operators require?

_______ Unary

_______ Binary

_______ Ternary

2. How may the float variables temp, weight, and age be defined in one statement?

3. How may the int variables months, days, and years be defined in one statement,
with months initialized to 2 and years initialized to 3?

4. Write assignment statements that perform the following operations with the variables
a, b, and c.

A) Adds 2 to a and stores the result in b.

B) Multiplies b times 4 and stores the result in a.

C) Divides a by 3.14 and stores the result in b.

D) Subtracts 8 from b and stores the result in a.

E) Stores the value 27 in a.

F) Stores the character ‘K’ in c.

G) Stores the ASCII code for ‘B’ in c.

5. Is the following comment written using single-line or multi-line comment symbols?

/* This program was written by M. A. Codewriter*/

6. Is the following comment written using single-line or multi-line comment symbols?

// This program was written by M. A. Codewriter

7. Modify the following program so it prints two blank lines between each line of text.

#include <iostream>
using namespace std;

Review Questions and Exercises 71

int main()
{
 cout << "Two mandolins like creatures in the";
 cout << "dark";
 cout << "Creating the agony of ecstasy.";
 cout << " - George Barker";
 return 0;
}

8. What will the following programs print on the screen?

A) #include <iostream>
using namespace std;

int main()
{
 int freeze = 32, boil = 212;
 freeze = 0;
 boil = 100;
 cout << freeze << endl << boil << endl;
 return 0;
}

B) #include <iostream>
using namespace std;

int main()
{
 int x = 0, y = 2;
 x = y * 4;
 cout << x << endl << y << endl;
 return 0;
}

C) #include <iostream>
using namespace std;

int main()
{
 cout << "I am the incredible";
 cout << "computing\nmachine";
 cout << "\nand I will\namaze\n";
 cout << "you.";
 return 0;
}

D) #include <iostream>
using namespace std;

int main()
{
 cout << "Be careful\n";
 cout << "This might/n be a trick ";
 cout << "question\n";
 return 0;
}

72 Chapter 2 Introduction to C++

E) #include <iostream>
using namespace std;

int main()
{
 int a, x = 23;

 a = x % 2;
 cout << x << endl << a << endl;
 return 0;
}

Multiple Choice

9. Every complete statement ends with a

A) period

B) # symbol

C) semicolon

D) ending brace

10. Which of the following statements is correct?

A) #include (iostream)

B) #include {iostream}

C) #include <iostream>

D) #include [iostream]

E) All of the above

11. Every C++ program must have a

A) cout statement.

B) function main.

C) #include statement.

D) All of the above

12. Preprocessor directives begin with a

A) #

B) !

C) <

D) *

E) None of the above

13. The following data

72
'A'
"Hello World"
2.8712

Review Questions and Exercises 73

are all examples of

A) Variables

B) Literals or constants

C) Strings

D) None of the above

14. A group of statements, such as the contents of a function, is enclosed in

A) Braces {}

B) Parentheses ()

C) Brackets <>

D) All of the above will do

15. Which of the following are not valid assignment statements? (Circle all that apply.)

A) total = 9;

B) 72 = amount;

C) profit = 129

D) letter = 'W';

16. Which of the following are not valid cout statements? (Circle all that apply.)

A) cout << "Hello World";

B) cout << "Have a nice day"\n;

C) cout < value;

D) cout << Programming is great fun;

17. Assume w = 5, x = 4, y = 8, and z = 2. What value will be stored in result in each of
the following statements?

A) result = x + y;

B) result = z * 2;

C) result = y / x;

D) result = y - z;

E) result = w % 2;

18. How would each of the following numbers be represented in E notation?

A) 3.287 × 106

B) -978.65 × 1012

C) 7.65491 × 10-3

D) -58710.23 × 10-4

19. The negation operator is

A) Unary

B) Binary

C) Ternary

D) None of the above

74 Chapter 2 Introduction to C++

20. When do preprocessor directives execute?

A) Before the compiler compiles your program

B) After the compiler compiles your program

C) At the same time as the compiler compiles your program

D) None of the above

True or False
21. T F A variable must be defined before it can be used.

22. T F Variable names may begin with a number.

23. T F Variable names may be up to 31 characters long.

24. T F A left brace in a C++ program should always be followed by a right brace
later in the program.

Algorithm Workbench

25. Convert the following pseudocode to C++ code. Be sure to define the appropriate
variables.

Store 20 in the speed variable.
Store 10 in the time variable.
Multiply speed by time and store the result in the distance variable.
Display the contents of the distance variable.

26. Convert the following pseudocode to C++ code. Be sure to define the appropriate
variables.

Store 172.5 in the force variable.
Store 27.5 in the area variable.
Divide area by force and store the result in the pressure variable.
Display the contents of the pressure variable.

Find the Error

27. There are a number of syntax errors in the following program. Locate as many as
you can.

/ What's wrong with this program? /
#include iostream
using namespace std;

int main();
}

int a, b, c\\ Three integers
a = 3
b = 4
c = a + b
Cout < "The value of c is %d" < C;
return 0;

{

Review Questions and Exercises 75

Programming Challenges
1. Sum of Two Numbers

Write a program that stores the integers 62 and 99 in variables, and stores the sum of
these two in a variable named total.

2. Sales Prediction

The East Coast sales division of a company generates 62 percent of total sales. Based
on that percentage, write a program that will predict how much the East Coast divi-
sion will generate if the company has $4.6 million in sales this year.

3. Sales Tax

Write a program that will compute the total sales tax on a $52 purchase. Assume the
state sales tax is 4 percent and the county sales tax is 2 percent.

4. Restaurant Bill

Write a program that computes the tax and tip on a restaurant bill for a patron with a
$44.50 meal charge. The tax should be 6.75 percent of the meal cost. The tip should
be 15 percent of the total after adding the tax. Display the meal cost, tax amount, tip
amount, and total bill on the screen.

5. Average of Values

To get the average of a series of values, you add the values up and then divide the sum by
the number of values. Write a program that stores the following values in five different
variables: 28, 32, 37, 24, and 33. The program should first calculate the sum of these five
variables and store the result in a separate variable named sum. Then, the program
should divide the sum variable by 5 to get the average. Display the average on the screen.

6. Annual Pay

Suppose an employee gets paid every two weeks and earns $1700.00 each pay period. In a
year the employee gets paid 26 times. Write a program that defines the following variables:

payAmount This variable will hold the amount of pay the employee earns each pay
period. Initialize the variable with 1700.0.

payPeriods This variable will hold the number of pay periods in a year. Initialize the
variable with 26.

annualPay This variable will hold the employee’s total annual pay, which will be cal-
culated.

The program should calculate the employee’s total annual pay by multiplying the
employee’s pay amount by the number of pay periods in a year, and store the result in
the annualPay variable. Display the total annual pay on the screen.

7. Ocean Levels

Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, write a
program that displays:

• The number of millimeters higher than the current level that the ocean’s level will
be in 5 years

TIP: Use the double data type for all variables in this program.

Solving the
Restaurant Bill

problem

76 Chapter 2 Introduction to C++

• The number of millimeters higher than the current level that the ocean’s level will
be in 7 years

• The number of millimeters higher than the current level that the ocean’s level will
be in 10 years

8. Total Purchase

A customer in a store is purchasing five items. The prices of the five items are:

Price of item 1 = $12.95
Price of item 2 = $24.95
Price of item 3 = $6.95
Price of item 4 = $14.95
Price of item 5 = $3.95

Write a program that holds the prices of the five items in five variables. Display each
item’s price, the subtotal of the sale, the amount of sales tax, and the total. Assume
the sales tax is 6%.

9. Cyborg Data Type Sizes

You have been given a job as a programmer on a Cyborg supercomputer. In order to
accomplish some calculations, you need to know how many bytes the following data
types use: char, int, float, and double. You do not have any manuals, so you can’t
look this information up. Write a C++ program that will determine the amount of
memory used by these types and display the information on the screen.

10. Miles per Gallon

A car holds 12 gallons of gasoline and can travel 350 miles before refueling. Write a
program that calculates the number of miles per gallon the car gets. Display the result
on the screen.

Hint: Use the following formula to calculate miles per gallon (MPG):

MPG = Miles Driven / Gallons of Gas Used

11. Distance per Tank of Gas

A car with a 20-gallon gas tank averages 21.5 miles per gallon when driven in town
and 26.8 miles per gallon when driven on the highway. Write a program that calcu-
lates and displays the distance the car can travel on one tank of gas when driven in
town and when driven on the highway.

Hint: The following formula can be used to calculate the distance:

Distance = Number of Gallons × Average Miles per Gallon

12. Land Calculation

One acre of land is equivalent to 43,560 square feet. Write a program that calculates
the number of acres in a tract of land with 389,767 square feet.

13. Circuit Board Price

An electronics company sells circuit boards at a 40 percent profit. Write a program
that will calculate the selling price of a circuit board that costs $12.67. Display the
result on the screen.

Review Questions and Exercises 77

14. Personal Information

Write a program that displays the following pieces of information, each on a separate line:

Your name
Your address, with city, state, and ZIP code
Your telephone number
Your college major

Use only a single cout statement to display all of this information.

15. Triangle Pattern

Write a program that displays the following pattern on the screen:

 *

16. Diamond Pattern

Write a program that displays the following pattern:

*

*

17. Stock Commission

Kathryn bought 600 shares of stock at a price of $21.77 per share. She must pay her
stock broker a 2 percent commission for the transaction. Write a program that calcu-
lates and displays the following:

• The amount paid for the stock alone (without the commission)
• The amount of the commission
• The total amount paid (for the stock plus the commission)

18. Energy Drink Consumption

A soft drink company recently surveyed 12,467 of its customers and found that
approximately 14 percent of those surveyed purchase one or more energy drinks per
week. Of those customers who purchase energy drinks, approximately 64 percent of
them prefer citrus flavored energy drinks. Write a program that displays the following:

• The approximate number of customers in the survey who purchase one or more
energy drinks per week

• The approximate number of customers in the survey who prefer citrus flavored
energy drinks

This page intentionally left blank

79

3 Expressions
and Interactivity

3.1 The cin Object

CONCEPT: The cin object can be used to read data typed at the keyboard.

So far you have written programs with built-in data. Without giving the user an opportu-
nity to enter his or her own data, you have initialized the variables with the necessary
starting values. These types of programs are limited to performing their task with only a
single set of starting data. If you decide to change the initial value of any variable, the pro-
gram must be modified and recompiled.

In reality, most programs ask for values that will be assigned to variables. This means the
program does not have to be modified if the user wants to run it several times with differ-
ent sets of data. For example, a program that calculates payroll for a small business might
ask the user to enter the name of the employee, the hours worked, and the hourly pay rate.
When the paycheck for that employee has been printed, the program could start over
again and ask for the name, hours worked, and hourly pay rate of the next employee.

TOPICS

3.1 The cin Object
3.2 Mathematical Expressions
3.3 When You Mix Apples and

Oranges: Type Conversion
3.4 Overflow and Underflow
3.5 Type Casting
3.6 Named Constants
3.7 Multiple Assignment and

Combined Assignment
3.8 Formatting Output
3.9 Formatted Input

3.10 Focus on Object-Oriented
Programming: More About
Member Functions

3.11 More Mathematical Library
Functions

3.12 Focus on Debugging: Hand Tracing
a Program

3.13 Focus on Problem Solving:
A Case Study

3.14 Introduction to File Input
and Output

C
H

A
P

T
E

R

Reading Input
with cin

80 Chapter 3 Expressions and Interactivity

Just as cout is C++’s standard output object, cin is the standard input object. It reads
input from the console (or keyboard) as shown in Program 3-1.

Instead of calculating the area of one rectangle, this program can be used to get the area of
any rectangle. The values that are stored in the length and width variables are entered by
the user when the program is running. Look at lines 13 and 14:

cout << "What is the length of the rectangle? ";
cin >> length;

In line 13, the cout object is used to display the question “What is the length of the rect-
angle?” This question is known as a prompt, and it tells the user what data he or she
should enter. Your program should always display a prompt before it uses cin to read
input. This way, the user will know that he or she must type a value at the keyboard.

Line 14 uses the cin object to read a value from the keyboard. The >> symbol is the
stream extraction operator. It gets characters from the stream object on its left and stores
them in the variable whose name appears on its right. In this line, characters are taken
from the cin object (which gets them from the keyboard) and are stored in the length
variable.

Gathering input from the user is normally a two-step process:

1. Use the cout object to display a prompt on the screen.

2. Use the cin object to read a value from the keyboard.

Program 3-1

 1 // This program asks the user to enter the length and width of
 2 // a rectangle. It calculates the rectangle's area and displays
 3 // the value on the screen.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int length, width, area;
10
11 cout << "This program calculates the area of a ";
12 cout << "rectangle.\n";
13 cout << "What is the length of the rectangle? ";
14 cin >> length;
15 cout << "What is the width of the rectangle? ";
16 cin >> width;
17 area = length * width;
18 cout << "The area of the rectangle is " << area << ".\n";
19 return 0;
20 }

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
What is the length of the rectangle? 10 [Enter]
What is the width of the rectangle? 20 [Enter]
The area of the rectangle is 200.

3.1 The cin Object 81

The prompt should ask the user a question, or tell the user to enter a specific value. For
example, the code we just examined from Program 3-1 displays the following prompt:

What is the length of the rectangle?

When the user sees this prompt, he or she knows to enter the rectangle’s length. After the
prompt is displayed, the program uses the cin object to read a value from the keyboard
and store the value in the length variable.

Notice that the << and >> operators appear to point in the direction that data is flowing.
In a statement that uses the cout object, the << operator always points toward cout. This
indicates that data is flowing from a variable or a literal to the cout object. In a statement
that uses the cin object, the >> operator always points toward the variable that is receiv-
ing the value. This indicates that data is flowing from cin to a variable. This is illustrated
in Figure 3-1.

The cin object causes a program to wait until data is typed at the keyboard and the
[Enter] key is pressed. No other lines in the program will be executed until cin gets its
input.

cin automatically converts the data read from the keyboard to the data type of the vari-
able used to store it. If the user types 10, it is read as the characters ‘1’ and ‘0’. cin is
smart enough to know this will have to be converted to an int value before it is stored in
the length variable. cin is also smart enough to know a value like 10.7 cannot be stored
in an integer variable. If the user enters a floating-point value for an integer variable, cin
will not read the part of the number after the decimal point.

Entering Multiple Values
The cin object may be used to gather multiple values at once. Look at Program 3-2,
which is a modified version of Program 3-1.

Line 15 waits for the user to enter two values. The first is assigned to length and the sec-
ond to width.

cin >> length >> width;

Figure 3-1

NOTE: You must include the iostream file in any program that uses cin.

Think of the << and >> operators as arrows that point in
the direction that data is flowing.

cin >> length;
cout << "What is the length of the rectangle? ";

cin length;
cout "What is the length of the rectangle? ";

82 Chapter 3 Expressions and Interactivity

In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is
stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin
knows where each number begins and ends. It doesn’t matter how many spaces are
entered between the individual numbers. For example, the user could have entered

10 20

cin will also read multiple values of different data types. This is shown in Program 3-3.

Program 3-2

 1 // This program asks the user to enter the length and width of
 2 // a rectangle. It calculates the rectangle's area and displays
 3 // the value on the screen.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int length, width, area;
10
11 cout << "This program calculates the area of a ";
12 cout << "rectangle.\n";
13 cout << "Enter the length and width of the rectangle ";
14 cout << "separated by a space.\n";
15 cin >> length >> width;
16 area = length * width;
17 cout << "The area of the rectangle is " << area << endl;
18 return 0;
19 }

Program Output with Example Input Shown in Bold
This program calculates the area of a rectangle.
Enter the length and width of the rectangle separated by a space.
10 20 [Enter]
The area of the rectangle is 200

NOTE: The [Enter] key is pressed after the last number is entered.

Program 3-3

 1 // This program demonstrates how cin can read multiple values
 2 // of different data types.
 3 #include <iostream>
 4 using namespace std;
 5

3.1 The cin Object 83

As you can see in the example output, the values are stored in their respective variables.
But what if the user had responded in the following way?

Enter an integer, a double, and a character: 5.7 4 b [Enter]

When the user types values at the keyboard, those values are first stored in an area of
memory known as the keyboard buffer. So, when the user enters the values 5.7, 4, and b,
they are stored in the keyboard buffer as shown in Figure 3-2.

When the user presses the Enter key, cin reads the value 5 into the variable whole. It does
not read the decimal point because whole is an integer variable. Next it reads .7 and stores
that value in the double variable fractional. The space is skipped and 4 is the next
value read. It is stored as a character in the variable letter. Because this cin statement
reads only three values, the b is left in the keyboard buffer. So, in this situation the pro-
gram would have stored 5 in whole, 0.7 in fractional, and the character ‘4’ in letter.
It is important that the user enters values in the correct order.

 6 int main()
 7 {
 8 int whole;
 9 double fractional;
10 char letter;
11
12 cout << "Enter an integer, a double, and a character: ";
13 cin >> whole >> fractional >> letter;
14 cout << "Whole: " << whole << endl;
15 cout << "Fractional: " << fractional << endl;
16 cout << "Letter: " << letter << endl;
17 return 0;
18 }

Program Output with Example Input Shown in Bold
Enter an integer, a double, and a character: 4 5.7 b [Enter]
Whole: 4
Fractional: 5.7
Letter: b

Figure 3-2

5 . 7 4 b [Enter]

cin begins
reading here.

Keyboard buffer

84 Chapter 3 Expressions and Interactivity

Reading Strings
The cin object can read a string as input and store it in memory as a C-string. C-strings
are commonly stored in character arrays. In this section we will briefly touch on the topic
of character arrays so you can perform some basic operations with C-strings.

An array is like a group of variables with a single name, located together in memory. Here
is an example of a character array definition:

char company[12];

The number inside the brackets indicates the size of the array. The name of the array is
company, and it is large enough to hold 12 characters. Remember, however, that
C-strings have the null terminator at the end, so this array is large enough to hold a
C-string that is 11 characters long.

Program 3-4 shows how cin may be used to read a string into a character array.

Let’s examine the array definition in line 8:

char name[21];

The name of the array is name and it is large enough to hold 21 characters. The null termi-
nator at the end of a C-string is a character, so the longest string that may be stored in this
array is 20 characters.

NOTE: If a character array is intended to hold strings, it must be at least one character
larger than the largest string that will be stored in it. This extra character is for the null
terminator.

Program 3-4

 1 // This program demonstrates how cin can read a string into
 2 // a character array.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char name[21];
 9
10 cout << "What is your name? ";
11 cin >> name;
12 cout << "Good morning " << name << endl;
13 return 0;
14 }

Program Output with Example Input Shown in Bold
What is your name? Charlie [Enter]
Good morning Charlie

3.1 The cin Object 85

Notice in lines 11 and 12 for the brackets and the size indicator name are left out.

cin >> name;
cout << "Good morning " << name << endl;

When reading a string into an array, you use the name of the array only. You would not
get the desired result if you wrote these lines as:

cin >> name[21]; //Incorrect!
cout << "Good morning " << name[21] << endl; //Incorrect!

Program 3-5 shows another example of using character arrays in a program.

The arrays first and last are large enough to hold strings of 15 characters. Line 11
reads a string into each array:

cin >> first >> last;

Just as before, spaces separate the two items.

WARNING! The user can enter a string larger than the array can hold. If this happens,
the string will overflow the array’s boundaries and destroy other data in memory.

Program 3-5

 1 // This program reads two strings into two character arrays.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char first[16], last[16];
 8
 9 cout << "Enter your first and last names and I will\n";
10 cout << "reverse them.\n";
11 cin >> first >> last;
12 cout << last << ", " << first << endl;
13 return 0;
14 }

Program Output with Example Input Shown in Bold
Enter your first and last names and I will
reverse them.
Johnny Jones [Enter]
Jones, Johnny

NOTE: If you wish the user to enter a string that has spaces in it, you cannot use this
input method. Later in this chapter you will learn how to accomplish this.

86 Chapter 3 Expressions and Interactivity

Checkpoint
3.1 What header file must be included in programs using cin?

3.2 What type of variable is used to hold a C-string?

3.3 Write a definition statement for a character array named customer. It should be
large enough to hold a string 52 characters in length.

3.4 TRUE or FALSE: cin requires the user to press the [Enter] key when finished
entering data.

3.5 Assume value is an integer variable. If the user enters 3.14 in response to the fol-
lowing programming statement, what will be stored in value?
cin >> value;

A) 3.14
B) 3
C) 0
D) Nothing. An error message is displayed.

3.6 A program has the following variable definitions.

long miles;
int feet;
float inches;

Write one cin statement that reads a value into each of these variables.

3.7 The following program will run, but the user will have difficulty understanding
what to do. How would you improve the program?

// This program multiplies two numbers and displays the result.
#include <iostream>
using namespace std;

int main()
{
 double first, second, product;

 cin >> first >> second;
 product = first * second;
 cout << product;
 return 0;
}

3.8 Examine the following program.

#include <iostream>
using namespace std;

int main()
{
 char name[21];

 cout << "What is your name? ";
 cin >> name;
 cout << "Hello " << name << endl;
 return 0;
}

3.2 Mathematical Expressions 87

If Jill runs this program and enters her full name, Jill Birkenstock, what will be
displayed on the screen? How can the program be improved?

3.9 Complete the following program skeleton so it asks for the user’s weight (in
pounds) and displays the equivalent weight in kilograms.

#include <iostream>
using namespace std;

int main()
{
 double pounds, kilograms;

 // Write code here that prompts the user
 // to enter his or her weight and reads
 // the input into the pounds variable.

 // The following line does the conversion.
 kilograms = pounds / 2.2;

 // Write code here that displays the user's weight
 // in kilograms.
 return 0;
}

3.2 Mathematical Expressions

CONCEPT: C++ allows you to construct complex mathematical expressions using
multiple operators and grouping symbols.

In Chapter 2 you were introduced to the basic mathematical operators, which are used to
build mathematical expressions. An expression is a programming statement that has a
value. Usually, an expression consists of an operator and its operands. Look at the follow-
ing statement:

sum = 21 + 3;

Since 21 + 3 has a value, it is an expression. Its value, 24, is stored in the variable sum.
Expressions do not have to be in the form of mathematical operations. In the following
statement, 3 is an expression.

number = 3;

Here are some programming statements where the variable result is being assigned the
value of an expression:

result = x;
result = 4;
result = 15 / 3;
result = 22 * number;
result = sizeof(int);
result = a + b + c;

88 Chapter 3 Expressions and Interactivity

In each of these statements, a number, variable name, or mathematical expression appears
on the right side of the = symbol. A value is obtained from each of these and stored in the
variable result. These are all examples of a variable being assigned the value of an
expression.

Program 3-6 shows how mathematical expressions can be used with the cout object.

The cout object will display the value of any legal expression in C++. In Program 3-6, the
value of the expression numerator / denominator is displayed.

Program 3-6

 1 // This program asks the user to enter the numerator
 2 // and denominator of a fraction and it displays the
 3 // decimal value.
 4
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double numerator, denominator;
11
12 cout << "This program shows the decimal value of ";
13 cout << "a fraction.\n";
14 cout << "Enter the numerator: ";
15 cin >> numerator;
16 cout << "Enter the denominator: ";
17 cin >> denominator;
18 cout << "The decimal value is ";
19 cout << (numerator / denominator) << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
This program shows the decimal value of a fraction.
Enter the numerator: 3 [Enter]
Enter the denominator: 16 [Enter]
The decimal value is 0.1875

NOTE: The example input for Program 3-6 shows the user entering 3 and 16. Since
these values are assigned to double variables, they are stored as the double values 3.0
and 16.0.

NOTE: When sending an expression that consists of an operator to cout, it is always a
good idea to put parentheses around the expression. Some advanced operators will yield
unexpected results otherwise.

3.2 Mathematical Expressions 89

Operator Precedence
It is possible to build mathematical expressions with several operators. The following
statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? 6 is used as an operand for both the addition and
division operators. outcome could be assigned either 6 or 14, depending on whether the
addition operation or the division operation takes place first. The answer is 14 because the
division operator has higher precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an
operand, the operator with the highest precedence works first. Multiplication and division
have higher precedence than addition and subtraction, so the statement above works like
this:

A) 6 is divided by 3, yielding a result of 2

B) 12 is added to 2, yielding a result of 14

It could be diagrammed in the following way:

outcome = 12 + 6 / 3
 \ /
outcome = 12 + 2

outcome = 14

Table 3-1 shows the precedence of the arithmetic operators. The operators at the top of
the table have higher precedence than the ones below them.

The multiplication, division, and modulus operators have the same precedence. This is
also true of the addition and subtraction operators. Table 3-2 shows some expressions
with their values.

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

(unary negation) -

* / %

+ -

Table 3-2 Some Simple Expressions and Their Values

Expression Value
5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

90 Chapter 3 Expressions and Interactivity

Associativity
An operator's associativity is either left to right, or right to left. If two operators sharing
an operand have the same precedence, they work according to their associativity. Table 3-3
lists the associativity of the arithmetic operators. As an example, look at the following
expression:

5 – 3 + 2

Both the – and + operators in this expression have the same precedence, and they have left
to right associativity. So, the operators will work from left to right. This expression is the
same as:

((5 – 3) + 2)

Here is another example:

12 / 6 * 4

Because the / and * operators have the same precedence, and they have left to right asso-
ciativity, they will work from left to right. This expression is the same as:

((12 / 6) * 4)

Grouping with Parentheses
Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the sum of a + b is divided
by 4.

result = (a + b) / 4;

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 3-4 shows more expressions and their values.

Table 3-3 Associativity of Arithmetic Operators

Operator Associativity

(unary negation) - Right to left
* / % Left to right
+ - Left to right

Table 3-4 More Simple Expressions and Their Values

Expression Value
(5 + 2) * 4 28

10 / (5 - 3) 5

8 + 12 * (6 - 2) 56

(4 + 17) % 2 - 1 0

(6 - 3) * (2 + 7) / 3 9

3.2 Mathematical Expressions 91

Converting Algebraic Expressions
to Programming Statements
In algebra it is not always necessary to use an operator for multiplication. C++, however,
requires an operator for any mathematical operation. Table 3-5 shows some algebraic
expressions that perform multiplication and the equivalent C++ expressions.

When converting some algebraic expressions to C++, you may have to insert parentheses that
do not appear in the algebraic expression. For example, look at the following expression:

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

No Exponents Please!
Unlike many programming languages, C++ does not have an exponent operator. Raising a
number to a power requires the use of a library function. The C++ library isn’t a place where
you check out books, but a collection of specialized functions. Think of a library function as
a “routine” that performs a specific operation. One of the library functions is called pow,
and its purpose is to raise a number to a power. Here is an example of how it’s used:

area = pow(4.0, 2.0);

This statement contains a call to the pow function. The numbers inside the parentheses are
arguments. Arguments are data being sent to the function. The pow function always raises
the first argument to the power of the second argument. In this example, 4 is raised to the
power of 2. The result is returned from the function and used in the statement where the
function call appears. In this case, the value 16 is returned from pow and assigned to the vari-
able area. This is illustrated in Figure 3-3.

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression Operation C++ Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression C++ Expression

y = x / 2 * 3;

z = 3 * b * c + 4;

a = (3 * x + 2) / (4 * a - 1)

x a b+
c

------------=

y 3x
2
---=

z 3bc 4+=

a 3x 2+
4a 1–
----------------=

92 Chapter 3 Expressions and Interactivity

The statement area = pow(4.0, 2.0) is equivalent to the following algebraic statement:

area = 42

Here is another example of a statement using the pow function. It assigns 3 times 63 to x:

x = 3 * pow(6.0, 3.0);

And the following statement displays the value of 5 raised to the power of 4:

cout << pow(5.0, 4.0);

It might be helpful to think of pow as a “black box” that you plug two numbers into, and
that then sends a third number out. The number that comes out has the value of the first
number raised to the power of the second number, as illustrated in Figure 3-4:

There are some guidelines that should be followed when the pow function is used. First,
the program must include the cmath header file. Second, the arguments that you pass to
the pow function should be doubles. Third, the variable used to store pow’s return value
should be defined as a double. For example, in the following statement the variable area
should be a double:

area = pow(4.0, 2.0);

Program 3-7 solves a simple algebraic problem. It asks the user to enter the radius of a cir-
cle and then calculates the area of the circle. The formula is

which is expressed in the program as

area = 3.14159 * pow(radius, 2.0);

Figure 3-3

Figure 3-4

area = pow(4.0, 2.0) ;
 16.0

arguments

return value

pow function

Argument 1 x

Argument 2 y
xy

Area πr2=

3.2 Mathematical Expressions 93

In the Spotlight:
Calculating an Average
Determining the average of a group of values is a simple calculation: You add all of the
values and then divide the sum by the number of values. Although this is a straightfor-
ward calculation, it is easy to make a mistake when writing a program that calculates an
average. For example, let’s assume that a, b, and c are double variables. Each of the vari-
ables holds a value and we want to calculate the average of those values. If we are careless,
we might write a statement such as the following to perform the calculation:

average = a + b + c / 3.0;

Can you see the error in this statement? When it executes, the division will take place first.
The value in c will be divided by 3.0, and then the result will be added to the sum of a + b.
That is not the correct way to calculate an average. To correct this error we need to put
parentheses around a + b + c, as shown here:

average = (a + b + c) / 3.0;

Program 3-7

 1 // This program calculates the area of a circle.
 2 // The formula for the area of a circle is Pi times
 3 // the radius squared. Pi is 3.14159.
 4 #include <iostream>
 5 #include <cmath> // needed for pow function
 6 using namespace std;
 7
 8 int main()
 9 {
10 double area, radius;
11
12 cout << "This program calculates the area of a circle.\n";
13 cout << "What is the radius of the circle? ";
14 cin >> radius;
15 area = 3.14159 * pow(radius, 2.0);
16 cout << "The area is " << area << endl;
17 return 0;
18 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
What is the radius of the circle? 10 [Enter]
The area is 314.159

NOTE: Program 3-7 is presented as a demonstration of the pow function. In reality,
there is no reason to use the pow function in such a simple operation. The math statement
could just as easily be written as

 area = 3.14159 * radius * radius;

The pow function is useful, however, in operations that involve larger exponents.

94 Chapter 3 Expressions and Interactivity

Let’s step through the process of writing a program that calculates an average. Suppose
you have taken three tests in your computer science class, and you want to write a pro-
gram that will display the average of the test scores. Here is the algorithm in pseudocode:

Get the first test score.
Get the second test score.
Get the third test score.
Calculate the average by adding the three test scores and dividing the sum by 3.
Display the average.

In the first three steps we prompt the user to enter three test scores. Let's say we store
those test scores in the double variables test1, test2, and test3. Then in the fourth
step we calculate the average of the three test scores. We will use the following statement
to perform the calculation and store the result in the average variable, which is a double:

average = (test1 + test2 + test3) / 3.0;

The last step is to display the average. Program 3-8 shows the program.

Program 3-8

 1 // This program calculates the average
 2 // of three test scores.
 3 #include <iostream>
 4 #include <cmath>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double test1, test2, test3; // To hold the scores
10 double average; // To hold the average

 11
12 // Get the three test scores.
13 cout << "Enter the first test score: ";
14 cin >> test1;
15 cout << "Enter the second test score: ";
16 cin >> test2;
17 cout << "Enter the third test score: ";
18 cin >> test3;
19
20 // Calculate the average of the scores.
21 average = (test1 + test2 + test3) / 3.0;
22
23 // Display the average.
24 cout << "The average score is: " << average << endl;
25 return 0;
26 }

Program Output with Example Input Shown in Bold
Enter the first test score: 90 [Enter]
Enter the second test score: 80 [Enter]
Enter the third test score: 100 [Enter]
The average score is 90

3.2 Mathematical Expressions 95

Checkpoint
3.10 Complete the table below by writing the value of each expression in the “Value”

column.

3.11 Write C++ expressions for the following algebraic expressions:

3.12 Study the following program and complete the table.

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double value1, value2, value3;

 cout << "Enter a number: ";
 cin >> value1;
 value2 = 2 * pow(value1, 2.0);
 value3 = 3 + value2 / 2 - 1;
 cout << value3 << endl;
 return 0;
}

Expression Value
6 + 3 * 5
12 / 2 - 4
9 + 14 * 2 - 6
5 + 19 % 3 - 1
(6 + 2) * 3
14 / (11 - 4)
9 + 12 * (8 - 3)
(6 + 17) % 2 - 1
(9 - 3) * (6 + 9) / 3

If the User Enters…
The Program Will Display What Number
(Stored in value3)?

2

5

4.3

6

y 6x=

a 2b 4c+=

y x2=

g x 2+

z2
-------------=

y x2

z2
-----=

96 Chapter 3 Expressions and Interactivity

3.13 Complete the following program skeleton so it displays the volume of a cylindri-
cal fuel tank. The formula for the volume of a cylinder is

Volume = πr2h

where
π is 3.14159
r is the radius of the tank
h is the height of the tank

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double volume, radius, height;

 cout << "This program will tell you the volume of\n";
 cout << "a cylinder-shaped fuel tank.\n";
 cout << "How tall is the tank? ";
 cin >> height;
 cout << "What is the radius of the tank? ";
 cin >> radius;

 // You must complete the program.
}

3.3 When You Mix Apples and Oranges: Type Conversion

CONCEPT: When an operator’s operands are of different data types, C++ will
automatically convert them to the same data type. This can affect the
results of mathematical expressions.

If an int is multiplied by a float, what data type will the result be? What if a double is
divided by an unsigned int? Is there any way of predicting what will happen in these
instances? The answer is yes. C++ follows a set of rules when performing mathematical
operations on variables of different data types. It’s helpful to understand these rules to
prevent subtle errors from creeping into your programs.

Just like officers in the military, data types are ranked. One data type outranks another if
it can hold a larger number. For example, a float outranks an int. Table 3-7 lists the
data types in order of their rank, from highest to lowest.

Table 3-7 Data Type Ranking

long double
double
float
unsigned long
long
unsigned int
int

3.3 When You Mix Apples and Oranges: Type Conversion 97

One exception to the ranking in Table 3-7 is when an int and a long are the same size. In
that case, an unsigned int outranks long because it can hold a higher value.

When C++ is working with an operator, it strives to convert the operands to the same
type. This automatic conversion is known as type coercion. When a value is converted to
a higher data type, it is said to be promoted. To demote a value means to convert it to a
lower data type. Let’s look at the specific rules that govern the evaluation of mathematical
expressions.

Rule 1: chars, shorts, and unsigned shorts are automatically promoted to int.

You will notice that char, short, and unsigned short do not appear in Table 3-7. That’s
because anytime they are used in a mathematical expression, they are automatically pro-
moted to an int. The only exception to this rule is when an unsigned short holds a
value larger than can be held by an int. This can happen on systems where shorts are the
same size as ints. In this case, the unsigned short is promoted to unsigned int.

Rule 2: When an operator works with two values of different data types, the lower-
ranking value is promoted to the type of the higher-ranking value.

In the following expression, assume that years is an int and interestRate is a float:

years * interestRate

Before the multiplication takes place, years will be promoted to a float.

Rule 3: When the final value of an expression is assigned to a variable, it will be converted
to the data type of that variable.

In the following statement, assume that area is a long int, while length and width are
both ints:

area = length * width;

Since length and width are both ints, they will not be converted to any other data type. The
result of the multiplication, however, will be converted to long so it can be stored in area.

Watch out for situations where an expression results in a fractional value being assigned
to an integer variable. Here is an example:

int x, y = 4;
float z = 2.7;
x = y * z;

In the expression y * z, y will be promoted to float and 10.8 will result from the multi-
plication. Since x is an integer, however, 10.8 will be truncated and 10 will be stored in x.

Integer Division
When you divide an integer by another integer in C++, the result is always an integer. If
there is a remainder, it will be discarded. For example, in the following code, parts is
assigned the value 2.0:

double parts;
parts = 15 / 6;

98 Chapter 3 Expressions and Interactivity

Even though 15 divided by 6 is really 2.5, the .5 part of the result is discarded because we
are dividing an integer by an integer. It doesn’t matter that parts is declared as a double
because the fractional part of the result is discarded before the assignment takes place. In
order for a division operation to return a floating-point value, at least one of the operands
must be of a floating-point data type. For example, the previous code could be written as:

double parts;
parts = 15.0 / 6;

In this code the literal value 15.0 is interpreted as a floating-point number, so the division
operation will return a floating-point number. The value 2.5 will be assigned to parts.

3.4 Overflow and Underflow

CONCEPT: When a variable is assigned a value that is too large or too small in range
for that variable’s data type, the variable overflows or underflows.

Trouble can arise when a variable is being assigned a value that is too large for its type.
Here is a statement where a, b, and c are all short integers:

a = b * c;

If b and c are set to values large enough, the multiplication will produce a number too big
to be stored in a. To prepare for this, a should have been defined as an int, or a long
int.

When a variable is assigned a number that is too large for its data type, it overflows. Like-
wise, assigning a value that is too small for a variable causes it to underflow. Program 3-9
shows what happens when an integer overflows or underflows. (The output shown is from
a system with two-byte short integers.)

Program 3-9

 1 // This program demonstrates integer overflow and underflow.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // testVar is initialized with the maximum value for a short.
 8 short testVar = 32767;
 9
10 // Display testVar.
11 cout << testVar << endl;
12
13 // Add 1 to testVar to make it overflow.
14 testVar = testVar + 1;
15 cout << testVar << endl;
16

3.4 Overflow and Underflow 99

Typically, when an integer overflows, its contents wrap around to that data type’s lowest
possible value. In Program 3-9, testVar wrapped around from 32,767 to –32,768 when
1 was added to it. When 1 was subtracted from testVar, it underflowed, which caused its
contents to wrap back around to 32,767. No warning or error message is given, so be
careful when working with numbers close to the maximum or minimum range of an inte-
ger. If an overflow or underflow occurs, the program will use the incorrect number, and
therefore produce incorrect results.

When floating-point variables overflow or underflow, the results depend upon how the
compiler is configured. Your system may produce programs that do any of the following:

• Produces an incorrect result and continues running.
• Prints an error message and immediately stops when either floating point over-

flow or underflow occurs.
• Prints an error message and immediately stops when floating point overflow

occurs, but stores a 0 in the variable when it underflows.
• Gives you a choice of behaviors when overflow or underflow occurs.

You can find out how your system reacts by compiling and running Program 3-10.

17 // Subtract 1 from testVar to make it underflow.
18 testVar = testVar - 1;
19 cout << testVar << endl;
20 return 0;
21 }

Program Output
32767
-32768
32767

Program 3-10

 1 // This program can be used to see how your system handles
 2 // floating point overflow and underflow.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 float test;
 9
10 test = 2.0e38 * 1000; // Should overflow test.
11 cout << test << endl;
12 test = 2.0e-38 / 2.0e38; // Should underflow test.
13 cout << test << endl;
14 return 0;
15 }

100 Chapter 3 Expressions and Interactivity

3.5 Type Casting

CONCEPT: Type casting allows you to perform manual data type conversion.

A type cast expression lets you manually promote or demote a value. The general format
of a type cast expression is

static_cast<DataType>(Value)

where Value is a variable or literal value that you wish to convert and DataType is the data
type you wish to convert Value to. Here is an example of code that uses a type cast expres-
sion:

double number = 3.7;
int val;
val = static_cast<int>(number);

This code defines two variables: number, a double, and val, an int. The type cast expres-
sion in the third statement returns a copy of the value in number, converted to an int.
When a double is converted to an int, the fractional part is truncated so this statement
stores 3 in val. The original value in number is not changed, however.

Type cast expressions are useful in situations where C++ will not perform the desired conver-
sion automatically. Program 3-11 shows an example where a type cast expression is used to
prevent integer division from taking place. The statement that uses the type cast expression is

perMonth = static_cast<double>(books) / months;

Program 3-11

 1 // This program uses a type cast to avoid integer division.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int books; // Number of books to read
 8 int months; // Number of months spent reading
 9 double perMonth; // Average number of books per month
10
11 cout << "How many books do you plan to read? ";
12 cin >> books;
13 cout << "How many months will it take you to read them? ";
14 cin >> months;
15 perMonth = static_cast<double>(books) / months;
16 cout << "That is " << perMonth << " books per month.\n";
17 return 0;
18 }

3.5 Type Casting 101

The variable books is an integer, but its value is converted to a double before the division
takes place. Without the type cast expression in line 15, integer division would have been
performed resulting in an incorrect answer.

Program 3-12 further demonstrates the type cast expression.

Let’s take a closer look at this program. In line 8 the int variable number is initialized
with the value 65. In line 11, number is sent to cout, causing 65 to be displayed. In line
15, a type cast expression is used to convert the value in number to the char data type.

Program Output with Example Input Shown in Bold
How many books do you plan to read? 30 [Enter]
How many months will it take you to read them? 7 [Enter]
That is 4.28571 books per month.

WARNING! In Program 3-11, the following statement would still have resulted in
integer division:

perMonth = static_cast<double>(books / months);

The result of the expression books / months is 4. When 4 is converted to a double, it is
4.0. To prevent the integer division from taking place, one of the operands should be
converted to a double prior to the division operation. This forces C++ to automatically
convert the value of the other operand to a double.

Program 3-12

 1 // This program uses a type cast expression to print a character
 2 // from a number.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int number = 65;
 9
10 // Display the value of the number variable.
11 cout << number << endl;
12
13 // Display the value of number converted to
14 // the char data type.
15 cout << static_cast<char>(number) << endl;
16 return 0;
17 }

Program Output
65
A

102 Chapter 3 Expressions and Interactivity

Recall from Chapter 2 that characters are stored in memory as integer ASCII codes. The
number 65 is the ASCII code for the letter ‘A’, so this statement causes the letter ‘A’ to be
displayed.

If You Plan to Continue in Computer Science:
C-Style and Prestandard Type Cast Expressions
C++ also supports two older methods of creating type cast expressions: the C-style form
and the prestandard C++ form. The C-style cast is the name of a data type enclosed in
parentheses, preceding the value that is to be converted. For example, the following state-
ment converts the value in number to an int.

val = (int)number;

The following statement shows another example.

perMonth = (double)books / months;

In this statement the value in the books variable is converted to a double before the divi-
sion takes place.

The prestandard C++ form of the type cast expression appears as a data type name fol-
lowed by a value inside a set of parentheses. Here is an example:

val = int(number);

The type cast in this statement returns a copy of the value in number, converted to an int.
Here is another example:

perMonth = double(books) / months;

Although the static_cast expression is preferable to either the C-style or the prestan-
dard C++ form of the type cast expression, you will probably see code in the workplace
that uses these older styles.

Checkpoint
3.14 Assume the following variable definitions:

int a = 5, b = 12;
double x = 3.4, z = 9.1;

What are the values of the following expressions?
A) b / a

B) x * a

C) static_cast<double>(b / a)

D) static_cast<double>(b) / a

E) b / static_cast<double>(a)

F) static_cast<double>(b) / static_cast<double>(a)

G) b / static_cast<int>(x)

NOTE: C++ provides several different type cast expressions. static_cast is the most
commonly used type cast expression, so we will primarily use it in this book.

3.6 Named Constants 103

H) static_cast<int>(x) * static_cast<int>(z)

I) static_cast<int>(x * z)

J) static_cast<double>(static_cast<int>(x) *
 static_cast<int>(z))

3.15 Complete the following program skeleton so it asks the user to enter a character.
Store the character in the variable letter. Use a type cast expression with the vari-
able in a cout statement to display the character’s ASCII code on the screen.

#include <iostream>
using namespace std;
int main()
{
 char letter;

 // Finish this program
 // as specified above.
 return 0;
}

3.16 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
 int integer1, integer2;
 double result;

 integer1 = 19;
 integer2 = 2;
 result = integer1 / integer2;
 cout << result << endl;
 result = static_cast<double>(integer1) / integer2;
 cout << result << endl;
 result = static_cast<double>(integer1 / integer2);
 cout << result << endl;
 return 0;
}

3.6 Named Constants

CONCEPT: Literals may be given names that symbolically represent them in a
program.

In Chapter 2 you learned about numbers and strings being expressed as literals. For exam-
ple, the following statement contains the numeric literal 0.129:

 newAmount = balance * 0.129;

104 Chapter 3 Expressions and Interactivity

Let’s assume this statement appears in a banking program that calculates data pertaining
to loans. In such a program, two potential problems arise. First, it is not clear to anyone
other than the original programmer what 0.129 is. It appears to be an interest rate, but in
some situations there are fees associated with loan payments. How can the purpose of this
statement be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the
program and must be changed periodically. Assuming the number is an interest rate, what
if the rate changes from 12.9 percent to 13.2 percent? The programmer will have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is
like a variable, but its content is read-only, and cannot be changed while the program is
running. Here is a definition of a named constant:

const double INTEREST_RATE = 0.129;

It looks just like a regular variable definition except that the word const appears before
the data type name, and the name of the variable is written in all uppercase characters.
The key word const is a qualifier that tells the compiler to make the variable read-only.
Its value will remain constant throughout the program’s execution. It is not required that
the variable name be written in all uppercase characters, but many programmers prefer to
write them this way so they are easily distinguishable from regular variable names.

An initialization value must be given when defining a variable with the const qualifier, or
an error will result when the program is compiled. A compiler error will also result if there
are any statements in the program that attempt to change the value of a named constant.

An advantage of using named constants is that they make programs more self-documenting.
The following statement

newAmount = balance * 0.129;

can be changed to read

newAmount = balance * INTEREST_RATE;

A new programmer can read the second statement and know what is happening. It is evi-
dent that balance is being multiplied by the interest rate. Another advantage to this
approach is that widespread changes can easily be made to the program. Let’s say the
interest rate appears in a dozen different statements throughout the program. When the
rate changes, the initialization value in the definition of the named constant is the only
value that needs to be modified. If the rate increases to 13.2% the definition is changed to
the following:

const double INTEREST_RATE = 0.132;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE
will then use the new value.

It is also useful to define named constants for common values that are difficult to remem-
ber. For example, Program 3-7 calculated the area of a circle. The number 3.14159 is used
for pi in the formula. This value could easily be defined as a named constant, as shown in
Program 3-13.

3.6 Named Constants 105

Earlier in this chapter you saw how to create a char array for the purpose of holding a
C-string. It is a common practice to use a named constant to indicate the array’s size. Here
is an example:

const int SIZE = 21;
char name[SIZE];

This practice can make the program easier to maintain. When we store the size of the
array in a named constant, we can use the named constant rather than a literal number in
any statement that must refer to the size of the array. Then, if we ever need to change the
array’s size, we need only to change the initialization value of the named constant.

If You Plan to Continue in Computer Science:
The #define Directive
The older C-style method of creating named constants is with the #define preprocessor
directive. Although it is preferable to use the const modifier, there are programs with the
#define directive still in use. In addition, Chapter 13 teaches other uses of the #define
directive, so it is important to understand.

In Chapter 2 you learned that the #include directive causes the preprocessor to include
the contents of another file in your program. Program 3-14 shows how the preprocessor
can be used to create a named constant.

Program 3-13

 1 // This program calculates the area of a circle.
 2 // The formula for the area of a circle is PI times
 3 // the radius squared. PI is 3.14159.
 4 #include <iostream>
 5 #include <cmath> // needed for pow function
 6 using namespace std;
 7
 8 int main()
 9 {
10 const double PI = 3.14159;
11 double area, radius;
12
13 cout << "This program calculates the area of a circle.\n";
14 cout << "What is the radius of the circle? ";
15 cin >> radius;
16 area = PI * pow(radius, 2.0);
17 cout << "The area is " << area << endl;
18 return 0;
19 }

Program 3-14

 1 // This program calculates the area of a circle.
 2 // The formula for the area of a circle is PI times
 3 // the radius squared. PI is 3.1459.
 4 #include <iostream>
 5 #include <cmath> // needed for pow function

(program continues)

106 Chapter 3 Expressions and Interactivity

Remember, the preprocessor scans your program before it is compiled. It looks for direc-
tives, which are lines that begin with the # symbol. Preprocessor directives cause your
source code to be modified prior to being compiled. The #define directive in line 8 reads

#define PI 3.14159

The word PI is a named constant and 3.14159 is its value. Anytime PI is used in the pro-
gram, it will be replaced by the value 3.14159. Line 17, which reads

area = PI * pow(radius, 2.0);

will be modified by the preprocessor to read

area = 3.14159 * pow(radius, 2.0);

If there had been a line that read

cout << PI << endl;

it would have been modified to read

cout << 3.14159 << endl;

It is important to realize the difference between const variables and constants created
with the #define directive. const variables are defined like regular variables. They have a
data type and a specific storage location in memory. They are like regular variables in
every way except that you cannot change their value while the program is running. Con-
stants created with the #define directive, however, are not variables at all, but text substi-
tutions. Each occurrence of the named constant in your source code is removed and the
value of the constant is written in its place.

Be careful not to put a semicolon at the end of a #define directive. The semicolon will
actually become part of the value of the constant. If the #define directive in line 8 of Pro-
gram 3-14 had read like this:

#define PI 3.14159;

The mathematical statement

area = PI * pow(radius, 2.0);

 6 using namespace std;
 7
 8 #define PI 3.14159
 9
10 int main()
11 {
12 double area, radius;
13
14 cout << "This program calculates the area of a circle.\n";
15 cout << "What is the radius of the circle? ";
16 cin >> radius;
17 area = PI * pow(radius, 2.0);
18 cout << "The area is " << area << endl;
19 return 0;
20 }

Program 3-14 (continued)

3.6 Named Constants 107

 would have been modified to read

area = 3.14159; * pow(radius, 2.0);

Because of the semicolon, the preprocessor would have created a syntax error in the state-
ment above and the compiler would have given an error message when trying to process
this statement.

Checkpoint
3.17 Write statements using the const qualifier to create named constants for the fol-

lowing literal values:

3.18 Write #define directives for the literal values listed in Question 3.17.

3.19 Assuming the user enters 6 in response to the question, what will the following
program display on the screen?

#include <iostream>
using namespace std;

#define GREETING1 "This program calculates the number "
#define GREETING2 "of candy pieces sold."
#define QUESTION "How many jars of candy have you sold? "
#define RESULTS "The number of pieces sold: "
#define YOUR_COMMISSION "Candy pieces you get for commission: "
#define COMMISSION_RATE .20
int main()
{
 const int PER_JAR = 1860;
 int jars, pieces;
 double commission;

 cout << GREETING1;
 cout << GREETING2 << endl;
 cout << QUESTION;
 cin >> jars;
 pieces = jars * PER_JAR;
 cout << RESULTS << pieces << endl;
 commission = pieces * COMMISSION_RATE;
 cout << YOUR_COMMISSION << commission << endl;
 return 0;
}

NOTE: #define directives are intended for the preprocessor and C++ statements are
intended for the compiler. The preprocessor does not look for semicolons to terminate
directives.

Literal Value Description

2.71828
5.256E5
32.2
9.8
1609

Euler’s number (known in mathematics as e)
Number of minutes in a year
The gravitational acceleration constant (in feet per second2)
The gravitational acceleration constant (in meters per second2)
Number of meters in a mile

108 Chapter 3 Expressions and Interactivity

3.20 Complete the following program skeleton so it properly converts a speed entered in
miles per hour to feet per second. One mile per hour is 1.467 feet per second. (Hint:
To convert a value in miles per hour to feet per second, multiply it by 1.467.)

#include <iostream>
using namespace std;

int main()
{
 // Define a named constant named CONVERSION
 // with the value 1.467.
 double milesPerHour, feetPerSecond;

 cout << "This program converts miles per hour to\n";
 cout << "feet per second.\n";
 cout << "Enter a speed in MPH: ";
 cin >> milesPerHour;

 // Calculate feet per second.
 // One mile per hour equals 1.467 feet per second.

 cout << "That is " << feetPerSecond
 << " feet per second.\n";
 return 0;
}

3.7 Multiple Assignment and Combined Assignment

CONCEPT: Multiple assignment means to assign the same value to several variables
with one statement.

C++ allows you to assign a value to multiple variables at once. If a program has several
variables, such as a, b, c, and d, and each variable needs to be assigned a value, such as
12, the following statement may be constructed:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement.*

Combined Assignment Operators
Quite often, programs have assignment statements of the following form:

number = number + 1;

The expression on the right side of the assignment operator gives the value of number plus
1. The result is then assigned to number, replacing the value that was previously stored
there. Effectively, this statement adds 1 to number. In a similar fashion, the following
statement subtracts 5 from number.

number = number - 5;

* The assignment operator works from right to left. 12 is first assigned to d, then to c, then to b,
then to a.

3.7 Multiple Assignment and Combined Assignment 109

If you have never seen this type of statement before, it might cause some initial confusion
because the same variable name appears on both sides of the assignment operator. Table
3-8 shows other examples of statements written this way.

These types of operations are very common in programming. For convenience, C++ offers
a special set of operators designed specifically for these jobs. Table 3-9 shows the com-
bined assignment operators, also known as compound operators, and arithmetic assign-
ment operators.

As you can see, the combined assignment operators do not require the programmer to
type the variable name twice. Also, they give a clear indication of what is happening in the
statement. Program 3-15 uses combined assignment operators.

Table 3-8 (Assume x = 6)

Statement What It Does
Value of x
After the Statement

x = x + 4; Adds 4 to x 10
x = x - 3; Subtracts 3 from x 3
x = x * 10; Multiplies x by 10 60
x = x / 2; Divides x by 2 3
x = x % 4 Makes x the remainder of x / 4 2

Table 3-9

Operator Example Usage Equivalent to
+= x += 5; x = x + 5;

-= y -= 2; y = y - 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

Program 3-15

 1 // This program tracks the inventory of three widget stores
 2 // that opened at the same time. Each store started with the
 3 // same number of widgets in inventory. By subtracting the
 4 // number of widgets each store has sold from its inventory,
 5 // the current inventory can be calculated.
 6 #include <iostream>
 7 using namespace std;
 8
 9 int main()
10 {
11 int begInv, // Beginning inventory for all stores
12 sold, // Number of widgets sold
13 store1, // Store 1's inventory
14 store2, // Store 2's inventory
15 store3; // Store 3's inventory
16
17 // Get the beginning inventory for all the stores.
18 cout << "One week ago, 3 new widget stores opened\n";

(program continues)

110 Chapter 3 Expressions and Interactivity

More elaborate statements may be expressed with the combined assignment operators.
Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. When constructing such
statements, you must realize the precedence of the combined assignment operators is
lower than that of the regular math operators. The statement above is equivalent to

result = result * (a + 5);

19 cout << "at the same time with the same beginning\n";
20 cout << "inventory. What was the beginning inventory? ";
21 cin >> begInv;
22
23 // Set each store's inventory.
24 store1 = store2 = store3 = begInv;
25
26 // Get the number of widgets sold at store 1.
27 cout << "How many widgets has store 1 sold? ";
28 cin >> sold;
29 store1 -= sold; // Adjust store 1's inventory.
30
31 // Get the number of widgets sold at store 2.
32 cout << "How many widgets has store 2 sold? ";
33 cin >> sold;
34 store2 -= sold; // Adjust store 2's inventory.
35
36 // Get the number of widgets sold at store 3.
37 cout << "How many widgets has store 3 sold? ";
38 cin >> sold;
39 store3 -= sold; // Adjust store 3's inventory.
40
41 // Display each store's current inventory.
42 cout << "\nThe current inventory of each store:\n";
43 cout << "Store 1: " << store1 << endl;
44 cout << "Store 2: " << store2 << endl;
45 cout << "Store 3: " << store3 << endl;
46 return 0;
47 }

Program Output with Example Input Shown in Bold
One week ago, 3 new widget stores opened
at the same time with the same beginning
inventory. What was the beginning inventory? 100 [Enter]
How many widgets has store 1 sold? 25 [Enter]
How many widgets has store 2 sold? 15 [Enter]
How many widgets has store 3 sold? 45 [Enter]

The current inventory of each store:
Store 1: 75
Store 2: 85
Store 3: 55

Program 3-15 (continued)

3.7 Multiple Assignment and Combined Assignment 111

which is different from

result = result * a + 5;

Table 3-10 shows other examples of such statements and their assignment statement
equivalencies.

Checkpoint
3.21 Write a multiple assignment statement that assigns 0 to the variables total,

subtotal, tax, and shipping.

3.22 Write statements using combined assignment operators to perform the following:
A) Add 6 to x.
B) Subtract 4 from amount.
C) Multiply y by 4.
D) Divide total by 27.
E) Store in x the remainder of x divided by 7.
F) Add y * 5 to x.
G) Subtract discount times 4 from total.
H) Multiply increase by salesRep times 5.
I) Divide profit by shares minus 1000.

3.23 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
 int unus, duo, tres;

 unus = duo = tres = 5;
 unus += 4;
 duo *= 2;
 tres -= 4;
 unus /= 3;
 duo += tres;
 cout << unus << endl;
 cout << duo << endl;
 cout << tres << endl;
 return 0;
}

Table 3-10

Example Usage Equivalent to
x += b + 5; x = x + (b + 5);

y -= a * 2; y = y - (a * 2);

z *= 10 - c; z = z * (10 - c);

a /= b + c; a = a / (b + c);

c %= d - 3; c = c % (d - 3);

112 Chapter 3 Expressions and Interactivity

3.8 Formatting Output

CONCEPT: The cout object provides ways to format data as it is being displayed.
This affects the way data appears on the screen.

The same data can be printed or displayed in several different ways. For example, all of
the following numbers have the same value, although they look different:

720
720.0
720.00000000
7.2e+2
+720.0

The way a value is printed is called its formatting. The cout object has a standard way of
formatting variables of each data type. Sometimes, however, you need more control over
the way data is displayed. Consider Program 3-16, for example, which displays three rows
of numbers with spaces between each one.

Unfortunately, the numbers do not line up in columns. This is because some of the num-
bers, such as 5 and 7, occupy one position on the screen, while others occupy two or three
positions. cout uses just the number of spaces needed to print each number.

Program 3-16

 1 // This program displays three rows of numbers.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int num1 = 2897, num2 = 5, num3 = 837,
 8 num4 = 34, num5 = 7, num6 = 1623,
 9 num7 = 390, num8 = 3456, num9 = 12;
10
11 // Display the first row of numbers
12 cout << num1 << " " << num2 << " " << num3 << endl;
13
14 // Display the second row of numbers
15 cout << num4 << " " << num5 << " " << num6 << endl;
16
17 // Display the third row of numbers
18 cout << num7 << " " << num8 << " " << num9 << endl;
19 return 0;
20 }

Program Output
2897 5 837
34 7 1623
390 3456 12

3.8 Formatting Output 113

To remedy this, cout offers a way of specifying the minimum number of spaces to use for
each number. A stream manipulator, setw, can be used to establish print fields of a speci-
fied width. Here is an example of how it is used:

value = 23;
cout << setw(5) << value;

The number inside the parentheses after the word setw specifies the field width for the
value immediately following it. The field width is the minimum number of character posi-
tions, or spaces, on the screen to print the value in. In the example above, the number 23
will be displayed in a field of 5 spaces. Since 23 only occupies 2 positions on the screen, 3
blank spaces will be printed before it. To further clarify how this works, look at the fol-
lowing statements:

value = 23;
cout << "(" << setw(5) << value << ")";

This will cause the following output:

(23)

Notice that the number occupies the last two positions in the field. Since the number did
not use the entire field, cout filled the extra 3 positions with blank spaces. Because the
number appears on the right side of the field with blank spaces “padding” it in front, it is
said to be right-justified.

Program 3-17 shows how the numbers in Program 3-16 can be printed in columns that
line up perfectly by using setw.

Program 3-17

 1 // This program displays three rows of numbers.
 2 #include <iostream>
 3 #include <iomanip> // Required for setw
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int num1 = 2897, num2 = 5, num3 = 837,
 9 num4 = 34, num5 = 7, num6 = 1623,
10 num7 = 390, num8 = 3456, num9 = 12;
11
12 // Display the first row of numbers
13 cout << setw(6) << num1 << setw(6)
14 << num2 << setw(6) << num3 << endl;
15
16 // Display the second row of numbers
17 cout << setw(6) << num4 << setw(6)
18 << num5 << setw(6) << num6 << endl;
19
20 // Display the third row of numbers
21 cout << setw(6) << num7 << setw(6)
22 << num8 << setw(6) << num9 << endl;
23 return 0;
24 }

(program output continues)

114 Chapter 3 Expressions and Interactivity

By printing each number in a field of 6 positions, they are displayed in perfect columns.

Notice how a setw manipulator is used with each value because setw only establishes a
field width for the value immediately following it. After that value is printed, cout goes
back to its default method of printing.

You might wonder what will happen if the number is too large to fit in the field, as in the
following statement:

value = 18397;
cout << setw(2) << value;

In cases like this, cout will print the entire number. setw only specifies the minimum num-
ber of positions in the print field. Any number larger than the minimum will cause cout to
override the setw value.

You may specify the field width of any type of data. Program 3-18 shows setw being used
with an integer, a floating-point number, and a string.

Program Output
 2897 5 837
 34 7 1623
 390 3456 12

NOTE: A new header file, iomanip, is included in Program 3-17. It must be used in any
program that uses setw.

Program 3-18

 1 // This program demonstrates the setw manipulator being
 2 // used with values of various data types.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int intValue = 3928;
10 double doubleValue = 91.5;
11 const int ARRAY_SIZE = 14;
12 char cStringValue[ARRAY_SIZE] = "John J. Smith";
13
14 cout << "(" << setw(5) << intValue << ")" << endl;
15 cout << "(" << setw(8) << doubleValue << ")" << endl;
16 cout << "(" << setw(16) << cStringValue << ")" << endl;
17 return 0;
18 }

Program 3-17 (continued)

3.8 Formatting Output 115

Formatting
Numbers with
setprecision

Program 3-18 can be used to illustrate the following points:
• The field width of a floating-point number includes a position for the decimal

point.
• The field width of a string includes all characters in the string, including spaces.
• The values printed in the field are right-justified by default. This means they are

aligned with the right side of the print field, and any blanks that must be used to
pad it are inserted in front of the value.

The setprecision Manipulator
Floating-point values may be rounded to a number of significant digits, or precision,
which is the total number of digits that appear before and after the decimal point. You can
control the number of significant digits with which floating-point values are displayed by
using the setprecision manipulator. Program 3-19 shows the results of a division oper-
ation displayed with different numbers of significant digits.

Program Output
(3928)
(91.5)
(John J. Smith)

Program 3-19

 1 // This program demonstrates how setprecision rounds a
 2 // floating point value.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double quotient, number1 = 132.364, number2 = 26.91;
10
11 quotient = number1 / number2;
12 cout << quotient << endl;
13 cout << setprecision(5) << quotient << endl;
14 cout << setprecision(4) << quotient << endl;
15 cout << setprecision(3) << quotient << endl;
16 cout << setprecision(2) << quotient << endl;
17 cout << setprecision(1) << quotient << endl;
18 return 0;
19 }

Program Output
4.91877
4.9188
4.919
4.92
4.9
5

116 Chapter 3 Expressions and Interactivity

The first value is displayed in line 12 without the setprecision manipulator. (By default,
the system in the illustration displays floating-point values with 6 significant digits.) The
subsequent cout statements print the same value, but rounded to 5, 4, 3, 2, and 1 signifi-
cant digits.

If the value of a number is expressed in fewer digits of precision than specified by
setprecision, the manipulator will have no effect. In the following statements, the value
of dollars only has four digits of precision, so the number printed by both cout state-
ments is 24.51.

double dollars = 24.51;
cout << dollars << endl; // Displays 24.51
cout << setprecision(5) << dollars << endl; // Displays 24.51

Table 3-11 shows how setprecision affects the way various values are displayed.

Unlike field width, the precision setting remains in effect until it is changed to some other
value. As with all formatting manipulators, you must include the header file iomanip to
use setprecision.

Program 3-20 shows how the setw and setprecision manipulators may be combined to
fully control the way floating point numbers are displayed.

Table 3-11

Number Manipulator Value Displayed
28.92786 setprecision(3) 28.9

21 setprecision(5) 21

109.5 setprecision(4) 109.5

34.28596 setprecision(2) 34

Program 3-20

 1 // This program asks for sales figures for 3 days. The total
 2 // sales are calculated and displayed in a table.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
6
 7 int main()
 8 {
 9 double day1, day2, day3, total;
10
11 // Get the sales for each day.
12 cout << "Enter the sales for day 1: ";
13 cin >> day1;
14 cout << "Enter the sales for day 2: ";
15 cin >> day2;
16 cout << "Enter the sales for day 3: ";
17 cin >> day3;
18
19 // Calculate the total sales.
20 total = day1 + day2 + day3;

3.8 Formatting Output 117

The fixed Manipulator
The setprecision manipulator can sometimes surprise you in an undesirable way. When
the precision of a number is set to a lower value, numbers tend to be printed in scientific
notation. For example, here is the output of Program 3-20 with larger numbers being
input:

Another stream manipulator, fixed, forces cout to print the digits in fixed-point nota-
tion, or decimal. Program 3-21 shows how the fixed manipulator is used.

21
22 // Display the sales figures.
23 cout << "\nSales Figures\n";
24 cout << "-------------\n";
25 cout << setprecision(5);
26 cout << "Day 1: " << setw(8) << day1 << endl;
27 cout << "Day 2: " << setw(8) << day2 << endl;
28 cout << "Day 3: " << setw(8) << day3 << endl;
29 cout << "Total: " << setw(8) << total << endl;
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the sales for day 1: 321.57 [Enter]
Enter the sales for day 2: 269.62 [Enter]
Enter the sales for day 3: 307.77 [Enter]

Sales Figures

Day 1: 321.57
Day 2: 269.62
Day 3: 307.77
Total: 898.96

Program 3-20

Program Output with Example Input Shown in Bold
Enter the sales for day 1: 145678.99 [Enter]
Enter the sales for day 2: 205614.85 [Enter]
Enter the sales for day 3: 198645.22 [Enter]

Sales Figures

Day 1: 1.4568e+005
Day 2: 2.0561e+005
Day 3: 1.9865e+005
Total: 5.4994e+005

118 Chapter 3 Expressions and Interactivity

The statement in line 25 uses the fixed manipulator:

cout << setprecision(2) << fixed;

When the fixed manipulator is used, all floating point numbers that are subsequently
printed will be displayed in fixed point notation, with the number of digits to the right of
the decimal point specified by the setprecision manipulator.

Program 3-21

 1 // This program asks for sales figures for 3 days. The total
 2 // sales are calculated and displayed in a table.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double day1, day2, day3, total;
10
11 // Get the sales for each day.
12 cout << "Enter the sales for day 1: ";
13 cin >> day1;
14 cout << "Enter the sales for day 2: ";
15 cin >> day2;
16 cout << "Enter the sales for day 3: ";
17 cin >> day3;
18
19 // Calculate the total sales.
20 total = day1 + day2 + day3;
21
22 // Display the sales figures.
23 cout << "\nSales Figures\n";
24 cout << "-------------\n";
25 cout << setprecision(2) << fixed;
26 cout << "Day 1: " << setw(8) << day1 << endl;
27 cout << "Day 2: " << setw(8) << day2 << endl;
28 cout << "Day 3: " << setw(8) << day3 << endl;
29 cout << "Total: " << setw(8) << total << endl;
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Enter the sales for day 1: 1321.87 [Enter]
Enter the sales for day 2: 1869.26 [Enter]
Enter the sales for day 3: 1403.77 [Enter]

Sales Figures

Day 1: 1321.87
Day 2: 1869.26
Day 3: 1403.77
Total: 4594.90

3.8 Formatting Output 119

When the fixed and setprecision manipulators are used together, the value specified
by the setprecision manipulator will be the number of digits to appear after the deci-
mal point, not the number of significant digits. For example, look at the following code.

double x = 123.4567;
cout << setprecision(2) << fixed << x << endl;

Because the fixed manipulator is used, the setprecision manipulator will cause the
number to be displayed with two digits after the decimal point. The value will be dis-
played as 123.46.

The showpoint Manipulator
By default, floating-point numbers are not displayed with trailing zeroes, and floating-
point numbers that do not have a fractional part are not displayed with a decimal point.
For example, look at the following code.

double x = 123.4, y = 456.0;
cout << setprecision(6) << x << endl;
cout << y << endl;

The cout statements will produce the following output.

123.4
456

Although six significant digits are specified for both numbers, neither number is displayed
with trailing zeroes. If we want the numbers padded with trailing zeroes, we must use the
showpoint manipulator as shown in the following code.

double x = 123.4, y = 456.0;
cout << setprecision(6) << showpoint << x << endl;
cout << y << endl;

These cout statements will produce the following output.

123.400
456.000

The left and right Manipulators
Normally output is right justified. For example, look at the following code.

double x = 146.789, y = 24.2, z = 1.783;
cout << setw(10) << x << endl;
cout << setw(10) << y << endl;
cout << setw(10) << z << endl;

NOTE: With most compilers, trailing zeroes are displayed when the setprecision and
fixed manipulators are used together.

120 Chapter 3 Expressions and Interactivity

Each of the variables, x, y, and z, is displayed in a print field of 10 spaces. The output of
the cout statements is

146.789
 24.2
 1.783

Notice that each value is right-justified, or aligned to the right of its print field. You can cause
the values to be left-justified by using the left manipulator, as shown in the following code.

double x = 146.789, y = 24.2, z = 1.783;
cout << left << setw(10) << x << endl;
cout << setw(10) << y << endl;
cout << setw(10) << z << endl;

The output of these cout statements is

146.789
24.2
1.783

In this case, the numbers are aligned to the left of their print fields. The left manipulator
remains in effect until you use the right manipulator, which causes all subsequent output
to be right-justified.

Table 3-12 summarizes the manipulators we have discussed.

Checkpoint
3.24 Write cout statements with stream manipulators that perform the following:

A) Display the number 34.789 in a field of nine spaces with two decimal places
of precision.

B) Display the number 7.0 in a field of five spaces with three decimal places of
precision.
The decimal point and any trailing zeroes should be displayed.

C) Display the number 5.789e+12 in fixed point notation.
D) Display the number 67 left justified in a field of seven spaces.

Table 3-12

Stream Manipulator Description
setw(n) Establishes a print field of n spaces.
fixed Displays floating-point numbers in fixed point notation.
showpoint Causes a decimal point and trailing zeroes to be displayed, even if

there is no fractional part.
setprecision(n) Sets the precision of floating-point numbers.
left Causes subsequent output to be left justified.
right Causes subsequent output to be right justified.

3.9 Formatted Input 121

3.25 The following program will not compile because the lines have been mixed up.

#include <iomanip>
}
cout << person << endl;
char person[15] = "Wolfgang Smith";
int main()
cout << person << endl;
{
#include <iostream>
return 0;
cout << left;
using namespace std;
cout << setw(20);
cout << right;

When the lines are properly arranged the program should display the following:

 Wolfgang Smith
Wolfgang Smith

Rearrange the lines in the correct order. Test the program by entering it on the
computer, compiling it, and running it.

3.26 The following program skeleton asks for an angle in degrees and converts it to
radians. The formatting of the final output is left to you.

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 const double PI = 3.14159;
 double degrees, radians;

 cout << "Enter an angle in degrees and I will convert it\n";
 cout << "to radians for you: ";
 cin >> degrees;
 radians = degrees * PI / 180;
 // Display the value in radians left justified, in fixed
 // point notation, with 4 places of precision, in a field
 // 5 spaces wide, making sure the decimal point is always
 // displayed.
 return 0;
}

3.9 Formatted Input

CONCEPT: The cin object provides ways of controlling string and character input.

The cin object has formatting tools similar to those of cout. For instance, an input field
width may be set with the setw manipulator. This is most helpful when cin is reading a
string and storing it in a character array. You may recall that cin has no way of knowing
how large the array is. If the user types more characters than the array will hold, cin will

122 Chapter 3 Expressions and Interactivity

store the string in the array anyway, overwriting whatever is in memory next to the array.
This type of error is known as a buffer overrun, and can lead to serious problems if not
prevented. An input field width solves this problem by telling cin how many characters to
read.

Here is a statement defining an array of 10 characters and a cin statement reading no
more characters than the array will hold:

char word[10];
cin >> setw(10) >> word;

The field width specified is 10. cin will read one character less than this, leaving room for
the null character at the end. Program 3-22 illustrates the use of the setw manipulator
with cin.

In this program, cin only reads 4 characters into the word array. Without the field width,
cin would have written the entire word “Eureka” into the array, overflowing it. Figure 3-5
illustrates the way memory would have been affected by this. The shaded area is the 5 bytes
of memory used by the array. The word “Eureka” with its null terminator would spill over
into the adjacent memory. Anything that was stored there would be destroyed.

Program 3-22

 1 // This program uses setw with the cin object.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 5;
 9 char word[SIZE];
10
11 cout << "Enter a word: ";
12 cin >> setw(SIZE) >> word;
13 cout << "You entered " << word << endl;
14 return 0;
15 }

Program Output with Example Input Shown in Bold
Enter a word: Eureka [Enter]
You entered Eure

Figure 3-5

E u r e k a \0

Beginning of word
array, 5 characters.

Next item in memory.
Overwritten with ‘a’
and null character.

3.9 Formatted Input 123

There are two important points to remember about the way cin handles field widths:

• The field width only pertains to the very next item entered by the user.
• cin stops reading input when it encounters a whitespace character. Whitespace

characters include the [Enter] key, space, and tab.

Reading a “Line” of Input
cin provides a member function to read a string containing spaces. The function is called
getline, and its purpose is to read an entire “line” of text, until the [Enter] key is
pressed. Here is an example of how it is used:

cin.getline(sentence, 20);

The getline function takes two arguments separated by a comma. The first argument is
the name of the array that the string is to be stored in. In the statement above, the name of
the array is sentence. The second argument is the size of the array. cin will read up to one
character less than this number, leaving room for the null terminator. This eliminates the
need for using the setw manipulator. The statement above will read up to 19 characters
and the null terminator will automatically be placed in the array, after the last character.
Program 3-23 shows the getline member function being used to read a sentence of up to
80 characters.

Reading a Character
Sometimes you want to read only a single character of input. For example, some programs
display a menu of items for the user to choose from. Often the selections will be denoted by
the letters A, B, C, and so forth. The user chooses an item from the menu by typing a char-
acter. The simplest way to read a single character is with the >> operator, as shown in the
following code.

Program 3-23

 1 // This program demonstrates cin's getline member function.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 const int SIZE = 81;
 8 char sentence[SIZE];
 9
10 cout << "Enter a sentence: ";
11 cin.getline(sentence, SIZE);
12 cout << "You entered " << sentence << endl;
13 return 0;
14 }

Program Output with Example Input Shown in Bold
Enter a sentence: To be, or not to be, that is the question. [Enter]
You entered To be, or not to be, that is the question.

124 Chapter 3 Expressions and Interactivity

char ch; // Define a character variable.
cout << "Type a character and press Enter: ";
cin >> ch; // Read a character.
cout << "You entered " << ch << endl;

If the user types the character A and presses Enter, cin will store the character ‘A’ in the vari-
able ch. Remember, cin is smart enough to know the data type of the variable it is storing
data into. Since ch is a char variable, it will only store the single character ‘A’ there. If ch
had been a char array, cin would have stored the string “A” with its null terminator there.

Using cin.get
A limiting characteristic of the >> operator with char variables is that it requires a charac-
ter to be entered and it ignores all leading whitespace characters. This means the program
will not continue past the cin statement until some character other than the spacebar, the
tab key, or the [Enter] key has been pressed. (The [Enter] key must still be pressed after
the character has been typed.) Programs that ask the user to “press the enter key to con-
tinue” cannot use the >> operator to read only the pressing of the [Enter] key.

In those situations another of cin’s member functions, get, becomes useful. The get func-
tion reads a single character including any whitespace character. Here is an example:

char ch; // Define a character variable.
cout << "Type a character and press Enter: ";
cin.get(ch); // Read a character.
cout << "You entered " << ch << endl;

If the user types the character A and presses Enter, the cin.get function will store the
character ‘A’ in the variable ch. If the user simply presses the Enter key, the cin.get func-
tion will store the newline character (‘\n’) in the variable ch. Program 3-24 shows the
function being used to pause a program.

Program 3-24

 1 // This program demonstrates cin.get.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char ch;
 8
 9 cout << "This program has paused. Press Enter to continue.";
10 cin.get(ch);
11 cout << "Thank you!" << endl;
12 return 0;
13 }

Program Output
This program has paused. Press Enter to continue. [Enter]
Thank you!

3.9 Formatted Input 125

The only difference between the get function and the >> operator is that get reads the
first character typed, even if it is a space, tab, or the [Enter] key.

Mixing cin >> and cin.get
Mixing cin.get with cin >> can cause an annoying and hard-to-find problem. For exam-
ple, look at the following statements:

char ch; // Define a character variable.
int number; // Define an integer variable.
cout << "Enter a number: ";
cin >> number; // Read an integer.
cout << "Enter a character: ";
cin.get(ch); // Read a character.
cout << "Thank You!\n";

These statements may allow the user to enter a number, but not a character. It will appear
that the cin.get statement is skipped. This happens because both cin >> and cin.get read
the user’s keystrokes from the keyboard buffer. After the user enters a number, in response to
the first prompt, he or she presses the Enter key. Pressing the Enter key causes a newline char-
acter (‘\n’) to be stored in the keyboard buffer. For example, suppose the user enters 100 and
presses Enter. The input will be stored in the keyboard buffer as shown in Figure 3-6.

When the cin >> statement reads data from the keyboard buffer, it stops reading at the
newline character that was generated by the Enter key. This newline character is left in the
keyboard buffer. That means the first character read by cin.get will be the newline char-
acter. So, the cin.get statement will read only the newline character left in the keyboard
buffer, and it will appear that the cin.get statement did not execute. You can remedy this
situation by using the cin.ignore function, described in the following section.

Using cin.ignore
To solve the problem previously described, the cin.ignore member function can be used.
cin.ignore tells the cin object to skip characters in the keyboard buffer. Here is its gen-
eral form:

cin.ignore(n, c);

The arguments shown in the parentheses are optional. If they are used, n is an integer and
c is a character. They tell cin to skip n number of characters, or until the character c is
encountered. For example, the following statement causes cin to skip the next 20 charac-
ters, or until a newline is encountered, whichever comes first:

cin.ignore(20, '\n');

Figure 3-6

1 0 0 [Enter]

cin begins
reading here.

Keyboard buffer

126 Chapter 3 Expressions and Interactivity

If no arguments are used, cin will only skip the very next character. Here’s an example:

cin.ignore();

The previous statements that mix cin >> and cin.get can be repaired by inserting a
cin.ignore statement after the cin >> statement:

char ch; // Define a character variable.
int number; // Define an integer variable.
cout << "Enter a number: ";
cin >> number; // Read an integer.
cin.ignore(); // Skip the newline character.
cout << "Enter a character: ";
cin.get(ch); // Read a character.
cout << "Thank You!" << endl;

3.10 Focus on Object-Oriented Programming:
More About Member Functions

CONCEPT: A member function is a procedure, written in C++ code, that is part of an
object. A member function causes the object it is a member of to perform
an action.

The concept of object-oriented programming (OOP) was introduced in Chapter 1, Section
1.7 (Procedural and Object-Oriented Programming). Recall from that section that objects
are programming elements containing both data and procedures that operate on the data.
The packaging together of data and the data’s related procedures within an object is
known as encapsulation.

In C++, the procedures that are part of an object are known as member functions. They
are called member functions because they are functions that are members of, or belong
to, an object. The use of member functions simplifies programming and reduces errors.
Anywhere an object is used, it contains not only data, but also the correct algorithms
and operations for working with the data. If you are the user of an object (as you are the
user of cout and cin) you do not need to write your own code to manipulate the
object’s data. All that is necessary is that you learn the object’s member functions and
how to use them.

In this chapter you have used the following member functions of the cin object:

• getline
• get
• ignore

Calling an object’s member function causes the object to perform some operation. For
example, calling cin’s getline member function causes cin to read a line of input from
the keyboard.

3.11 More Mathematical Library Functions 127

In OOP terminology, calling a member function is also described as passing a message to
the object. For example, you can think of the following statement as sending a message to
the cin object, instructing it to read a character from the keyboard and then store the
character in the ch variable.

cin.get(ch);

All of cin’s member functions are written in C++ code. In Chapter 13 you will learn to
design your own objects, complete with member functions.

3.11 More Mathematical Library Functions

CONCEPT: The C++ runtime library provides several functions for performing
complex mathematical operations.

Earlier in this chapter you learned to use the pow function to raise a number to a power.
The C++ library has numerous other functions that perform specialized mathematical
operations. These functions are useful in scientific and special-purpose programs.
Table 3-13 shows several of these, each of which requires the cmath header file.

Table 3-13

Function Example Description
abs y = abs(x); Returns the absolute value of the argument. The argument and the

return value are integers.
cos y = cos(x); Returns the cosine of the argument. The argument should be an

angle expressed in radians. The return type and the argument are
doubles.

exp y = exp(x); Computes the exponential function of the argument, which is x. The
return type and the argument are doubles.

fmod y = fmod(x, z); Returns, as a double, the remainder of the first argument divided by
the second argument. Works like the modulus operator, but the
arguments are doubles. (The modulus operator only works with
integers.) Take care not to pass zero as the second argument. Doing
so would cause division by zero.

log y = log(x); Returns the natural logarithm of the argument. The return type and
the argument are doubles.

log10 y = log10(x); Returns the base-10 logarithm of the argument. The return type and
the argument are doubles.

sin y = sin(x); Returns the sine of the argument. The argument should be an angle
expressed in radians. The return type and the argument are doubles.

sqrt y = sqrt(x); Returns the square root of the argument. The return type and
argument are doubles.

tan y = tan(x); Returns the tangent of the argument. The argument should be an
angle expressed in radians. The return type and the argument are
doubles.

128 Chapter 3 Expressions and Interactivity

Each of these functions is as simple to use as the pow function. The following program seg-
ment demonstrates the sqrt function, which returns the square root of a number:

cout << "Enter a number: ";
cin >> num;
s = sqrt(num);
cout << "The square root of " << num << " is " << s << endl;

Here is the output of the program segment, with 25 as the number entered by the user:

Enter a number: 25
The square root of 25 is 5

Program 3-25 shows the sqrt function being used to find the hypotenuse of a right trian-
gle. The program uses the following formula, taken from the Pythagorean theorem:

In the formula, c is the length of the hypotenuse, and a and b are the lengths of the other
sides of the triangle.

The following statement, taken from Program 3-25, calculates the square root of the sum
of the squares of the triangle’s two sides:

c = sqrt(pow(a, 2.0) + pow(b, 2.0));

Program 3-25

 1 // This program asks for the lengths of the two sides of a
 2 // right triangle. The length of the hypotenuse is then
 3 // calculated and displayed.
 4 #include <iostream>
 5 #include <iomanip> // For setprecision
 6 #include <cmath> // For the sqrt and pow functions
 7 using namespace std;
 8
 9 int main()
10 {
11 double a, b, c;
12
13 cout << "Enter the length of side a: ";
14 cin >> a;
15 cout << "Enter the length of side b: ";
16 cin >> b;
17 c = sqrt(pow(a, 2.0) + pow(b, 2.0));
18 cout << "The length of the hypotenuse is ";
19 cout << setprecision(2) << c << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
Enter the length of side a: 5.0 [Enter]
Enter the length of side b: 12.0 [Enter]
The length of the hypotenuse is 13

c a2 b2+=

3.11 More Mathematical Library Functions 129

Notice that the following mathematical expression is used as the sqrt function’s argument:

pow(a, 2.0) + pow(b, 2.0)

This expression calls the pow function twice: once to calculate the square of a and again to
calculate the square of b. These two squares are then added together, and the sum is sent
to the sqrt function.

Random Numbers
Some programming techniques require the use of randomly generated numbers. The C++
library has a function, rand(), for this purpose. (rand() requires the header file
cstdlib). The number returned by the function is an int. Here is an example of its usage:

y = rand();

After this statement executes, the variable y will contain a random number. In actuality,
the numbers produced by rand()are pseudorandom. The function uses an algorithm that
produces the same sequence of numbers each time the program is repeated on the same
system. For example, suppose the following statements are executed.

cout << rand() << endl;
cout << rand() << endl;
cout << rand() << endl;

The three numbers displayed will appear to be random, but each time the program runs,
the same three values will be generated. In order to randomize the results of rand(), the
srand() function must be used. srand() accepts an unsigned int argument, which acts
as a seed value for the algorithm. By specifying different seed values, rand() will generate
different sequences of random numbers.

A common practice for getting unique seed values is to call the time function, which is
part of the standard library. The time function returns the number of seconds that have
elapsed since midnight, January 1, 1970. The time function requires the ctime header
file, and you pass 0 as an argument to the function. Program 3-26 demonstrates. The pro-
gram should generate three different random numbers each time it is executed.

Program 3-26

 1 // This program demonstrates random numbers.
 2 #include <iostream>
 3 #include <cstdlib> // For rand and srand
 4 #include <ctime> // For the time function
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Get the system time.
10 unsigned seed = time(0);
11
12 // Seed the random number generator.
13 srand(seed);
14

(program continues)

130 Chapter 3 Expressions and Interactivity

Checkpoint
3.27 Write a short description of each of the following functions:

cos log sin
exp log10 sqrt
fmod pow tan

3.28 Assume the variables angle1 and angle2 hold angles stored in radians. Write a
statement that adds the sine of angle1 to the cosine of angle2, and stores the
result in the variable x.

3.29 To find the cube root (the third root) of a number, raise it to the power of 1⁄ 3. To
find the fourth root of a number, raise it to the power of 1⁄4. Write a statement
that will find the fifth root of the variable x and store the result in the variable y.

3.30 The cosecant of the angle a is

15 // Display three random numbers.
16 cout << rand() << endl;
17 cout << rand() << endl;
18 cout << rand() << endl;
19 return 0;
20 }

Program Output
23861
20884
21941

NOTE: If you wish to limit the range of the random number, use the following formula.

y = 1 + rand() % maxRange;

The maxRange value is the upper limit of the range. For example, if you wish to generate
a random number in the range of 1 through 100, use the following statement.

y = 1 + rand() % 100;

This is how the statement works: Look at the following expression.

rand() % 100

Assuming rand() returns 37894, the value of the expression above is 94. That is because
37894 divided by 100 is 378 with a remainder of 94. (The modulus operator returns the
remainder.) But, what if rand() returns a number that is evenly divisible by 100, such as
500? The expression above will return a 0. If we want a number in the range 1 – 100, we
must add 1 to the result. That is why we use the expression 1 + rand() % 100.

Program 3-26 (continued)

1
asin

3.12 Focus on Debugging: Hand Tracing a Program 131

Write a statement that calculates the cosecant of the angle stored in the variable a,
and stores it in the variable y.

3.12 Focus on Debugging: Hand Tracing a Program

Hand tracing is a debugging process where you pretend that you are the computer executing
a program. You step through each of the program’s statements one by one. As you look at a
statement, you record the contents that each variable will have after the statement executes.
This process is often helpful in finding mathematical mistakes and other logic errors.

To hand trace a program you construct a chart with a column for each variable. The rows
in the chart correspond to the lines in the program. For example, Program 3-27 is shown
with a hand trace chart. The program uses the following four variables: num1, num2, num3,
and avg. Notice that the hand trace chart has a column for each variable and a row for
each line of code in function main.

This program, which asks the user to enter three numbers and then displays the average of
the numbers, has a bug. It does not display the correct average. The output of a sample
session with the program follows.

Program 3-27

 1 // This program asks for three numbers, then
 2 // displays the average of the numbers.
 3 #include <iostream>
 4 using namespace std;

 5 int main()

 6 { num1 num2 num3 avg

 7 double num1, num2, num3, avg;

 8 cout << "Enter the first number: ";

 9 cin >> num1;

10 cout << "Enter the second number: ";

11 cin >> num2;

12 cout << "Enter the third number: ";

13 cin >> num3;

14 avg = num1 + num2 + num3 / 3;

15 cout << "The average is " << avg << endl;

16 return 0;

17 }

132 Chapter 3 Expressions and Interactivity

The correct average of 10, 20, and 30 is 20, not 40. To find the error we will hand trace
the program. To hand trace this program, you step through each statement, observing the
operation that is taking place, and then record the contents of the variables after the
statement executes. After the hand trace is complete, the chart will appear as follows. We
have written question marks in the chart where we do not know the contents of a
variable.

Do you see the error? By examining the statement that performs the math operation in
line 14, we find a mistake. The division operation takes place before the addition opera-
tions, so we must rewrite that statement as

avg = (num1 + num2 + num3) / 3;

Hand tracing is a simple process that focuses your attention on each statement in a pro-
gram. Often this helps you locate errors that are not obvious.

Program Output with Example Input Shown in Bold
Enter the first number: 10 [Enter]
Enter the second number: 20 [Enter]
Enter the third number: 30 [Enter]
The average is 40

Program 3-27 (with hand trace chart filled)

 1 // This program asks for three numbers, then
 2 // displays the average of the numbers.
 3 #include <iostream>
 4 using namespace std;

 5 int main()

 6 { num1 num2 num3 avg

 7 double num1, num2, num3, avg; ? ? ? ?

 8 cout << "Enter the first number: "; ? ? ? ?

 9 cin >> num1; 10 ? ? ?

10 cout << "Enter the second number: "; 10 ? ? ?

11 cin >> num2; 10 20 ? ?

12 cout << "Enter the third number: "; 10 20 ? ?

13 cin >> num3; 10 20 30 ?

14 avg = num1 + num2 + num3 / 3; 10 20 30 40

15 cout << "The average is " << avg << endl; 10 20 30 40

16 return 0;

17 }

3.13 Focus on Problem Solving: A Case Study 133

3.13 Focus on Problem Solving: A Case Study

General Crates, Inc. builds custom-designed wooden crates. With materials and labor, it
costs GCI $0.23 per cubic foot to build a crate. In turn, they charge their customers $0.50
per cubic foot for the crate. You have been asked to write a program that calculates the
volume (in cubic feet), cost, customer price, and profit of any crate GCI builds.

Variables
Table 3-14 shows the variables needed.

Program Design
The program must perform the following general steps:

1. Ask the user to enter the dimensions of the crate (the crate’s length, width, and height).

2. Calculate the crate’s volume, the cost of building the crate, the customer’s charge, and
the profit made.

3. Display the data calculated in Step 2.

A general hierarchy chart for this program is shown in Figure 3-7.

Table 3-14

Variable Description
length A double variable to hold the length of the crate, which is input by the user.
width A double variable to hold the width of the crate, which is input by the user.
height A double variable to hold the height of the crate, which is input by the user.
volume A double variable to hold the volume of the crate. The value stored in this variable is

calculated.
cost A double variable to hold the cost of building the crate. The value stored in this variable

is calculated.
charge A double variable to hold the amount charged to the customer for the crate. The value

stored in this variable is calculated.
profit A double variable to hold the profit GCI makes from the crate. The value stored in this

variable is calculated.

Figure 3-7

Calculate Volume,
Cost, Customer
Charge, and Profit.

Display Calculated
Data.

Calculate Crate Volume,
Cost, Price, and Profit.

Get Crate
Dimensions.

134 Chapter 3 Expressions and Interactivity

The “Get Crate Dimensions” step is shown in greater detail in Figure 3-8.

The “Calculate Volume, Cost, Customer Charge, and Profit” step is shown in greater
detail in Figure 3-9.

The “Display Calculated Data” step is shown in greater detail in Figure 3-10.

Pseudocode for the program is as follows:

Ask the user to input the crate's length.
Ask the user to input the crate's width.
Ask the user to input the crate's height.
Calculate the crate's volume.
Calculate the cost of building the crate.
Calculate the customer's charge for the crate.
Calculate the profit made from the crate.
Display the crate's volume.

Figure 3-8

Figure 3-9

Figure 3-10

Get Crate Dimensions.

Get Length. Get Width. Get Height.

Calculate Volume, Cost,
Customer Charge, and
Profit.

Calculate the
Crate’s Volume.

Calculate the
Crate’s Cost.

Calculate the
Profit Made.

Calculate the
Customer Charge.

Display Calculated Data.

Display the
Crate’s Volume.

Display the
Crate’s Cost.

Display the
Profit Made.

Display the
Customer Charge.

3.13 Focus on Problem Solving: A Case Study 135

Display the cost of building the crate.
Display the customer's charge for the crate.
Display the profit made from the crate.

Calculations
The following formulas will be used to calculate the crate’s volume, cost, charge, and profit:

volume = length * width * height
cost = volume * 0.23
charge = volume * 0.5
profit = charge – cost

The Program
The last step is to expand the pseudocode into the final program, which is shown in
Program 3-28.

Program 3-28

 1 // This program is used by General Crates, Inc. to calculate
 2 // the volume, cost, customer charge, and profit of a crate
 3 // of any size. It calculates this data from user input, which
 4 // consists of the dimensions of the crate.
 5 #include <iostream>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 int main()
10 {
11 double length, // The crate's length
12 width, // The crate's width
13 height, // The crate's height
14 volume, // The volume of the crate
15 cost, // The cost to build the crate
16 charge, // The customer charge for the crate
17 profit; // The profit made on the crate
18
19 // Set the desired output formatting for numbers.
20 cout << setprecision(2) << fixed << showpoint;

 21
22 // Prompt the user for the crate's length, width, and height
23 cout << "Enter the dimensions of the crate (in feet):\n";
24 cout << "Length: ";
25 cin >> length;
26 cout << "Width: ";
27 cin >> width;
28 cout << "Height: ";
29 cin >> height;
30

(program continues)

136 Chapter 3 Expressions and Interactivity

3.14 Introduction to File Input and Output

CONCEPT: This section discusses simple techniques to write input and output
operations with files.

The programs you have written so far require you to re-enter data each time the program
runs. This is because the data stored in RAM disappears once the program stops running
or the computer is shut down. If a program is to retain data between the times it runs, it
must have a way of saving it. Data is saved in a file, which is usually stored on a com-
puter’s disk. Once the data is saved in a file, it will remain there after the program stops
running. The data can then be retrieved and used at a later time.

31 // Calculate the crate's volume, the cost to produce it,
32 // the charge to the customer, and the profit.
33 volume = length * width * height;
34 cost = volume * 0.23;
35 charge = volume * 0.5;
36 profit = charge - cost;
37
38 // Display the calculated data.
39 cout << "The volume of the crate is ";
40 cout << volume << " cubic feet.\n";
41 cout << "Cost to build: $" << cost << endl;
42 cout << "Charge to customer: $" << charge << endl;
43 cout << "Profit: $" << profit << endl;
44 return 0;
45 }

Program Output with Example Input Shown in Bold
Enter the dimensions of the crate (in feet):
Length: 10 [Enter]
Width: 8 [Enter]
Height: 4 [Enter]
The volume of the crate is 320.00 cubic feet.
Cost to build: $73.60
Charge to customer: $160.00
Profit: $86.40

Program Output with Different Example Input Shown in Bold
Enter the dimensions of the crate (in feet):
Length: 12.5 [Enter]
Width: 10.5 [Enter]
Height: 8 [Enter]
The volume of the crate is 1050.00 cubic feet.
Cost to build: $241.50
Charge to customer: $525.00
Profit: $283.50

Program 3-28 (continued)

3.14 Introduction to File Input and Output 137

There are always three steps that must be taken when a file is used by a program:

1. The file must be opened. If the file does not yet exist, opening it means creating it.

2. Data is then saved to the file, read from the file, or both.

3. When the program is finished using the file, the file must be closed.

When a program is actively working with data, the data is located in random-access mem-
ory, usually in variables. When data is written into a file, it is copied from the variables.
This is illustrated in Figure 3-11.

When data is read from a file, it is copied from the file into variables. Figure 3-12 illus-
trates this.

Setting Up a Program for File Input/Output
Just as cin and cout require the iostream file to be included in the program, C++ file
access requires another header file. The file fstream contains all the declarations neces-
sary for file operations. It is included with the following statement:

#include <fstream>

The next step in setting up a program to perform file I/O is to define one or more file
stream objects. They are called “stream” objects because a file can be thought of as a
stream of data. File stream objects work very much like the cin and cout objects. A
stream of data may be sent to cout, which causes values to be displayed on the screen.

Figure 3-11

Figure 3-12

Writing data to a file

Variables

Data is copied from variables
into the file.

10

10

25

25

40

X

Y

Z

40

Reading data from a file

Variables

Data is copied from the file
into variables.

10

10

25

25

40

X

Y

Z

40

138 Chapter 3 Expressions and Interactivity

A stream of data may be read from the keyboard by cin, and stored in variables. Like-
wise, streams of data may be sent to a file stream object, which writes the data to a file.
Data that is read from a file flows from a file stream object into other variables.

The fstream header file defines the data types ofstream, ifstream, and fstream. Before
a C++ program can work with a file, it must define an object of one of these data types.
The object will be “linked” with an actual file on the computer’s disk, and the operations
that may be performed on the file depend on which of these three data types you pick for
the file stream object. Table 3-15 lists and describes the file stream data types.

Here are example statements that define ofstream and ifstream objects:

ofstream outputFile;
ifstream inputFile

The statements above define the objects outputFile and inputFile. outputFile is of
the ofstream type, so data can be written to any file associated with it. inputFile is of
the ifstream type, so data can be read from any file it is associated with.

Opening a File
Before data can be written to or read from a file, the file must be opened. Outside of the
C++ program, a file is identified by its name. Inside a C++ program, however, a file stream
object identifies a file. The object and the file name are linked when the file is opened.

Files are opened through the open member function of a file stream object. Assume
inputFile is an ifstream object, defined as:

ifstream inputFile;

For example, the following statement uses inputFile to open a file named customer.dat:

inputFile.open("customer.dat");

Table 3-15

File Stream
Data Type Description
ofstream Output file stream. This data type can be used to create files and write data to them.

With the ofstream data type, data may only be copied from variables to the file, but
not vice versa.

ifstream Input file stream. This data type can be used to open existing files and read data from
them into memory. With the ifstream data type, data may only be copied from the file
into variables, not but vice versa.

fstream File stream. This data type can be used to create files, write data to them, and read data
from them. With the fstream data type, data may be copied from variables into a file,
or from a file into variables.

NOTE: In this section we only discuss the ofstream and ifstream types. The fstream
type is covered in Chapter 12.

3.14 Introduction to File Input and Output 139

The argument to the open function in this statement is the name of the file. This links
the file customer.dat with the stream object inputFile. Until inputFile is associated
with another file, any operations performed with it will be carried out on the file
customer.dat. (Remember, ifstream objects can only perform input operations with
files. This means data may only be read from the customer.dat file using the inputFile
stream object.)

Often, when opening a file, you will need to specify its location as well as its name. For exam-
ple, on a Windows system the following statement opens the file C:\data\inventory.dat:

outputFile.open("C:\\data\\inventory.dat")

In this statement, the file C:\data\inventory.dat is opened and linked with outputFile.

You may also use a character array as an argument to the open function. For example, the
following program segment defines an ifstream object and a 20-element character array.
The user is asked to enter the name of the file, which is passed to the open function.

ifstream inputFile;
char fileName[20];
cout << "Enter the name of the file: ";
cin >> filename;
inputFile.open(fileName);

The previous examples have shown you how to define a file stream object and then use the
open member function to open a file. It is possible to define a file stream object and open a
file in one statement. Here is an example:

ifstream inputFile("customer.dat");

This statement defines an ifstream object named inputFile and opens the customer.dat
file.

Closing a File
The opposite of opening a file is closing it. Although a program’s files are automatically
closed when the program shuts down, it is a good programming practice to write state-
ments that close them. Here are two reasons a program should close files when it is fin-
ished using them:

• Most operating systems temporarily store data in a file buffer before it is written
to a file. A file buffer is a small “holding section” of memory that file-bound data
is first written to. When the buffer is filled, all the data stored there is written to
the file. This technique improves the system’s performance. Closing a file causes
any unsaved data that may still be held in a buffer to be saved to its file. This
means the data will be in the file if you need to read it later in the same program.

NOTE: Notice the use of two backslashes in the file’s path. As mentioned before in this
text, two backslashes are needed to represent one backslash in a string literal.

140 Chapter 3 Expressions and Interactivity

• Some operating systems limit the number of files that may be open at one time.
When a program closes files that are no longer being used, it will not deplete
more of the operating system’s resources than necessary.

Calling the file stream object’s close member function closes a file. Here is an example:

outputFile.close();

Writing Data to a File
You already know how to use the stream insertion operator (<<) with the cout object to
write data to the screen. It can also be used with file stream objects to write data to a file.
Assuming outputFile is a file stream object, the following statement demonstrates using
the << operator to write a string to a file:

outputFile << "I love C++ programming";

This statement writes the string “I love C++ programming” to the file associated with
outputFile. As you can see, the statement looks like a cout statement, except the file
stream object name replaces cout. Here is a statement that writes both a string and the
contents of a variable to a file:

outputFile << "Price: " << price;

The statement above writes the stream of data to outputFile exactly as cout would
write it to the screen.

Program 3-29 demonstrates opening a file, writing data to the file, and closing the file.

Program 3-29

 1 // This program writes data to a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 ofstream outputFile;
 9 outputFile.open("demofile.txt");
10
11 cout << "Now writing data to the file.\n";
12
13 // Write 4 great names to the file
14 outputFile << "Bach\n";
15 outputFile << "Beethoven\n";
16 outputFile << "Mozart\n";
17 outputFile << "Schubert\n";
18
19 // Close the file
20 outputFile.close();
21 cout << "Done.\n";
22 return 0;
23 }

Writing Data
to a File

3.14 Introduction to File Input and Output 141

Reading Data from a File
The >> operator not only reads user input from the cin object, but it can also read data
from a file. Assuming inFile is a file stream object, the following statement shows the >>
operator reading data from the file into the variable name:

inFile >> name;

In Program 3-29, the file demofile.txt was created and the following list of names was
stored there.

Bach
Beethoven
Mozart
Schubert

Program 3-30 demonstrates the use of the >> operator to read the names from the file and
store them in a variable.

Program Screen Output
Now writing data to the file.
Done.

Output to File demofile.txt
Bach
Beethoven
Mozart
Schubert

Program 3-30

 1 // This program reads data from a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;

 5
 6 int main()
 7 {
 8 ifstream inFile;
 9 const int SIZE = 81;
10 char name[SIZE];
11
12 inFile.open("demofile.txt");
13 cout << "Reading data from the file.\n\n";
14
15 inFile >> name; // Read name 1 from the file
16 cout << name << endl; // Display name 1
17

(program continues)

Reading Data
from a File

142 Chapter 3 Expressions and Interactivity

Data is read from files in a sequential manner. When a file is first opened, the file stream
object’s read position is at the first byte of the file. The first read operation extracts data
starting at the first byte. As data is read, the file stream object’s read position advances
through the file.

When the >> operator extracts data from a file, it expects to read pieces of data that are
separated by whitespace characters (spaces, tabs, or newlines). In Program 3-30, the fol-
lowing statement reads a string from the file:

inFile >> name;

In the statement above, the >> operator extracts a string because name is a character array.
Figure 3-13 shows the first 5 bytes in the file:

The >> operator will extract all of the characters up to the newline, so “Bach” is the first
string read from the file. After “Bach” is extracted, the file stream object will be positioned
so the following read operation would extract the string “Beethoven.” This procedure is
followed until all four strings have been read from the file.

Sometimes, when a program has a substantial amount of input, it is preferable to read the
input from a file instead of the keyboard. For example, consider Program 3-31. It reads
the length and width of five rectangles from a file and displays the area of each rectangle
on the screen.

18 inFile >> name; // Read name 2 from the file
19 cout << name << endl; // Display name 2
20
21 inFile >> name; // Read name 3 from the file
22 cout << name << endl; // Display name 3
23
24 inFile >> name; // Read name 4 from the file
25 cout << name << endl; // Display name 4
26
27 inFile.close(); // Close the file
28 cout << "\nDone.\n";
29 return 0;
30 }

Program Screen Output
Reading data from the file.

Bach
Beethoven
Mozart
Schubert

Done.

Figure 3-13

Program 3-30 (continued)

B a c h \n …

3.14 Introduction to File Input and Output 143

Program 3-31

 1 // This program reads rectangle dimensions from a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 ifstream inFile;
 9 int length, width, area;
10
11 inFile.open("dimensions.txt");
12 cout << "Reading dimensions of 5 rectangles from the file.\n\n";
13
14 // Process rectangle 1
15 inFile >> length;
16 inFile >> width;
17 area = length * width;
18 cout << "Area of rectangle 1: " << area << endl;
19
20 // Process rectangle 2
21 inFile >> length;
22 inFile >> width;
23 area = length * width;
24 cout << "Area of rectangle 2: " << area << endl;
25
26 // Process rectangle 3
27 inFile >> length;
28 inFile >> width;
29 area = length * width;
30 cout << "Area of rectangle 3: " << area << endl;
31
32 // Process rectangle 4
33 inFile >> length;
34 inFile >> width;
35 area = length * width;
36 cout << "Area of rectangle 4: " << area << endl;
37
38 // Process rectangle 5
39 inFile >> length;
40 inFile >> width;
41 area = length * width;
42 cout << "Area of rectangle 5: " << area << endl;
43
44 // Close the file
45 inFile.close();
46 cout << "\nDone.\n";
47 return 0;
48 }

144 Chapter 3 Expressions and Interactivity

Before this program is executed, the file dimensions.txt must be created with a text edi-
tor (such as Windows Notepad). Here is an example of the file’s contents:

10 2
5 7
18 9
6 20
8 3

Notice that the program first reads a value into length, and then reads a value into
width. It then multiplies length by width to get the rectangle’s area. So, these file con-
tents specify the following dimensions:

Rectangle 1: length = 10, width = 2
Rectangle 2: length = 5, width = 7
Rectangle 3: length = 18, width = 9
Rectangle 4: length = 6, width = 20
Rectangle 5: length = 8, width = 3

The program’s output follows.

Review Questions and Exercises

Short Answer
1. Assuming the array description is defined as follows:

char description[40];

A) How many characters total can the array hold?

B) What is the length of the largest string that may be stored in the array?

C) Will the following cin statement automatically stop reading input when the array
is filled?

cin >> description;

2. Write a definition statement for a character array large enough to hold any of the fol-
lowing strings:

"Billy Bob's Pizza"
"Downtown Auto Supplies"
"Betty Smith School of Architecture"
"ABC Cabinet Company"

Program 3-31

Program Output
Reading dimensions of 5 rectangles from the file.

Area of rectangle 1: 20
Area of rectangle 2: 35
Area of rectangle 3: 162
Area of rectangle 4: 120
Area of rectangle 5: 24

Done.

Review Questions and Exercises 145

3. Assume the array name is defined as follows:

char name[25];

A) Using a stream manipulator, write a cin statement that will read a string into name,
but will read no more characters than name can hold.

B) Using the getline member function, write a cin statement that will read a string
into name, but will read no more characters than name can hold.

4. Assume that the following variables are defined:

int age;
double pay;
char section;

Write a single cin statement that will read input into each of these variables.

5. What header files must be included in the following program?

int main()
{
 double amount = 89.7;
 cout << showpoint << fixed;
 cout << setw(8) << amount << endl;
 return 0;
}

6. Write a definition statement for a character array named city. It should be large
enough to hold a string 30 characters in length.

7. Assume the following preprocessor directive appears in a program:

#define SIZE 12

How will the preprocessor rewrite the following lines?

A) price = SIZE * unitCost;

B) cout << setw(SIZE) << 98.7;

C) cout << SIZE;

8. Complete the following table by writing the value of each expression in the Value column.

Expression Value
28 / 4 - 2
6 + 12 * 2 - 8
4 + 8 * 2
6 + 17 % 3 - 2
2 + 22 * (9 - 7)
(8 + 7) * 2
(16 + 7) % 2 - 1
12 / (10 - 6)
(19 - 3) * (2 + 2) / 4

146 Chapter 3 Expressions and Interactivity

9. Write C++ expressions for the following algebraic expressions:

10. Assume a program has the following variable definitions:

int units;
float mass;
double weight;

and the following statement:

weight = mass * units;

Which automatic data type conversion will take place?

A) mass is demoted to an int, units remains an int, and the result of mass * units is
an int.

B) units is promoted to a float, mass remains a float, and the result of mass *
units is a float.

C) units is promoted to a float, mass remains a float, and the result of mass *
units is a double.

11. Assume a program has the following variable definitions:

int a, b = 2;
float c = 4.2;

and the following statement:

a = b * c;

What value will be stored in a?

A) 8.4

B) 8

C) 0

D) None of the above

12. Assume that qty and salesReps are both integers. Use a type cast expression to
rewrite the following statement so it will no longer perform integer division.

unitsEach = qty / salesReps;

a 12x=

z 5x 14y 6k+ +=

y x4=

g h 12+
4k

----------------=

c a3

b2k4
------------=

Review Questions and Exercises 147

13. Rewrite the following variable definition so the variable is a named constant.

int rate;

14. Complete the following table by writing statements with combined assignment opera-
tors in the right-hand column. The statements should be equivalent to the statements
in the left-hand column.

15. Write a multiple assignment statement that can be used instead of the following group
of assignment statements:

east = 1;
west = 1;
north = 1;
south = 1;

16. Write a cout statement so the variable divSales is displayed in a field of 8 spaces, in
fixed point notation, with a precision of 2 decimal places. The decimal point should
always be displayed.

17. Write a cout statement so the variable totalAge is displayed in a field of 12 spaces,
in fixed point notation, with a precision of 4 decimal places.

18. Write a cout statement so the variable population is displayed in a field of 12
spaces, left-justified, with a precision of 8 decimal places. The decimal point should
always be displayed.

Fill-in-the-Blank

19. The __________ library function returns the cosine of an angle.

20. The __________ library function returns the sine of an angle.

21. The __________ library function returns the tangent of an angle.

22. The __________ library function returns the exponential function of a number.

23. The __________ library function returns the remainder of a floating point division.

24. The __________ library function returns the natural logarithm of a number.

25. The __________ library function returns the base-10 logarithm of a number.

26. The __________ library function returns the value of a number raised to a power.

27. The __________ library function returns the square root of a number.

28. The __________ file must be included in a program that uses the mathematical functions.

Statements with
Assignment Operator

Statements with
Combined Assignment Operator

x = x + 5;
total = total + subtotal;
dist = dist / rep;
ppl = ppl * period;
inv = inv - shrinkage;
num = num % 2;

148 Chapter 3 Expressions and Interactivity

Algorithm Workbench

29. A retail store grants its customers a maximum amount of credit. Each customer’s
available credit is his or her maximum amount of credit minus the amount of credit
used. Write a pseudocode algorithm for a program that asks for a customer’s maxi-
mum amount of credit and amount of credit used. The program should then display
the customer’s available credit.

After you write the pseudocode algorithm, convert it to a complete C++ program.

30. Write a pseudocode algorithm for a program that calculates the total of a retail sale.
The program should ask for the amount of the sale and the sales tax rate. The sales
tax rate should be entered as a floating-point number. For example, if the sales tax
rate is 6 percent, the user should enter 0.06. The program should display the amount
of sales tax and the total of the sale.

After you write the pseudocode algorithm, convert it to a complete C++ program.

Find the Errors

Each of the following programs has some errors. Locate as many as you can.

31. using namespace std;
int main ()
{
 double number1, number2, sum;

 Cout << "Enter a number: ";
 Cin << number1;
 Cout << "Enter another number: ";
 Cin << number2;
 number1 + number2 = sum;
 Cout "The sum of the two numbers is " << sum
 return 0;
}

32. #include <iostream>
using namespace std;

int main()
{
 int number1, number2;
 float quotient;
 cout << "Enter two numbers and I will divide\n";
 cout << "the first by the second for you.\n";
 cin >> number1, number2;
 quotient = float<static_cast>(number1) / number2;
 cout << quotient
 return 0;
}

33. #include <iostream>;
using namespace std;

int main()
{
 const int number1, number2, product;

Review Questions and Exercises 149

 cout << "Enter two numbers and I will multiply\n";
 cout << "them for you.\n";
 cin >> number1 >> number2;
 product = number1 * number2;
 cout << product
 return 0;
}

34. #include <iostream>;
using namespace std;

main
{
 int number1, number2;

 cout << "Enter two numbers and I will multiply\n"
 cout << "them by 50 for you.\n"
 cin >> number1 >> number2;
 number1 =* 50;
 number2 =* 50;
 cout << number1 << " " << number2;
 return 0;
}

35. #include <iostream>;
using namespace std;

main
{
 double number, half;

 cout << "Enter a number and I will divide it\n"
 cout << "in half for you.\n"
 cin >> number1;
 half =/ 2;
 cout << fixedpoint << showpoint << half << endl;
 return 0;
}

36. #include <iostream>;
using namespace std;

int main()
{
 char name, go;

 cout << "Enter your name: ";
 cin >> setw(20);
 cin.getline >> name;
 cout << "Hi " << name << endl;
 cout "Press the ENTER key to end this program.";
 cin >> go;
 return 0;
}

150 Chapter 3 Expressions and Interactivity

Predict the Output

What will each of the following programs display? (Some should be hand traced, and
require a calculator.)

37. (Assume the user enters 38700. Use a calculator.)
#include <iostream>
using namespace std;

int main()
{
 double salary, monthly;
 cout << "What is your annual salary? ";
 cin >> salary;
 monthly = static_cast<int>(salary) / 12;
 cout << "Your monthly wages are " << monthly << endl;
 return 0;
}

38. #include <iostream>
using namespace std;
int main()
{
 long x, y, z;

 x = y = z = 4;
 x += 2;
 y -= 1;
 z *= 3;
 cout << x << " " << y << " " << z << endl;
 return 0;
}

39. #include <iostream>
using namespace std;

#define WHO "Columbus"
#define DID "sailed"
#define WHAT "the ocean blue."
int main()
{
 const int WHEN = 1492;
 cout << "In " << WHEN << " " << WHO << " "
 << DID << " " << WHAT << endl;
 return 0;
}

40. (Assume the user enters George Washington.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

Review Questions and Exercises 151

 const in SIZE = 20;
 char userInput[SIZE];
 cout << "What is your name? ";
 cin >> setw(SIZE) >> userInput;
 cout << "Hello " << userInput << endl;
 return 0;
}

41. (Assume the user enters George Washington.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 const in SIZE = 20;
 char userInput[SIZE];

 cout << "What is your name? ";
 cin.getline(userInput, SIZE);
 cout << "Hello " << userInput << endl;
 return 0;
}

42. (Assume the user enters 36720152. Use a calculator.)
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 long seconds;
 double minutes, hours, days, months, years;

 cout << "Enter the number of seconds that have\n";
 cout << "elapsed since some time in the past and\n";
 cout << "I will tell you how many minutes, hours,\n";
 cout << "days, months, and years have passed: ";
 cin >> seconds;
 minutes = seconds / 60;
 hours = minutes / 60;
 days = hours / 24;
 years = days / 365;
 months = years * 12;
 cout << setprecision(4) << fixed << showpoint << right;
 cout << "Minutes: " << setw(6) << minutes << endl;
 cout << "Hours: " << setw(6) << hours << endl;
 cout << "Days: " << setw(6) << days << endl;
 cout << "Months: " << setw(6) << months << endl;
 cout << "Years: " << setw(6) << years << endl;
 return 0;
}

152 Chapter 3 Expressions and Interactivity

Programming Challenges
1. Miles per Gallon

Write a program that calculates a car’s gas mileage. The program should ask the user
to enter the number of gallons of gas the car can hold, and the number of miles it can
be driven on a full tank. It should then display the number of miles that may be driven
per gallon of gas.

2. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost
$15, Class B seats cost $12, and Class C seats cost $9. Write a program that asks how
many tickets for each class of seats were sold, then displays the amount of income
generated from ticket sales. Format your dollar amount in fixed-point notation, with
two decimal places of precision, and be sure the decimal point is always displayed.

3. Test Average

Write a program that asks for five test scores. The program should calculate the aver-
age test score and display it. The number displayed should be formatted in fixed-point
notation, with one decimal point of precision.

4. Average Rainfall

Write a program that calculates the average rainfall for three months. The program
should ask the user to enter the name of each month, such as June or July, and the
amount of rain (in inches) that fell each month. The program should display a mes-
sage similar to the following:

The average rainfall for June, July, and August is 6.72 inches.

5. Box Office

A movie theater only keeps a percentage of the revenue earned from ticket sales. The
remainder goes to the movie distributor. Write a program that calculates a theater’s
gross and net box office profit for a night. The program should ask for the name of
the movie, and how many adult and child tickets were sold. (The price of an adult
ticket is $6.00 and a child’s ticket is $3.00.) It should display a report similar to

Movie Name: “Wheels of Fury”
Adult Tickets Sold: 382
Child Tickets Sold: 127
Gross Box Office Profit: $ 2673.00
Net Box Office Profit: $ 534.60
Amount Paid to Distributor: $ 2138.40

6. How Many Widgets?

The Yukon Widget Company manufactures widgets that weigh 9.2 pounds each.
Write a program that calculates how many widgets are stacked on a pallet, based on
the total weight of the pallet. The program should ask the user how much the pallet
weighs by itself and with the widgets stacked on it. It should then calculate and dis-
play the number of widgets stacked on the pallet.

NOTE: Assume the theater keeps 20 percent of the gross box office profit.

Solving the
Stadium
Seating

Problem

Review Questions and Exercises 153

7. How Many Calories?

A bag of cookies holds 40 cookies. The calorie information on the bag claims that
there are 10 “servings” in the bag and that a serving equals 300 calories. Write a pro-
gram that asks the user to input how many cookies he or she actually ate and then
reports how many total calories were consumed.

8. How Much Insurance?

Many financial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Write a
program that asks the user to enter the replacement cost of a building and then displays
the minimum amount of insurance he or she should buy for the property.

9. Automobile Costs

Write a program that asks the user to enter the monthly costs for the following
expenses incurred from operating his or her automobile: loan payment, insurance,
gas, oil, tires, and maintenance. The program should then display the total monthly
cost of these expenses, and the total annual cost of these expenses.

10. Celsius to Fahrenheit

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The
formula is

F is the Fahrenheit temperature and C is the Celsius temperature.

11. Currency

Write a program that will convert U.S. dollar amounts to Japanese Yen and to Euros.
To get the most up-to-date exchange rates, search the Internet using the term “cur-
rency exchange rate”. If you cannot find the most recent exchange rates, use the
following:

1 Dollar = 113.22 Yen
1 Dollar = 0.6936 Euros

Format your currency amounts in fixed-point notation, with two decimal places of
precision, and be sure the decimal point is always displayed.

12. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the sales for the month
and the amount of sales tax collected. Write a program that asks for the month, the
year, and the total amount collected at the cash register (that is, sales plus sales tax).
Assume the state sales tax is 4 percent and the county sales tax is 2 percent.

If the total amount collected is known and the total sales tax is 6 percent, the amount
of product sales may be calculated as:

F 9
5
---C 32+=

S T
1.06
-----------=

154 Chapter 3 Expressions and Interactivity

S is the product sales and T is the total income (product sales plus sales tax).

The program should display a report similar to

Month: October

Total Collected: $ 26572.89
Sales: $ 25068.76
County Sales Tax: $ 501.38
State Sales Tax: $ 1002.75
Total Sales Tax: $ 1504.13

13. Property Tax

A county collects property taxes on the assessment value of property, which is 60 per-
cent of the property’s actual value. If an acre of land is valued at $10,000, its assessment
value is $6,000. The property tax is then 64¢ for each $100 of the assessment value. The
tax for the acre assessed at $6,000 will be $38.40. Write a program that asks for the
actual value of a piece of property and displays the assessment value and property tax.

14. Senior Citizen Property Tax

Madison County provides a $5,000 homeowner exemption for its senior citizens.
For example, if a senior’s house is valued at $158,000 its assessed value would be
$94,800, as explained above. However, he would only pay tax on $89,800. At last
year’s tax rate of $2.64 for each $100 of assessed value, the property tax would be
$2,370.72. In addition to the tax break, senior citizens are allowed to pay their prop-
erty tax in four equal payments. The quarterly payment due on this property would
be $592.68. Write a program that asks the user to input the actual value of a piece of
property and the current tax rate for each $100 of assessed value. The program
should then calculate and report how much annual property tax a senior homeowner
will be charged for this property and what the quarterly tax bill will be.

15. Math Tutor

Write a program that can be used as a math tutor for a young student. The program
should display two random numbers to be added, such as

247
+ 129

The program should then pause while the student works on the problem. When the
student is ready to check the answer, he or she can press a key and the program will
display the correct solution:

247
+ 129

376

16. Interest Earned

Assuming there are no deposits other than the original investment, the balance in a
savings account after one year may be calculated as

Amount Principal * 1 Rate
T

-------+⎝ ⎠
⎛ ⎞ T=

Review Questions and Exercises 155

Principal is the balance in the savings account, Rate is the interest rate, and T is the
number of times the interest is compounded during a year (T is 4 if the interest is com-
pounded quarterly).

Write a program that asks for the principal, the interest rate, and the number of times
the interest is compounded. It should display a report similar to

Interest Rate: 4.25%
Times Compounded: 12
Principal: $ 1000.00
Interest: $ 43.34
Amount in Savings: $ 1043.34

17. Monthly Payments

The monthly payment on a loan may be calculated by the following formula:

Rate is the monthly interest rate, which is the annual interest rate divided by 12.
(12% annual interest would be 1 percent monthly interest.) N is the number of pay-
ments and L is the amount of the loan. Write a program that asks for these values and
displays a report similar to

Loan Amount: $ 10000.00
Monthly Interest Rate: 1%
Number of Payments: 36
Monthly Payment: $ 332.14
Amount Paid Back: $ 11957.15
Interest Paid: $ 1957.15

18. Pizza Pi

Joe’s Pizza Palace needs a program to calculate the number of slices a pizza of any size
can be divided into. The program should perform the following steps:

A) Ask the user for the diameter of the pizza in inches.

B) Calculate the number of slices that may be taken from a pizza of that size.

C) Display a message telling the number of slices.

To calculate the number of slices that may be taken from the pizza, you must know
the following facts:

• Each slice should have an area of 14.125 inches.
• To calculate the number of slices, simply divide the area of the pizza by 14.125.
• The area of the pizza is calculated with this formula:

Area = πr2

NOTE: π is the Greek letter pi. 3.14159 can be used as its value. The variable r is the
radius of the pizza. Divide the diameter by 2 to get the radius.

Payment Rate * 1 Rate+()N

1 Rate+()N 1–()
------------------------------ * L=

156 Chapter 3 Expressions and Interactivity

Make sure the output of the program displays the number of slices in fixed point
notation, rounded to one decimal place of precision. Use a named constant for pi.

19. How Many Pizzas?

Modify the program you wrote in Programming Challenge 18 (Pizza Pi) so that it
reports the number of pizzas you need to buy for a party if each person attending is
expected to eat an average of four slices. The program should ask the user for the
number of people who will be at the party and for the diameter of the pizzas to be
ordered. It should then calculate and display the number of pizzas to purchase.

20. Angle Calculator

Write a program that asks the user for an angle, entered in radians. The program
should then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and
tan library functions to determine these values.) The output should be displayed in
fixed-point notation, rounded to four decimal places of precision.

21. Saving Numbers to a File

For this assignment you will write two programs:

Program 1 Write a program that asks the user to enter five numbers. Use a float-
ing-point data type to hold the numbers. The program should create a
file and save all five numbers to the file.

Program 2 Write a program that opens the file created by Program 1, reads the five
numbers, and displays them. The program should also calculate and
display the sum of the five numbers.

22. Monthly Sales Tax Modification

Modify the program you wrote for Programming Challenge 12 (Monthly Sales Tax)
so it writes its output to a file instead of the screen.

23. Average Rainfall Modification

Modify the program you wrote for Programming Challenge 4 (Average Rainfall) so it
reads its input from a file instead of the keyboard.

24. Stock Transaction Program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details of
the purchase:

• The number of shares that Joe purchased was 1,000.
• When Joe purchased the stock, he paid $32.87 per share.
• Joe paid his stock broker a commission that amounted to 2% of the amount he

paid for the stock.

Two weeks later Joe sold the stock. Here are the details of the sale:

• The number of shares that Joe sold was 1,000.
• He sold the stock for $33.92 per share.
• He paid his stock broker another commission that amounted to 2% of the

amount he received for the stock.

Review Questions and Exercises 157

Write a program that displays the following information:

• The amount of money Joe paid for the stock.
• The amount of commission Joe paid his broker when he bought the stock.
• The amount that Joe sold the stock for.
• The amount of commission Joe paid his broker when he sold the stock.
• Display the amount of profit that Joe made after selling his stock and paying the

two commissions to his broker. (If the amount of profit that your program dis-
plays is a negative number, then Joe lost money on the transaction.)

25. Word Game

Write a program that plays a word game with the user. The program should ask the
user to enter the following:

• His or her name
• His or her age
• The name of a city
• The name of a college
• A profession
• A type of animal
• A pet’s name

After the user has entered these items, the program should display the following story,
inserting the user’s input into the appropriate locations:

There once was a person named NAME who lived in CITY. At the age of
AGE, NAME went to college at COLLEGE. NAME graduated and went to work
as a PROFESSION. Then, NAME adopted a(n) ANIMAL named PETNAME. They
both lived happily ever after!

This page intentionally left blank

159

C
H

A
P

T
E

R

4.1 Relational Operators

CONCEPT: Relational operators allow you to compare numeric and char values and
determine whether one is greater than, less than, equal to, or not equal to
another.

So far, the programs you have written follow this simple scheme:

• Gather input from the user.
• Perform one or more calculations.
• Display the results on the screen.

Computers are good at performing calculations, but they are also quite adept at compar-
ing values to determine if one is greater than, less than, or equal to the other. These types

TOPICS

4.1 Relational Operators
4.2 The if Statement
4.3 Flags
4.4 Expanding the if Statement
4.5 The if/else Statement
4.6 Nested if Statements
4.7 The if/else if Statement
4.8 Menus
4.9 Logical Operators
4.10 Checking Numeric Ranges

with Logical Operators

4.11 Focus on Software Engineering:
Validating User Input

4.12 More About Variable Definitions
and Scope

4.13 Comparing Strings
4.14 The Conditional Operator
4.15 The switch Statement
4.16 Testing for File Open Errors

4 Making Decisions

160 Chapter 4 Making Decisions

of operations are valuable for tasks such as examining sales figures, determining profit and
loss, checking a number to ensure it is within an acceptable range, and validating the input
given by a user.

Numeric data is compared in C++ by using relational operators. Each relational operator
determines whether a specific relationship exists between two values. For example, the
greater-than operator (>) determines if a value is greater than another. The equality opera-
tor (==) determines if two values are equal. Table 4-1 lists all of C++’s relational operators.

All of the relational operators are binary, which means they use two operands. Here is an
example of an expression using the greater-than operator:

x > y

This expression is called a relational expression. It is used to determine whether x is
greater than y. The following expression determines whether x is less than y:

x < y

Table 4-2 shows examples of several relational expressions that compare the variables x and y.

The Value of a Relationship
So, how are relational expressions used in a program? Remember, all expressions have a
value. Relational expressions are also known as Boolean expressions, which means their
value can only be true or false. If x is greater than y, the expression x > y will be true,
while the expression y == x will be false.

Table 4-1

Relational Operators Meaning
>
<
>=
<=
==
!=

Greater than
Less than
Greater than or equal to
Less than or equal to
Equal to
Not equal to

Table 4-2

Expression What the Expression Means
x > y
x < y
x >= y
x <= y
x == y
x != y

Is x greater than y?
Is x less than y?
Is x greater than or equal to y?
Is x less than or equal to y?
Is x equal to y?
Is x not equal to y?

NOTE: All the relational operators have left-to-right associativity. Recall that
associativity is the order in which an operator works with its operands.

4.1 Relational Operators 161

The == operator determines whether the operand on its left is equal to the operand on its
right. If both operands have the same value, the expression is true. Assuming that a is 4,
the following expression is true:

a == 4

But the following is false:

a == 2

A couple of the relational operators actually test for two relationships. The >= operator
determines whether the operand on its left is greater than or equal to the operand on the
right. Assuming that a is 4, b is 6, and c is 4, both of the following expressions are true:

b >= a
a >= c

But the following is false:

a >= 5

The <= operator determines whether the operand on its left is less than or equal to the
operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both of the fol-
lowing expressions are true:

a <= c
b <= 10

But the following is false:

b <= a

The last relational operator is !=, which is the not-equal operator. It determines whether
the operand on its left is not equal to the operand on its right, which is the opposite of the
== operator. As before, assuming a is 4, b is 6, and c is 4, both of the following expres-
sions are true:

a != b
b != c

These expressions are true because a is not equal to b and b is not equal to c. But the fol-
lowing expression is false because a is equal to c:

a != c

Table 4-3 shows other relational expressions and their true or false values.

WARNING! Notice the equality operator is two = symbols together. Don’t confuse this
operator with the assignment operator, which is one = symbol. The == operator determines
whether a variable is equal to another value, but the = operator assigns the value on the
operator’s right to the variable on its left. There will be more about this later in the chapter.

162 Chapter 4 Making Decisions

What Is Truth?
The question “what is truth?” is one you would expect to find in a philosophy book, not a
C++ programming text. It’s a good question for us to consider, though. If a relational
expression can be either true or false, how are those values represented internally in a pro-
gram? How does a computer store true in memory? How does it store false?

As you saw in Program 2-16, those two abstract states are converted to numbers. In C++,
relational expressions represent true states with the number 1 and false states with the
number 0.

To illustrate this more fully, look at Program 4-1.

Table 4-3 (Assume x is 10 and y is 7.)

Expression Value
x < y False, because x is not less than y.
x > y True, because x is greater than y.
x >= y True, because x is greater than or equal to y.
x <= y False, because x is not less than or equal to y.
y != x True, because y is not equal to x.

NOTE: As you will see later in this chapter, 1 is not the only value regarded as true.

Program 4-1

 1 // This program displays the values of true and false states.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 bool trueValue, falseValue;
 8 int x = 5, y = 10;
 9
10 trueValue = x < y;
11 falseValue = y == x;
12
13 cout << "True is " << trueValue << endl;
14 cout << "False is " << falseValue << endl;
15 return 0;
16 }

Program Output
True is 1
False is 0

4.1 Relational Operators 163

Let’s examine the statements containing the relational expressions, in lines 10 and 11, a
little closer:

trueValue = x < y;
falseValue = y == x;

These statements may seem odd because they are assigning the value of a comparison to a
variable. In line 10 the variable trueValue is being assigned the result of x < y. Since x is
less than y, the expression is true, and the variable trueValue is assigned the value 1. In
line 11 the expression y == x is false, so the variable falseValue is set to 0. Table 4-4
shows examples of other statements using relational expressions and their outcomes.

When writing statements such as these, it sometimes helps to enclose the relational expres-
sion in parentheses, such as:

trueValue = (x < y);
falseValue = (y == x);

As interesting as relational expressions are, we’ve only scratched the surface of how to use
them. In this chapter’s remaining sections you will see how to get the most from relational
expressions by using them in statements that take action based on the results of the comparison.

Checkpoint
4.1 Assuming x is 5, y is 6, and z is 8, indicate by circling the T or F whether each of

the following relational expressions is true or false:
A) x == 5 T F
B) 7 <= (x + 2) T F
C) z < 4 T F
D) (2 + x) != y T F
E) z != 4 T F
F) x >= 9 T F
G) x <= (y * 2) T F

NOTE: Relational expressions have a higher precedence than the assignment operator. In
the statement

z = x < y;

the expression x < y is evaluated first, and then its value is assigned to z.

Table 4-4 (Assume x is 10, y is 7, and z, a, and b are ints or bools)

Statement Outcome
z = x < y z is assigned 0 because x is not less than y.
cout << (x > y); Displays 1 because x is greater than y.
a = x >= y; a is assigned 1 because x is greater than or equal to y.
cout << (x <= y); Displays 0 because x is not less than or equal to y.
b = y != x; b is assigned 1 because y is not equal to x.

164 Chapter 4 Making Decisions

4.2 Indicate whether the following statements about relational expressions are correct
or incorrect.
A) x <= y is the same as y > x.
B) x != y is the same as y >= x.
C) x >= y is the same as y <= x.

4.3 Answer the following questions with a yes or no.
A) If it is true that x > y and it is also true that x < z, does that mean y < z is

true?
B) If it is true that x >= y and it is also true that z == x, does that mean that z

== y is true?
C) If it is true that x != y and it is also true that x != z, does that mean that

z != y is true?

4.4 What will the following program display?

#include <iostream>
using namespace std;

int main ()
{
 int a = 0, b = 2, x = 4, y = 0;

 cout << (a == b) << endl;
 cout << (a != y) << endl;
 cout << (b <= x) << endl;
 cout << (y > a) << endl;
 return 0;
}

4.2 The if Statement

CONCEPT: The if statement can cause other statements to execute only under
certain conditions.

You might think of the statements in a procedural program as individual steps taken as
you are walking down a road. To reach the destination, you must start at the beginning
and take each step, one after the other, until you reach the destination. The programs you
have written so far are like a “path” of execution for the program to follow.

The type of code in Figure 4-1 is called a sequence structure, because the statements are
executed in sequence, without branching off in another direction. Programs often need
more than one path of execution, however. Many algorithms require a program to execute
some statements only under certain circumstances. This can be accomplished with a deci-
sion structure.

In a decision structure’s simplest form, a specific action is taken only when a specific condi-
tion exists. If the condition does not exist, the action is not performed. The flowchart in
Figure 4-2 shows the logic of a decision structure. The diamond symbol represents a yes/no

The if
Statement

4.2 The if Statement 165

question or a true/false condition. If the answer to the question is yes (or if the condition is
true), the program flow follows one path, which leads to an action being performed. If the
answer to the question is no (or the condition is false), the program flow follows another
path, which skips the action.

In the flowchart, the action “Wear a coat” is performed only when it is cold outside. If it is
not cold outside, the action is skipped. The action is conditionally executed because it is
performed only when a certain condition (cold outside) exists. Figure 4-3 shows a more
elaborate flowchart, where three actions are taken only when it is cold outside.

We perform mental tests like these every day. Here are some other examples:

If the car is low on gas, stop at a service station and get gas.
If it’s raining outside, go inside.
If you’re hungry, get something to eat.

Figure 4-1

Figure 4-2

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

// A program to calculate the area of a rectangle

#include <iostream>
using namespace std;

int main()
{
 double length, width, area;

 cout << "Enter the length of the rectangle: ";
 cin >> length;
 cout << "Enter the width of the rectangle: ";
 cin >> width;
 area = length * width;
 cout << "The area is: " << area << endl
 return 0;
}

Wear a coat.

Yes

No

Is it cold
outside?

166 Chapter 4 Making Decisions

One way to code a decision structure in C++ is with the if statement. Here is the general
format of the if statement:

The if statement is simple in the way it works: If the value of the expression inside the
parentheses is true, the very next statement is executed. Otherwise, it is skipped. The
statement is conditionally executed because it only executes under the condition that the
expression in the parentheses is true. Program 4-2 shows an example of an if statement.
The user enters three test scores and the program calculates their average. If the average is
greater than 95, the program congratulates the user on obtaining a high score.

Figure 4-3

 if (expression)
 statement;

Program 4-2

 1 // This program averages three test scores
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int score1, score2, score3; // To hold three test scores
 9 double average; // To hold the average score
10

Wear a coat.
No

YesIs it cold
outside?

Wear a hat.

Wear gloves.

4.2 The if Statement 167

Lines 21 and 22 cause the congratulatory message to be printed:

if (average > 95)
cout << "Congratulations! That's a high score!\n";

The cout statement in line 22 is executed only if the average is greater than 95. If the
average is not greater than 95, the cout statement is skipped. Figure 4-4 shows the logic
of this if statement.

Table 4-5 shows other examples of if statements and their outcomes.

11 // Get the three test scores.
12 cout << "Enter 3 test scores and I will average them: ";
13 cin >> score1 >> score2 >> score3;
14
15 // Calculate and display the average score.
16 average = (score1 + score2 + score3) / 3.0;
17 cout << fixed << showpoint << setprecision(1);
18 cout << "Your average is " << average << endl;
19
20 // If the average is greater than 95, congratulate the user.
21 if (average > 95)
22 cout << "Congratulations! That's a high score!\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

Program Output with Different Example Input Shown in Bold
Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0
Congratulations! That's a high score!

Figure 4-4

Display "Congratulations!
That's a high score!"

True

False

average
> 95

168 Chapter 4 Making Decisions

Be Careful with Semicolons
Semicolons do not mark the end of a line, but the end of a complete C++ statement. The
if statement isn’t complete without the conditionally executed statement that comes after
it. So, you must not put a semicolon after the if (expression) portion of an if
statement.

If you inadvertently put a semicolon after the if part, the compiler will assume you are
placing a null statement there. The null statement is an empty statement that does noth-
ing. This will prematurely terminate the if statement, which disconnects it from the
statement that follows it. The statement following the if will always execute, as shown
in Program 4-3.

Table 4-5

Statement Outcome
if (hours > 40)
 overTime = true;

Assigns true to the bool variable overTime only
when hours is greater than 40

if (value > 32)
 cout << "Invalid number\n";

Displays the message “Invalid number” only
when value is greater than 32

if (overTime == true)
 payRate *= 2;

Multiplies payRate by 2 only when overTime is
equal to true

Program 4-3

 1 // This program demonstrates how a misplaced semicolon
 2 // prematurely terminates an if statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int x = 0, y = 10;
 9
10 cout << "x is " << x << " and y is " << y << endl;
11 if (x > y); // Error! Misplaced semicolon
12 cout << "x is greater than y\n"; //This is always executed.
13 return 0;
14 }

Program Output
x is 0 and y is 10
x is greater than y

if (expression)
statement;

No semicolon goes here.

Semicolon goes here.

4.2 The if Statement 169

Programming Style and the if Statement
Even though if statements usually span more than one line, they are technically one long
statement. For instance, the following if statements are identical except in style:

if (a >= 100)
 cout << "The number is out of range.\n";
if (a >= 100) cout << "The number is out of range.\n";

In both the examples above, the compiler considers the if part and the cout statement as
one unit, with a semicolon properly placed at the end. Indention and spacing are for the
human readers of a program, not the compiler. Here are two important style rules you
should adopt for writing if statements:

• The conditionally executed statement should appear on the line after the if
statement.

• The conditionally executed statement should be indented one “level” from the
if statement.

By indenting the conditionally executed statement you are causing it to stand out visually.
This is so you can tell at a glance what part of the program the if statement executes.
This is a standard way of writing if statements and is the method you should use.

Comparing Floating-Point Numbers
Because of the way that floating-point numbers are stored in memory, rounding errors
sometimes occur. This is because some fractional numbers cannot be exactly represented
using binary. So, you should be careful when using the equality operator (==) to compare
floating point numbers. For example, Program 4-4 uses two double variables, a and b.
Both variables are initialized to the value 1.5. Then, the value 0.0000000000000001 is
added to a. This should make a’s contents different than b’s contents. Because of a round-
off error, however, the two variables are still the same.

NOTE: In most editors, each time you press the tab key, you are indenting one level.

NOTE: Indentation and spacing are for the human readers of a program, not the
compiler. Even though the cout statement following the if statement in Program 4-3 is
indented, the semicolon still terminates the if statement.

Program 4-4

 1 // This program demonstrates how floating-point
 2 // round-off errors can make equality operations unreliable.
 3 #include <iostream>
 4 using namespace std;
 5

(program continues)

170 Chapter 4 Making Decisions

To prevent round-off errors from causing this type of problem, you should stick with
greater-than and less-than comparisons with floating-point numbers.

And Now Back to Truth
Now that you’ve gotten your feet wet with relational expressions and if statements, let’s
look at the subject of truth again. You have seen that a relational expression has the value
1 when it is true and 0 when false. In the world of the if statement, however, the concept
of truth is expanded. 0 is still false, but all values other than 0 are considered true. This
means that any value, even a negative number, represents true as long as it is not 0.

Just as in real life, truth is a complicated thing. Here is a summary of the rules you have
seen so far:

• When a relational expression is true it has the value 1.
• When a relational expression is false it has the value 0.
• Any expression that has the value 0 is considered false by the if statement. This

includes the bool value false, which is equivalent to 0.
• Any expression that has any value other than 0 is considered true by the if state-

ment. This includes the bool value true, which is equivalent to 1.

The fact that the if statement considers any nonzero value as true opens many possibili-
ties. Relational expressions are not the only conditions that may be tested. For example,
the following is a legal if statement in C++:

if (value)
cout << "It is True!";

The if statement above does not test a relational expression, but rather the contents of a
variable. If the variable, value, contains any number other than 0, the message “It is
True!” will be displayed. If value is set to 0, however, the cout statement will be
skipped. Here is another example:

if (x + y)
cout << "It is True!";

 6 int main()
 7 {
 8 double a = 1.5; // a is 1.5.
 9 double b = 1.5; // b is 1.5.
10
11 a += 0.0000000000000001; // Add a little to a.
12 if (a == b)
13 cout << "Both a and b are the same.\n";
14 else
15 cout << "a and b are not the same.\n";
16
17 return 0;
18 }

Program Output
Both a and b are the same.

Program 4-4 (continued)

4.2 The if Statement 171

In this statement the sum of x and y is tested like any other value in an if statement: 0 is
false and all other values are true. You may also use the return value of function calls as
conditional expressions. Here is an example that uses the pow function:

if (pow(a, b))
cout << "It is True!";

This if statement uses the pow function to raise a to the power of b. If the result is any-
thing other than 0, the cout statement is executed. This is a powerful programming tech-
nique that you will learn more about in Chapter 6.

Don’t Confuse == With =
Earlier you saw a warning not to confuse the equality operator (==) with the assignment
operator (=), as in the following statement:

if (x = 2) //Caution here!
cout << "It is True!";

The statement above does not determine whether x is equal to 2, it assigns x the value 2!
Furthermore, the cout statement will always be executed because the expression x = 2 is
always true.

This occurs because the value of an assignment expression is the value being assigned to
the variable on the left side of the = operator. That means the value of the expression x = 2
is 2. Since 2 is a nonzero value, it represents a true condition. Program 4-5 is a version of
Program 4-2 that attempts to test for a perfect average of 100. The = operator, however,
was mistakenly used in the if statement.

Program 4-5

 1 // This program averages 3 test scores. The if statement
 2 // uses the = operator, but the == operator was intended.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int score1, score2, score3; // To hold three test scores
10 double average; // TO hold the average score
11
12 // Get the three test scores.
13 cout << "Enter 3 test scores and I will average them: ";
14 cin >> score1 >> score2 >> score3;
15
16 // Calculate and display the average score.
17 average = (score1 + score2 + score3) / 3.0;
18 cout << fixed << showpoint << setprecision(1);
19 cout << "Your average is " << average << endl;
20

(program continues)

172 Chapter 4 Making Decisions

Regardless of the average score, this program will print the message congratulating the
user on a perfect score.

4.3 Flags

CONCEPT: A flag is a Boolean or integer variable that signals when
a condition exists.

A flag is typically a bool variable that signals when some condition exists in the program.
When the flag variable is set to false, it indicates that the condition does not yet exist.
When the flag variable is set to true, it means the condition does exist.

For example, suppose a program similar to the previous test averaging program has a
bool variable named highScore, defined and initialized as shown here:

bool highScore = false;

When we define the variable, we initialize it with false because we do not yet know if a high
score has been achieved. After the average score is calculated, we can use the following code to
determine whether it is greater than 95. If it is, the highScore variable is set to true.

if (average > 95)
 highScore = true;

Later, the same program might use code similar to the following to test the highScore
variable, in order to determine whether a high score has been achieved.

if (highScore)
 cout << "Congratulations! That's a high score!";

Integer Flags
Integer variables may also be used as flags. This is because in C++ the value 0 is considered
false, and any nonzero value is considered true. In a test averaging program we could
define the highScore variable with the following statement:

int highScore = 0; // 0 means false.

21 // Our intention is to congratulate the user
22 // for having a perfect score. But, this doesn't work.
23 if (average = 100) // WRONG! This is an assignment!
24 cout << "Congratulations! That's a perfect score!\n";
25 return 0;
26 }

Program Output with Example Input Shown in Bold
Enter three test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0
Congratulations! That's a perfect score!

Program 4-5 (continued)

4.4 Expanding the if Statement 173

As before, we initialize the variable with 0 because we do not yet know whether a high score
has been achieved. After the average score is calculated, we can use the following code to deter-
mine whether it is greater than 95. If it is, the highScore variable is set to a nonzero value.

if (average > 95)
 highScore = 1; // A nonzero value means true.

Later in the program we might use code similar to the following to test the highScore
variable, in order to determine whether a high score has been achieved.

if (highScore)
 cout << "Congratulations! That's a high score!";

You will find flag variables useful in many circumstances, and we will come back to them
in future chapters.

4.4 Expanding the if Statement

CONCEPT: The if statement can conditionally execute a block of statements
enclosed in braces.

What if you want an if statement to conditionally execute a group of statements, not just
one line? For instance, what if the test averaging program needed to use several cout
statements when a high score was reached? The answer is to enclose all of the condition-
ally executed statements inside a set of braces. Here is the format:

Program 4-6, another modification of the test-averaging program, demonstrates this type
of if statement.

NOTE: Variables that are created inside a function, like main, are not automatically
initialized. If you need a variable to start with a particular value, you should initialize it to
that value.

 if (expression)
 {

statement;
statement;

 // Place as many statements here as necessary.
 }

Program 4-6

 1 // This program averages 3 test scores.
 2 // It demonstrates an if statement executing
 3 // a block of statements.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7

(program continues)

174 Chapter 4 Making Decisions

Program 4-6 prints a more elaborate message when the average score is greater than 95.
The if statement was expanded to execute three cout statements when highScore is set
to true. Enclosing a group of statements inside a set of braces creates a block of code. The
if statement will execute all the statements in the block, in the order they appear, only
when average is greater than 95. Otherwise, the block will be skipped.

Notice all the statements inside the braces are indented. As before, this visually separates
the statements from lines that are not indented, making it more obvious they are part of
the if statement.

 8 int main()
 9 {
10 int score1, score2, score3; // To hold three test scores
11 double average; // To hold the average score
12
13 // Get the three test scores.
14 cout << "Enter 3 test scores and I will average them: ";
15 cin >> score1 >> score2 >> score3;
16
17 // Calculate and display the average score.
18 average = (score1 + score2 + score3) / 3.0;
19 cout << fixed << showpoint << setprecision(1);
20 cout << "Your average is " << average << endl;
21
22 // If the average is greater than 95, congratulate the user.
23 if (average > 95)
24 {
25 cout << "Congratulations!\n";
26 cout << "That's a high score.\n";
27 cout << "You deserve a pat on the back!\n";
28 }
29 return 0;
30 }

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 100 100 100 [Enter]
Your average is 100.0
Congratulations!
That's a high score.
You deserve a pat on the back!

Program Output with Different Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80.0

NOTE: Anytime your program has a block of code, all the statements inside the braces
should be indented.

Program 4-6 (continued)

4.4 Expanding the if Statement 175

Don’t Forget the Braces!
If you intend to conditionally execute a block of statements with an if statement, don’t
forget the braces. Remember, without a set of braces, the if statement only executes the
very next statement. Program 4-7 shows the test-averaging program with the braces inad-
vertently left out of the if statement’s block.

The cout statements in lines 24 and 25 are always executed, even when average is not
greater than 95. Because the braces have been removed, the if statement only controls
execution of line 23. This is illustrated in Figure 4-5.

Program 4-7

 1 // This program averages 3 test scores. The braces
 2 // were inadvertently left out of the if statement.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int score1, score2, score3; // To hold three test scores
10 double average; // To hold the average score
11
12 // Get the three test scores.
13 cout << "Enter 3 test scores and I will average them: ";
14 cin >> score1 >> score2 >> score3;
15
16 // Calculate and display the average score.
17 average = (score1 + score2 + score3) / 3.0;
18 cout << fixed << showpoint << setprecision(1);
19 cout << "Your average is " << average << endl;
20
21 // ERROR! This if statement is missing its braces!
22 if (average > 95)
23 cout << "Congratulations!\n";
24 cout << "That's a high score.\n";
25 cout << "You deserve a pat on the back!\n";
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter 3 test scores and I will average them: 80 90 70 [Enter]
Your average is 80
That's a high score.
You deserve a pat on the back!

Figure 4-5

if (average > 95)
cout << "Congratulations!\n";

 cout << "That's a high score.\n";
 cout << "You deserve a pat on the back!\n";

Only this statement is
conditionally executed.

These statements are
always executed.

176 Chapter 4 Making Decisions

Checkpoint
4.5 TRUE or FALSE: Both of the following if statements perform the same operation.

if (sales > 10000)
 commissionRate = 0.15;

if (sales > 10000) commissionRate = 0.15;

4.6 TRUE or FALSE: Both of the following if statements perform the same operation.

if (calls == 20)
 rate *= 0.5;

if (calls = 20)
 rate *= 0.5;

4.7 Although the following code segments are syntactically correct, each contains an
error. Locate the error.
A) if (hours > 40);

 cout << hours << " hours qualifies for overtime.\n";

B) balance = 1000;
if (interestRate = .07)
 cout << "This account is earning the maximum rate.\n";

C) if (interestRate > .07)
 cout << "This account earns a $10 bonus.\n";
 balance += 10.0;

4.8 Write an if statement that assigns 0 to x if y is equal to 20.

4.9 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

4.10 Write an if statement that assigns .20 to commission if sales is greater than or
equal to 10000.00.

4.11 Write an if statement that sets the variable fees to 50 if the flag variable max is
set to true.

4.5 The if/else Statement 177

4.5 The if/else Statement

CONCEPT: The if/else statement will execute one group of statements if the
expression is true, or another group of statements if the expression
is false.

The if/else statement is an expansion of the if statement. Here is its format:

As with the if statement, an expression is evaluated. If the expression is true, a statement
or block of statements is executed. If the expression is false, however, a separate group of
statements is executed. Program 4-8 uses the if/else statement along with the modulus
operator to determine if a number is odd or even.

The else part at the end of the if statement specifies a statement that is to be executed
when the expression is false. When number % 2 does not equal 0, a message is printed indi-
cating the number is odd. Note that the program will only take one of the two paths in the
if/else statement. If you think of the statements in a computer program as steps taken

 if (expression)
statement or block

 else
statement or block

Program 4-8

 1 // This program uses the modulus operator to determine
 2 // if a number is odd or even. If the number is evenly divisible
 3 // by 2, it is an even number. A remainder indicates it is odd.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int number;
10
11 cout << "Enter an integer and I will tell you if it\n";
12 cout << "is odd or even. ";
13 cin >> number;
14 if (number % 2 == 0)
15 cout << number << " is even.\n";
16 else
17 cout << number << " is odd.\n";
18 return 0;
19 }

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it
is odd or even. 17 [Enter]
17 is odd.

The if/else
Statement

178 Chapter 4 Making Decisions

down a road, consider the if/else statement as a fork in the road. Instead of being a
momentary detour, like an if statement, the if/else statement causes program execu-
tion to follow one of two exclusive paths. The flowchart in Figure 4-6 shows the logic of
this if/else statement.

Notice the programming style used to construct the if/else statement. The word else is
at the same level of indention as if. The statement whose execution is controlled by else is
indented one level. This visually depicts the two paths of execution that may be followed.

Like the if part, the else part controls a single statement. If you wish to control more
than one statement with the else part, create a block by writing the lines inside a set of
braces. Program 4-9 shows this as a way of handling a classic programming problem: divi-
sion by zero.

Division by zero is mathematically impossible to perform and it normally causes a pro-
gram to crash. This means the program will prematurely stop running, sometimes with an
error message. Program 4-9 shows a way to test the value of a divisor before the division
takes place.

Figure 4-6

Program 4-9

 1 // This program asks the user for two numbers, num1 and num2.
 2 // num1 is divided by num2 and the result is displayed.
 3 // Before the division operation, however, num2 is tested
 4 // for the value 0. If it contains 0, the division does not
 5 // take place.
 6 #include <iostream>
 7 using namespace std;
 8
 9 int main()
10 {
11 double num1, num2, quotient;
12

Indicate that the
number is odd.

FalseTrue
number % 2

== 0

Indicate that the
number is even.

4.5 The if/else Statement 179

The value of num2 is tested in line 22 before the division is performed. If the user enters 0,
the lines controlled by the if part execute, displaying a message which indicates that the
program cannot perform a division by zero. Otherwise, the else part takes control, which
divides num1 by num2 and displays the result.

Checkpoint
4.12 TRUE or FALSE: The following if/else statements cause the same output to

display.
A) if (x > y)

 cout << "x is the greater.\n";
else
 cout << "x is not the greater.\n";

B) if (y <= x)
 cout << "x is not the greater.\n";
else
 cout << "x is the greater.\n";

13 // Get the first number.
14 cout << "Enter a number: ";
15 cin >> num1;
16
17 // Get the second number.
18 cout << "Enter another number: ";
19 cin >> num2;
20
21 // If num2 is not zero, perform the division.
22 if (num2 == 0)
23 {
24 cout << "Division by zero is not possible.\n";
25 cout << "Please run the program again and enter\n";
26 cout << "a number other than zero.\n";
27 }
28 else
29 {
30 quotient = num1 / num2;
31 cout << "The quotient of " << num1 << " divided by ";
32 cout<< num2 << " is " << quotient << ".\n";
33 }
34 return 0;
35 }

Program Output with Example Input Shown in Bold
(When the user enters 0 for num2)
Enter a number: 10 [Enter]
Enter another number: 0 [Enter]
Division by zero is not possible.
Please run the program again and enter
a number other than zero.

180 Chapter 4 Making Decisions

4.13 Write an if/else statement that assigns 1 to x if y is equal to 100. Otherwise it
should assign 0 to x.

4.14 Write an if/else statement that assigns 0.10 to commission unless sales is
greater than or equal to 50000.00, in which case it assigns 0.20 to commission.

4.15 Complete the following program skeleton so it computes the correct sales tax. If
the customer is an in-state resident, taxRate should be set to .05. If the customer
is an out-of-state resident, taxRate should be set to 0.

#include <iostream>
using namespace std;

int main()
{
 double taxRate, saleAmount;
 char residence;

 cout << "Enter the amount of the sale: ";
 cin >> saleAmount;
 cout << "Enter I for in-state residence or O for out-of-\n";
 cout << "state: ";
 cin.get(residence);

 // Write code here that assigns 0 to taxRate if residence
 // is set to 'O' or .05 to taxRate if residence is set
 // to 'I'

 saleAmount += saleAmount * taxRate;
 cout << "The total is " << saleAmount;
 return 0;
}

4.6 Nested if Statements

CONCEPT: To test more than one condition, an if statement can be nested inside
another if statement.

Sometimes an if statement must be nested inside another if statement. For example, con-
sider a banking program that determines whether a bank customer qualifies for a special,
low interest rate on a loan. To qualify, two conditions must exist: (1) the customer must be
currently employed, and (2) the customer must have recently graduated from college (in
the past two years). Figure 4-7 shows a flowchart for an algorithm that could be used in
such a program.

If we follow the flow of execution in the flowchart, we see that the expression
employed == 'Y' is tested. If this expression is false, there is no need to perform further
tests; we know that the customer does not qualify for the special interest rate. If the
expression is true, however, we need to test the second condition. This is done with a
nested decision structure that tests the expression recentGrad == 'Y'. If this expression
is true, then the customer qualifies for the special interest rate. If this expression is false,
then the customer does not qualify. Program 4-10 shows the code for the complete program.

4.6 Nested if Statements 181

Figure 4-7

Program 4-10

 1 // This program demonstrates the nested if statement.
 2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char employed, // Currently employed, Y or N
8 recentGrad; // Recent graduate, Y or N
9
10 // Is the user employed and a recent graduate?
11 cout << "Answer the following questions\n";
12 cout << "with either Y for Yes or ";
13 cout << "N for No.\n";
14 cout << "Are you employed? ";
15 cin >> employed;
16 cout << "Have you graduated from college ";
17 cout << "in the past two years? ";
18 cin >> recentGrad;

 19
(program continues)

182 Chapter 4 Making Decisions

Look at the if statement that begins in line 21. It tests the expression employed == 'Y'.
If this expression is true, the if statement that begins in line 23 is executed. Otherwise the
program jumps to the return statement in line 29 and the program ends.

Notice in the second sample execution of Program 4-10 that the program output does not
inform the user whether he or she qualifies for the special interest rate. If the user enters
an 'N' (or any character other than 'Y') for employed or recentGrad, the program does
not print a message letting the user know that he or she does not qualify. An else state-
ment should be able to remedy this, as illustrated by Program 4-11.

20 // Determine the user's loan qualifications.
21 if (employed == 'Y')
22 {
23 if (recentGrad == 'Y') //Nested if
24 {
25 cout << "You qualify for the special ";
26 cout << "interest rate.\n";
27 }
28 }
29 return 0;
30 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

Program Output with Different Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]

Program 4-11

1 // This program demonstrates the nested if statement.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 char employed, // Currently employed, Y or N
8 recentGrad; // Recent graduate, Y or N
9
10 // Is the user employed and a recent graduate?
11 cout << "Answer the following questions\n";
12 cout << "with either Y for Yes or ";
13 cout << "N for No.\n";
14 cout << "Are you employed? ";
15 cin >> employed;
16 cout << "Have you graduated from college ";

Program 4-10 (continued)

4.6 Nested if Statements 183

In this version of the program, both if statements have else clauses that inform the user
why he or she does not qualify for the special interest rate.

17 cout << "in the past two years? ";
18 cin >> recentGrad;
19
20 // Determine the user's loan qualifications.
21 if (employed == 'Y')
22 {
23 if (recentGrad == 'Y') // Nested if
24 {
25 cout << "You qualify for the special ";
26 cout << "interest rate.\n";
27 }
28 else // Not a recent grad, but employed
29 {
30 cout << "You must have graduated from ";
31 cout << "college in the past two\n";
32 cout << "years to qualify.\n";
33 }
34 }
35 else // Not employed
36 {
37 cout << "You must be employed to qualify.\n";
38 }
39 return 0;
40 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? N [Enter]
Have you graduated from college in the past two years? Y [Enter]
You must be employed to qualify.

Program Output with Different Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]
You must have graduated from college in the past two years to qualify.

Program Output with Different Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

184 Chapter 4 Making Decisions

Programming Style and Nested Decision Structures
For readability and easier debugging, it’s important to use proper alignment and indenta-
tion in a set of nested if statements. This makes it easier to see which actions are per-
formed by each part of the decision structure. For example, the following code is
functionally equivalent to lines 21 through 38 in Program 4-11. Although this code is log-
ically correct, it is very difficult to read, and would be very difficult to debug because it is
not properly indented.

 if (employed == 'Y')
 {
 if (recentGrad == 'Y') // Nested if
 {
 cout << "You qualify for the special ";
 cout << "interest rate.\n";
 }
 else // Not a recent grad, but employed
 {
 cout << "You must have graduated from ";
 cout << "college in the past two\n";
 cout << "years to qualify.\n";
 }
 }
 else // Not employed
 {
 cout << "You must be employed to qualify.\n";
 }

Proper indentation and alignment also makes it easier to see which if and else clauses
belong together, as shown in Figure 4-8.

Figure 4-8

 Don’t write code
like this!

 if (employed == 'Y')
 {
 if (recentGrad == 'Y') // Nested if
 {
 cout << "You qualify for the special ";
 cout << "interest rate.\n";
 }
 else // Not a recent grad, but employed
 {
 cout << "You must have graduated from ";
 cout << "college in the past two\n";
 cout << "years to qualify.\n";
 }
 }
 else // Not employed
 {
 cout << "You must be employed to qualify.\n";
 }

This if and else
go together.

This if and else
go together.

4.6 Nested if Statements 185

Testing a Series of Conditions
In the previous example you saw how a program can use nested decision structures to test
more than one condition. It is not uncommon for a program to have a series of conditions
to test, and then perform an action depending on which condition is true. One way to
accomplish this is to have a decision structure with numerous other decision structures
nested inside it. For example, consider the program presented in the following In the Spot-
light section.

In the Spotlight:
Multiple Nested Decision Structures
Dr. Suarez teaches a literature class and uses the following 10 point grading scale for all of
his exams:

Test Score Grade
90 and above A
80–89 B
70–79 C
60–69 D
Below 60 F

He has asked you to write a program that will allow a student to enter a test score and
then display the grade for that score. Here is the algorithm that you will use:

Ask the user to enter a test score.
Determine the grade in the following manner:
If the score is less than 60, then the grade is F.

Otherwise, if the score is less than 70, then the grade is D.
Otherwise, if the score is less than 80, then the grade is C.

Otherwise, if the score is less than 90, then the grade is B.
Otherwise, the grade is A.

You decide that the process of determining the grade will require several nested decisions
structures, as shown in Figure 4-9. Program 4-12 shows the code for the complete pro-
gram. The code for the nested decision structures is in lines 17 through 45.

186 Chapter 4 Making Decisions

False

Display “Your
grade is A.”

Display “Your
grade is B.”

Display “Your
grade is C.”

Display “Your
grade is D.”

Display “Your
grade is F.”

False

False

False True

True

True

True

score
< 60

score
< 70

score
< 80

score
< 90

Figure 4-9 Nested decision structure to determine a grade

Program 4-12

1 // This program uses nested if/else statements to assign a
2 // letter grade (A, B, C, D, or F) to a numeric test score.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int testScore; // To hold a numeric test score
9
10 // Get the numeric test score.
11 cout << "Enter your numeric test score and I will\n";
12 cout << "tell you the letter grade you earned: ";
13 cin >> testScore;
14
15 // Determine the letter grade.
16 if (testScore < 60)
17 {
18 cout << "Your grade is F.\n";
19 }
20 else

4.7 The if/else if Statement 187

The if/else
if Statement

4.7 The if/else if Statement

CONCEPT: The if/else if statement tests a series of conditions. It is often simpler to
test a series of conditions with the if/else if statement than with a set of
nested if/else statements.

Even though Program 4-12 is a simple example, the logic of the nested decision structure is
fairly complex. In C++, and many other languages, you can alternatively test a series of condi-
tions using the if/else if statement. The if/else if statement makes certain types of
nested decision logic simpler to write. Here is the general format of the if/else if statement:

21 {
22 if (testScore < 70)
23 {
24 cout << "Your grade is D.\n";
25 }
26 else
27 {
28 if (testScore < 80)
29 {
30 cout << "Your grade is C.\n";
31 }
32 else
33 {
34 if (testScore < 90)
35 {
36 cout << "Your grade is B.\n";
37 }
38 else
39 {
40 cout << "Your grade is A.\n";
41 }
42 }
43 }
44 }
45
46 return 0;
47 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 84 [Enter]
Your grade is B.

188 Chapter 4 Making Decisions

When the statement executes, expression_1 is tested. If expression_1 is true, the block
of statements that immediately follows is executed, and the rest of the structure is ignored.
If expression_1 is false, however, the program jumps to the very next else if clause
and tests expression_2. If it is true, the block of statements that immediately follows is
executed, and then the rest of the structure is ignored. This process continues, from the
top of the structure to the bottom, until one of the expressions is found to be true. If none
of the expressions are true, the last else clause takes over and the block of statements
immediately following it is executed.

The last else clause, which does not have an if statement following it, is referred to as
the trailing else. The trailing else is optional, but in most cases you will use it.

Program 4-13 shows an example of the if/else if statement. This program is a modifica-
tion of Program 4-12, which appears in the previous In the Spotlight section.

 if (expression_1)
 {

statement
statement
etc.

 }

 else if (expression_2)
 {

statement
statement
etc.

 }

Insert as many else if clauses as necessary

 else
 {

statement
statement
etc.

 }

NOTE: The general format shows braces surrounding each block of conditionally
executed statements. As with other forms of the if statement, the braces are required only
when more than one statement is conditionally executed.

Program 4-13

 1 // This program uses an if/else if statement to assign a
 2 // letter grade (A, B, C, D, or F) to a numeric test score.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int testScore; // To hold a numeric test score

If expression_1 is true these state-
ments are executed, and the rest of the
structure is ignored.

Otherwise, if expression_2 is true these
statements are executed, and the rest of
the structure is ignored.

These statements are executed if
none of the expressions above
are true.

4.7 The if/else if Statement 189

Let’s analyze how the if/else if statement in lines 16 through 25 works. First, the
expression testScore < 60 is tested in line 16:

� if (testScore < 60)
cout << "Your grade is F.\n";

 else if (testScore < 70)
cout << "Your grade is D.\n";

 else if (testScore < 80)
cout << "Your grade is C.\n";

 else if (testScore < 90)
 cout << "Your grade is B.\n";

else
cout << "Your grade is A.\n";

If testScore is less than 60, the message "Your grade is F.\n" is displayed and the
rest of the if/else if statement is skipped. If testScore is not less than 60, the else
clause in line 18 takes over and causes the next if statement to be executed:

if (testScore < 60)
 cout << "Your grade is F.\n";;

 9
10 // Get the numeric test score.
11 cout << "Enter your numeric test score and I will\n";
12 cout << "tell you the letter grade you earned: ";
13 cin >> testScore;
14
15 // Determine the letter grade.
16 if (testScore < 60)
17 cout << "Your grade is F.\n";
18 else if (testScore < 70)
19 cout << "Your grade is D.\n";
20 else if (testScore < 80)
21 cout << "Your grade is C.\n";
22 else if (testScore < 90)
23 cout << "Your grade is B.\n";
24 else
25 cout << "Your grade is A.\n";
26
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 78 [Enter]
Your grade is C.

Program Output with Different Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 84 [Enter]
Your grade is B.

190 Chapter 4 Making Decisions

� else if (testScore < 70)
cout << "Your grade is D.\n";

 else if (testScore < 80)
cout << "Your grade is C.\n";

else if (testScore < 90)
 cout << "Your grade is B.\n";

else
cout << "Your grade is A.\n";

The first if statement handles all of the grades less than 60, so when this if statement
executes, testScore will have a value of 60 or greater. If testScore is less than 70, the
message "Your grade is D.\n" is displayed and the rest of the if/else if statement
is skipped. This chain of events continues until one of the expressions is found to be true,
or the last else clause at the end of the statement is encountered.

Notice the alignment and indentation that is used with the if/else if statement: The
starting if clause, the else if clauses, and the trailing else clause are all aligned, and
the conditionally executed statements are indented.

Using the Trailing else To Catch Errors
The trailing else clause, which appears at the end of the if/else if statement, is
optional, but in many situations you will use it to catch errors. For example, Program
4-13 will assign the grade 'A' to any test score that is 90 or greater. What if the highest
possible test score is 100? We can modify the code as shown in Program 4-14 so the trailing
else clause catches any value greater than 100 and displays an error message.

Program 4-14

1 // This program uses an if/else if statement to assign a
2 // letter grade (A, B, C, D, or F) to a numeric test score.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int testScore; // To hold a numeric test score
 9
10 // Get the numeric test score.
11 cout << "Enter your numeric test score and I will\n";
12 cout << "tell you the letter grade you earned: ";
13 cin >> testScore;
14
15 // Determine the letter grade.
16 if (testScore < 60)
17 cout << "Your grade is F.\n";
18 else if (testScore < 70)
19 cout << "Your grade is D.\n";
20 else if (testScore < 80)
21 cout << "Your grade is C.\n";
22 else if (testScore < 90)
23 cout << "Your grade is B.\n";

4.8 Menus 191

The if/else if Statement Compared
to a Nested Decision Structure
You never have to use the if/else if statement because its logic can be coded with
nested if/else statements. However, a long series of nested if/else statements has two
particular disadvantages when you are debugging code:

• The code can grow complex and become difficult to understand.
• Because indenting is important in nested statements, a long series of nested if/

else statements can become too long to be displayed on the computer screen
without horizontal scrolling. Also, long statements tend to “wrap around” when
printed on paper, making the code even more difficult to read.

The logic of an if/else if statement is usually easier to follow than that of a long series
of nested if/else statements. And, because all of the clauses are aligned in an if/else
if statement, the lengths of the lines in the statement tend to be shorter.

4.8 Menus

CONCEPT: You can use nested if/else statements or the if/else if statement to
create menu-driven programs. A menu-driven program allows the user to
determine the course of action by selecting it from a list of actions.

A menu is a screen displaying a set of choices the user selects from. For example, a pro-
gram that manages a mailing list might give you the following menu:

1. Add a name to the list.

2. Remove a name from the list.

3. Change a name in the list.

4. Print the list.

5. Quit the program.

24 else if (testScore <= 100)
25 cout << "Your grade is A.\n";
26 else
27 cout << "We do not give scores higher than 100.\n";
28
29 return 0;
30 }

Program Output with Example Input Shown in Bold
Enter your numeric test score and I will
tell you the letter grade you earned: 105 [Enter]
We do not give scores higher than 100.

192 Chapter 4 Making Decisions

The user selects one of the operations by entering its number. Entering 4, for example,
causes the mailing list to be printed, and entering 5 causes the program to end. Nested
if/else statements or an if/else if structure can be used to set up such a menu.
After the user enters a number, the program compares the number with the available
selections and executes the statements that perform that operation.

Program 4-15 calculates the charges for membership in a health club. The club has three
membership packages to choose from: standard adult membership, child membership,
and senior citizen membership. The program presents a menu that allows the user to
choose the desired package and then calculates the cost of the membership.

Program 4-15

 1 // This program displays a menu and asks the user to make a
 2 // selection. An if/else if statement determines which item
 3 // the user has chosen.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int choice; // Menu choice
11 int months; // Number of months
12 double charges; // Monthly charges
13
14 // Constants for membership rates
15 const double ADULT = 40.0;
16 const double SENIOR = 30.0;
17 const double CHILD = 20.0;
18
19 // Display the menu and get a choice.
20 cout << "\t\tHealth Club Membership Menu\n\n";
21 cout << "1. Standard Adult Membership\n";
22 cout << "2. Child Membership\n";
23 cout << "3. Senior Citizen Membership\n";
24 cout << "4. Quit the Program\n\n";
25 cout << "Enter your choice: ";
26 cin >> choice;
27
28 // Set the numeric output formatting.
29 cout << fixed << showpoint << setprecision(2);
30
31 // Respond to the user's menu selection.
32 if (choice == 1)
33 {
34 cout << "For how many months? ";
35 cin >> months;
36 charges = months * ADULT;
37 cout << "The total charges are $" << charges << endl;
38 }
39 else if (choice == 2)
40 {

4.8 Menus 193

Notice that three double constants ADULT, CHILD, and SENIOR are defined in lines 15
through 17. These constants hold the monthly membership rates for adult, child, and
senior citizen memberships.

Also notice that the program lets the user know when an invalid choice is made. If a num-
ber other than 1, 2, 3, or 4 is entered, an error message is printed. This is known as input
validation.

Checkpoint
4.16 Program 4-14 asks the user for a numeric test score and displays the letter grade

for that score. Modify it so an error message is displayed if the user enters a test
score less than 0.

41 cout << "For how many months? ";
42 cin >> months;
43 charges = months * CHILD;
44 cout << "The total charges are $" << charges << endl;
45 }
46 else if (choice == 3)
47 {
48 cout << "For how many months? ";
49 cin >> months;
50 charges = months * SENIOR;
51 cout << "The total charges are $" << charges << endl;
52 }
53 else if (choice == 4)
54 {
55 cout << "Program ending.\n";
56 }
57 else
58 {
59 cout << "The valid choices are 1 through 4. Run the\n";
60 cout << "program again and select one of those.\n";
61 }
62 return 0;
63 }

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 3 [Enter]
For how many months? 6 [Enter]
The total charges are $180.00

194 Chapter 4 Making Decisions

4.17 What will the following program display?

#include <iostream>
using namespace std;

int main()
{

int funny = 7, serious = 15;

funny = serious % 2;
if (funny != 1)
{

funny = 0;
serious = 0;

}
else if (funny == 2)
{

funny = 10;
serious = 10;

}

else
{

funny = 1;
serious = 1;

}
cout << funny << "" << serious << endl;
return 0;

}

4.18 The following program is used in a bookstore to determine how many discount
coupons a customer gets. Complete the table that appears after the program.

#include <iostream>
using namespace std;

int main()
{

int numBooks, numCoupons;

cout << "How many books are being purchased? ";
cin >> numBooks;
if (numBooks < 1)

numCoupons = 0;
else if (numBooks < 3)

numCoupons = 1;
else if (numBooks < 5)

numCoupons = 2;
else

numCoupons = 3;
cout << "The number of coupons to give is " << numCoupons
 << endl;
return 0;

}

4.9 Logical Operators 195

4.19 Write nested if statements that perform the following test: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

4.9 Logical Operators

CONCEPT: Logical operators connect two or more relational expressions into one
or reverse the logic of an expression.

In the previous section you saw how a program tests two conditions with two if state-
ments. In this section you will see how to use logical operators to combine two or more
relational expressions into one. Table 4-6 lists C++’s logical operators.

The && Operator
The && operator is known as the logical AND operator. It takes two expressions as oper-
ands and creates an expression that is true only when both sub-expressions are true. Here
is an example of an if statement that uses the && operator:

if (temperature < 20 && minutes > 12)
 cout << "The temperature is in the danger zone.";

In the statement above the two relational expressions are combined into a single expres-
sion. The cout statement will only be executed if temperature is less than 20 AND
minutes is greater than 12. If either relational test is false, the entire expression is false
and the cout statement is not executed.

If the customer purchases
this many books This many coupons are given.

1

2

3

4

5

10

Table 4-6

Operator Meaning Effect
&& AND Connects two expressions into one. Both expressions must be true for

the overall expression to be true.
|| OR Connects two expressions into one. One or both expressions must be

true for the overall expression to be true. It is only necessary for one to
be true, and it does not matter which.

! NOT The ! operator reverses the “truth” of an expression. It makes a true
expression false, and a false expression true.

196 Chapter 4 Making Decisions

Table 4-7 shows a truth table for the && operator. The truth table lists all the possible com-
binations of values that two expressions may have, and the resulting value returned by the
&& operator connecting the two expressions.

As the table shows, both sub-expressions must be true for the && operator to return a
true value.

The && operator can be used to simplify programs that otherwise would use nested if
statements. Program 4-16 performs a similar operation as Program 4-11, which qualifies a
bank customer for a special interest rate. This program uses a logical operator.

TIP: You must provide complete expressions on both sides of the && operator. For
example, the following is not correct because the condition on the right side of the &&
operator is not a complete expression.

temperature > 0 && < 100

The expression must be rewritten as

temperature > 0 && temperature < 100

Table 4-7

Expression Value of Expression
true && false
false && true
false && false
true && true

false (0)
false (0)
false (0)
true (1)

NOTE: If the sub-expression on the left side of an && operator is false, the expression on
the right side will not be checked. Since the entire expression is false if only one of the sub-
expressions is false, it would waste CPU time to check the remaining expression. This is
called short circuit evaluation.

Program 4-16

 1 // This program demonstrates the && logical operator.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char employed, // Currently employed, Y or N
 8 recentGrad; // Recent graduate, Y or N
 9
10 // Is the user employed and a recent graduate?
11 cout << "Answer the following questions\n";
12 cout << "with either Y for Yes or ";
13 cout << "N for No.\n";

4.9 Logical Operators 197

The message “You qualify for the special interest rate” is only displayed when
both the expressions employed == 'Y' and recentGrad == 'Y' are true. If either of
these is false, the message “You must be employed and have graduated from col-
lege in the past two years to qualify.” is printed.

14 cout << "Are you employed? ";
15 cin >> employed;
16 cout << "Have you graduated from college ";
17 cout << "in the past two years? ";
18 cin >> recentGrad;
19
20 // Determine the user's loan qualifications.
21 if (employed == 'Y' && recentGrad == 'Y')
22 {
23 cout << "You qualify for the special ";
24 cout << "interest rate.\n";
25 }
26 else
27 {
28 cout << "You must be employed and have\n";
29 cout << "graduated from college in the\n";
30 cout << "past two years to qualify.\n";
31 }
32 return 0;
33 }

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? N [Enter]
You must be employed and have
graduated from college in the
past two years to qualify.

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? N [Enter]
Have you graduated from college in the past two years? Y [Enter]
You must be employed and have
graduated from college in the
past two years to qualify.

Program Output with Example Input Shown in Bold
Answer the following questions
with either Y for Yes or N for No.
Are you employed? Y [Enter]
Have you graduated from college in the past two years? Y [Enter]
You qualify for the special interest rate.

198 Chapter 4 Making Decisions

The || Operator
The || operator is known as the logical OR operator. It takes two expressions as oper-
ands and creates an expression that is true when either of the sub-expressions are true.
Here is an example of an if statement that uses the || operator:

if (temperature < 20 || temperature > 100)
cout << "The temperature is in the danger zone.";

The cout statement will be executed if temperature is less than 20 OR temperature is
greater than 100. If either relational test is true, the entire expression is true and the cout
statement is executed.

Table 4-8 shows a truth table for the || operator.

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It
doesn’t matter if the other sub-expression is false or true.

Program 4-17 performs different tests to qualify a person for a loan. This one deter-
mines if the customer earns at least $35,000 per year, or has been employed for more
than five years.

NOTE: Although it is similar, Program 4-16 is not the logical equivalent of Program 4-11.
For example, Program 4-16 doesn’t display the message “You must be employed to qualify.”

TIP: You must provide complete expressions on both sides of the || operator. For
example, the following is not correct because the condition on the right side of the ||
operator is not a complete expression.

temperature < 0 || > 100

The expression must be rewritten as

temperature < 0 || temperature > 100

Table 4-8

Expression Value of the Expression
true || false
false || true
false || false
true || true

true (1)
true (1)
false (0)
true (1)

NOTE: The || operator also performs short circuit evaluation. If the sub-expression on
the left side of an || operator is true, the expression on the right side will not be checked.
Since it’s only necessary for one of the sub-expressions to be true, it would waste CPU
time to check the remaining expression.

4.9 Logical Operators 199

The message “You qualify\n.” is displayed when either or both the expressions income >=
35000 or years > 5 are true. If both of these are false, the disqualifying message is printed.

Program 4-17

 1 // This program asks the user for annual income and
 2 // the number of years of employment at the current
 3 // job. The || operator is used in an if statement that
 4 // determines if the income is at least $35,000 or the time
 5 // on the job is more than 5 years.
 6 #include <iostream>
 7 using namespace std;
 8
 9 int main()
10 {
11 double income; // Annual income
12 int years; // Years at the current job
13
14 // Get the annual income
15 cout << "What is your annual income? ";
16 cin >> income;
17
18 // Get the number of years at the current job.
19 cout << "How many years have you worked at "
20 << "your current job? ";
21 cin >> years;
22
23 // Determine the user's loan qualifications.
24 if (income >= 35000 || years > 5)
25 cout << "You qualify.\n";
26 else
27 {
28 cout << "You must earn at least $35,000 or have\n";
29 cout << "been employed for more than 5 years.\n";
30 }
31 return 0;
32 }

Program Output with Example Input Shown in Bold
What is your annual income? 40000 [Enter]
How many years have you worked at your current job? 2 [Enter]
You qualify.

Program Output with Example Input Shown in Bold
What is your annual income? 20000 [Enter]
How many years have you worked at your current job? 7 [Enter]
You qualify.

Program Output with Example Input Shown in Bold
What is your annual income? 30000 [Enter]
How many years have you worked at your current job? 3 [Enter]
You must earn at least $35,000 or have
been employed for more than 5 years.

200 Chapter 4 Making Decisions

The ! Operator
The ! operator performs a logical NOT operation. It takes an operand and reverses its
truth or falsehood. In other words, if the expression is true, the ! operator returns false,
and if the expression is false, it returns true. Here is an if statement using the ! operator:

if (!(temperature > 100))
 cout << "You are below the maximum temperature.\n";

First, the expression (temperature > 100) is tested to be true or false. Then the ! opera-
tor is applied to that value. If the expression (temperature > 100) is true, the ! operator
returns false. If it is false, the ! operator returns true. In the example, it is equivalent to
asking “is the temperature not greater than 100?”

Table 4-9 shows a truth table for the ! operator.

Program 4-18 performs the same task as Program 4-17. The if statement, however, uses
the ! operator to determine if the user does not make at least $35,000 or has not been on
the job more than five years.

Table 4-9

Expression Value of the Expression
!true false (0)

!false true (1)

Program 4-18

 1 // This program asks the user for his or her annual income and
 2 // the number years the user been employed at the current
 3 // job. The ! operator reverses the logic of the expression
 4 // in the if/else statement.
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double income; // Annual income
11 int years; // Years at the current job
12
13 // Get the annual income
14 cout << "What is your annual income? ";
15 cin >> income;
16
17 // Get the number of years at the current job.
18 cout << "How many years have you worked at "
19 << "your current job? ";
20 cin >> years;
21
22 // Determine the user's loan qualifications.

4.9 Logical Operators 201

The output of Program 4-18 is the same as Program 4-17.

Precedence and Associativity of Logical Operators
Table 4-10 shows the precedence of C++’s logical operators, from highest to lowest.

The ! operator has a higher precedence than many of the C++ operators. To avoid an
error, you should always enclose its operand in parentheses unless you intend to apply it
to a variable or a simple expression with no other operators. For example, consider the
following expressions:

!(x > 2)
!x > 2

The first expression applies the ! operator to the expression x > 2. It is asking “is x not
greater than 2?” The second expression, however, applies the ! operator to x only. It is
asking “is the logical negation of x greater than 2?” Suppose x is set to 5. Since 5 is non-
zero, it would be considered true, so the ! operator would reverse it to false, which is 0.
The > operator would then determine if 0 is greater than 2. To avoid a catastrophe like
this, always use parentheses!

The && and || operators rank lower in precedence than the relational operators, so prece-
dence problems are less likely to occur. If you feel unsure, however, it doesn’t hurt to use
parentheses anyway.

(a > b) && (x < y) is the same as a > b && x < y
(x == y) || (b > a) is the same as x == y || b > a

The logical operators have left-to-right associativity. In the following expression, a < b is
evaluated before y == z.

a < b || y == z

23 if (!(income >= 35000 || years > 5))
24 {
25 cout << "You must earn at least $35,000 or have\n";
26 cout << "been employed for more than 5 years.\n";
27 }
28 else
29 cout << "You qualify.\n";
30 return 0;
31 }

Table 4-10

Logical Operators in Order of Precedence
!
&&
||

202 Chapter 4 Making Decisions

In the following expression, y == z is evaluated first, however, because the && operator has
higher precedence than ||.

a < b || y == z && m > j

The expression is equivalent to

(a < b) || ((y == z) && (m > j))

4.10 Checking Numeric Ranges with Logical Operators

CONCEPT: Logical operators are effective for determining whether a number is in or
out of a range.

When determining whether a number is inside a numeric range, it’s best to use the &&
operator. For example, the following if statement checks the value in x to determine
whether it is in the range of 20 through 40:

if (x >= 20 && x <= 40)
 cout << x << " is in the acceptable range.\n";

The expression in the if statement will be true only when x is both greater than or equal
to 20 AND less than or equal to 40. x must be within the range of 20 through 40 for this
expression to be true.

When determining whether a number is outside a range, the || operator is best to use.
The following statement determines whether x is outside the range of 20 to 40:

if (x < 20 || x > 40)
 cout << x << " is outside the acceptable range.\n";

It’s important not to get the logic of these logical operators confused. For example, the fol-
lowing if statement would never test true:

if (x < 20 && x > 40)
 cout << x << " is outside the acceptable range.\n";

Obviously, x cannot be less than 20 and at the same time greater than 40.

Checkpoint
4.20 What is the disadvantage of using the && logical operator in Program 4-16 instead

of the nested if statement in Program 4-11?

4.21 The following truth table shows various combinations of the values true and
false connected by a logical operator. Complete the table by indicating if the
result of such a combination is TRUE or FALSE.

NOTE: C++ does not allow you to check numeric ranges with expressions such as
5 < x < 20. Instead, you must use a logical operator to connect two relational
expressions, as previously discussed.

4.11 Focus on Software Engineering: Validating User Input 203

4.22 Assume the variables a = 2, b = 4, and c = 6. Indicate by circling the T or F if
each of the following conditions is true or false:

a == 4 || b > 2 T F
6 <= c && a > 3 T F
1 != b && c != 3 T F
a >= -1 || a <= b T F
!(a > 2) T F

4.23 Write an if statement that prints the message “The number is valid” if the vari-
able speed is within the range 0 through 200.

4.24 Write an if statement that prints the message “The number is not valid” if the
variable speed is outside the range 0 through 200.

4.11 Focus on Software Engineering: Validating User Input

CONCEPT: As long as the user of a program enters bad input, the program will
produce bad output. Programs should be written to filter out bad input.

Perhaps the most famous saying of the computer world is “garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure gar-
bage does not go into your programs. Input validation is the process of inspecting data given
to a program by the user and determining if it is valid. A good program should give clear
instructions about the kind of input that is acceptable, and not assume the user has followed
those instructions. Here are just a few examples of input validations performed by programs:

• Numbers are checked to ensure they are within a range of possible values. For
example, there are 168 hours in a week. It is not possible for a person to be at
work longer than 168 hours in one week.

• Values are checked for their “reasonableness.” Although it might be possible for
a person to be at work for 168 hours per week, it is not probable.

• Items selected from a menu or other sets of choices are checked to ensure they are
available options.

• Variables are checked for values that might cause problems, such as division by zero.

Program 4-19 is a modification of Program 4-13, the test scoring program. It rejects any
test score less than 0 or greater than 100.

Logical Expression Result (true or false)
true && false
true && true
false && true
false && false
true || false
true || true
false || true
false || false
!true
!false

204 Chapter 4 Making Decisions

Program 4-19

 1 // This program uses an if/else if statement to assign a
 2 // letter grade (A, B, C, D, or F) to a numeric test score.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int testScore; // To hold a numeric test score
 9
10 // Get the numeric test score.
11 cout << "Enter your numeric test score and I will\n";
12 cout << "tell you the letter grade you earned: ";
13 cin >> testScore;
14
15 if (testScore < 0 || testScore > 100) //Input validation
16 {
17 // An invalid score was entered.
18 cout << testScore << " is an invalid score.\n";
19 cout << "Run the program again and enter a value\n";
20 cout << "in the range of 0 to 100.\n";
21 }
22 else
23 {
24 // Determine the letter grade.
25 if (testScore < 60)
26 cout << "Your grade is F.\n";
27 else if (testScore < 70)
28 cout << "Your grade is D.\n";
29 else if (testScore < 80)
30 cout << "Your grade is C.\n";
31 else if (testScore < 90)
32 cout << "Your grade is B.\n";
33 else if (testScore <= 100)
34 cout << "Your grade is A.\n";
35 }
36
37 return 0;
38 }

Program Output with Example Input Shown in Bold
Enter your test score and I will tell you
the letter grade you earned: –12 [Enter]
-12 is an invalid score.
Run the program again and enter a value
in the range of 0 to 100.

Program Output with Example Input Shown in Bold
Enter your test score and I will tell you
the letter grade you earned: 81 [Enter]
Your grade is B

4.12 More About Variable Definitions and Scope 205

4.12 More About Variable Definitions and Scope

CONCEPT: The scope of a variable is limited to the block in which it is defined.

C++ allows you to create variables almost anywhere in a program. Program 4-20 is a modi-
fication of Program 4-17, which determines if the user qualifies for a loan. The definitions of
the variables income and years have been moved to later points in the program.

It is a common practice to define all of a function’s variables at the top of the function.
Sometimes, especially in longer programs, it’s a good idea to define variables near the part
of the program where they are used. This makes the purpose of the variable more evident.

Recall from Chapter 2 that the scope of a variable is defined as the part of the program
where the variable may be used.

In Program 4-20, the scope of the income variable is the part of the program in lines 9
through 26. The scope of the years variable is the part of the program in lines 15 through 26.

The variables income and years are defined inside function main’s braces. Variables
defined inside a set of braces have local scope or block scope. They may only be used in
the part of the program between their definition and the block’s closing brace.

Program 4-20

 1 // This program demonstrates late variable definition
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // Get the annual income.
 8 cout << "What is your annual income? ";
 9 double income; // Variable definition
10 cin >> income;
11
12 // Get the number of years at the current job.
13 cout << "How many years have you worked at "
14 << "your current job? ";
15 int years; // Variable definition
16 cin >> years;
17
18 // Determine the user's loan qualifications.
19 if (income >= 35000 || years > 5)
20 cout << "You qualify.\n";
21 else
22 {
23 cout << "You must earn at least $35,000 or have\n";
24 cout << "been employed for more than 5 years.\n";
25 }
26 return 0;
27 }

206 Chapter 4 Making Decisions

You may define variables inside any block. For example, look at Program 4-21. This version
of the loan program has the variable years defined inside the block of the if statement. The
scope of years is the part of the program in lines 17 through 26.

Notice the scope of years is only within the block where it is defined. The variable is not
visible before its definition or after the closing brace of the block. This is true of any vari-
able defined inside a set of braces.

Program 4-21

 1 // This program demonstrates a variable defined in an inner block.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // Get the annual income.
 8 cout << "What is your annual income? ";
 9 double income; //variable definition
10 cin >> income;
11
12 if (income >= 35000)
13 {
14 // Get the number of years at the current job.
15 cout << "How many years have you worked at "
16 << "your current job? ";
17 int years; //variable definition
18 cin >> years;
19
20 if (years > 5)
21 cout << "You qualify.\n";
22 else
23 {
24 cout << "You must have been employed for\n";
25 cout << "more than 5 years to qualify.\n";
26 }
27 }
28 else
29 {
30 cout << "You must earn at least $35,000 to\n";
31 cout << "qualify.\n";
32 }
33 return 0;
34 }

NOTE: When a program is running and it enters the section of code that constitutes a
variable’s scope, it is said that the variable comes into scope. This simply means the
variable is now visible and the program may reference it. Likewise, when a variable leaves
scope, it may no longer be used.

4.12 More About Variable Definitions and Scope 207

Variables with the Same Name
When a block is nested inside another block, a variable defined in the inner block may
have the same name as a variable defined in the outer block. As long as the variable in the
inner block is visible, however, the variable in the outer block will be hidden. This is illus-
trated by Program 4-22.

Program 4-22 has two separate variables named number. The cin and cout statements in
the inner block (belonging to the if statement) can only work with the number variable
defined in that block. As soon as the program leaves that block, the inner number goes out
of scope, revealing the outer number variable.

Program 4-22

 1 // This program uses two variables with the name number.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // Define a variable named number.
 8 int number;
 9
10 cout << "Enter a number greater than 0: ";
11 cin >> number;
12 if (number > 0)
13 {
14 int number; // Another variable named number.
15 cout << "Now enter another number: ";
16 cin >> number;
17 cout << "The second number you entered was ";
18 cout << number << endl;
19 }
20 cout << "Your first number was " << number << endl;
21 return 0;
22 }

Program Output with Example Input Shown in Bold
Enter a number greater than 0: 2 [Enter]
Now enter another number: 7 [Enter]
The second number you entered was 7
Your first number was 2

WARNING! Although it’s perfectly acceptable to define variables inside nested blocks,
you should avoid giving them the same names as variables in the outer blocks. It’s too easy
to confuse one variable with another.

208 Chapter 4 Making Decisions

Checkpoint
4.25 The following program skeleton asks the user for two numbers and then multi-

plies them. The first should be negative and the second should be positive. Write
the input validation code for both numbers.

#include <iostream>
using namespace std;

int main()
{

int first, second, result;

cout << "Enter a negative integer: ";
cin >> first;
cout << "Now enter a positive integer: ";
cin >> second;
//
// Write input validation code
//
result = first * second;
cout << first << " times " << second << " is "
 << result << endl;
return 0;

}

4.26 Find and fix the errors in the following program:

#include <iostream>
using namespace std;

int main()
{

cout << "This program calculates the area of a "
 << "rectangle. Enter the length: ";
cin >> length;
cout << "Enter the width: ";
cin >> width;
int length, width, area;
area = length * width;
cout << "The area is " << area << endl;
return 0;

}

4.27 What will the following program display if the user enters 40 for test1 and 30
for test2?

#include <iostream>
using namespace std;

int main()
{

cout << "Enter your first test score: ";
int test1;
cin >> test1;

4.13 Comparing Strings 209

cout << "Enter your second test score: ";
int test2;
cin >> test2;
int sum = test1 + test2;
if (sum > 50)
{

test1 += 10;
test2 += 10;
int sum = test1 + test2;

}
cout << "test 1: " << test1 << endl;
cout << "test 2: " << test2 << endl;
cout << "sum : " << sum << endl;
return 0;

}

4.13 Comparing Strings

CONCEPT: You must use the strcmp library function to compare C-strings.

The relational operators can be used to compare numbers, but not C-strings. Program 4-23
asks the user to enter two strings, stores them in arrays as C-strings, and incorrectly tries to
compare them using the equality operator.

Program 4-23

 1 // This program illustrates that you cannot compare C-strings
 2 // with relational operators. Although it appears to test the
 3 // strings for equality, that is NOT what happens.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 40;
10 char firstString[SIZE], secondString[SIZE];
11
12 // Get two strings.
13 cout << "Enter a string: ";
14 cin.getline(firstString, SIZE);
15 cout << "Enter another string: ";
16 cin.getline(secondString, SIZE);
17
18 // Can you use the == operator to compare them?
19 if (firstString == secondString)
20 cout << "You entered the same string twice.\n";
21 else
22 cout << "The strings are not the same.\n";
23 return 0;
24 }

(program output continues)

210 Chapter 4 Making Decisions

Although two identical strings may be entered, the program will always report they are
not the same. This is because of the way C++ handles C-strings. When you use the name
of an array or a string literal, you are actually working with the memory address of the
array or literal. In line 19, the following statement is comparing the memory addresses of
firstString and secondString:

if (firstString == secondString)

Because the addresses of firstString and secondString are not the same (the two
arrays are not located in the same place in memory), the comparison will always be false.

The strcmp Function
In C++, C-string comparisons are done with the library function strcmp. To use the strcmp
function, you must include the cstring header file. Here is the function’s general format:

The function compares the contents of string1 with the contents of string2 and returns
one of the following values:

• If the two strings are identical, strcmp returns 0.
• If string1 < string2, strcmp returns a negative number.
• If string1 > string2, strcmp returns a positive number.

In general, strcmp compares the ASCII codes of each character in the two strings. If it
goes all the way through both strings finding no characters different, it returns 0. As soon
as it finds two corresponding characters that have different codes, however, it stops the
comparison. If the ASCII code for the character in string2 is higher than the code in
string1, it returns a negative number. But, if the code in string2 is lower than the code
in string1, a positive number is returned. Here is the format of an if/else statement
using strcmp to determine if two strings are equal:

if (strcmp(string1, string2) == 0)
statement; // The strings are the same

else
statement; // The strings are NOT the same

Program 4-23, which incorrectly tested two C-strings with a relational operator, can be
correctly rewritten with the strcmp function, as shown in Program 4-24.

Program Output with Example Input Shown in Bold
Enter a string: Alfonso [Enter]
Enter another string: Alfonso [Enter]
The strings are not the same.

 strcmp(string1, string2);

TIP: It might help you to think of strcmp as using inverted logic: If the two strings are
equal, strcmp returns false (zero). If the two strings are not equal, strcmp returns true
(a nonzero value).

Program 4-23 (continued)

4.13 Comparing Strings 211

The function strcmp is case-sensitive when it compares the two strings. If the user enters
“Dog” and “dog” in Program 4-24, it will report they are not the same. Most compilers
provide nonstandard versions of strcmp that perform case-insensitive comparisons. For
instance, Borland C++ has the stricmp function. It works identically to strcmp except
the case of the characters is ignored.

Program 4-25 is a more practical example of how strcmp can be used. It asks the user to
enter the part number of the stereo they wish to purchase. The part number contains num-
bers, letters, and a hyphen, so it must be stored as a string. Once the user enters the part
number, the program displays the price of the stereo.

Program 4-24

 1 // This program correctly tests two C-strings for equality
 2 // with the strcmp function.
 3 #include <iostream>
 4 #include <cstring>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 40;
10 char firstString[SIZE], secondString[SIZE];
11
12 // Get two strings
13 cout << "Enter a string: ";
14 cin.getline(firstString, SIZE);
15 cout << "Enter another string: ";
16 cin.getline(secondString, SIZE);
17
18 // Compare them with strcmp.
19 if (strcmp(firstString, secondString) == 0)
20 cout << "You entered the same string twice.\n";
21 else
22 cout << "The strings are not the same.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a string: Alfonso [Enter]
Enter another string: Alfonso [Enter]
You entered the same string twice.

Program 4-25

 1 // This program uses strcmp to compare the string entered
 2 // by the user with the valid stereo part numbers.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cstring>
 6 using namespace std;
 7

(program continues)

212 Chapter 4 Making Decisions

Using ! with strcmp
Some programmers prefer to use the logical NOT operator with strcmp when testing
strings for equality. Because 0 is considered logically false, the ! operator converts that
value to true. The expression !strcmp(string1, string2) will return true when both
strings are the same, and false when they are different. The two following statements per-
form the same operation:

if (strcmp(firstString, secondString) == 0)
if (!strcmp(firstString, secondString))

 8 int main()
 9 {
10 const double APRICE = 249.0, // Price A
11 BPRICE = 299.0; // Price B
12 const int SIZE = 9; // Array size
13 char partNum[SIZE]; // To hold the part number
14
15 // Get a part number from the user.
16 cout << "The stereo part numbers are:\n";
17 cout << "\tBoom Box, part number S147-29A\n";
18 cout << "\tShelf Model, part number S147-29B\n";
19 cout << "Enter the part number of the stereo you\n";
20 cout << "wish to purchase: ";
21 cin.width(SIZE); // Restrict input for code safety.
22 cin >> partNum;
23
24 // Set the numeric output formatting.
25 cout << fixed << showpoint << setprecision(2);
26
27 // Determine and display the correct price.
28 if (strcmp(partNum, "S147-29A") == 0)
29 cout << "The price is $" << APRICE << endl;
30 else if (strcmp(partNum, "S147-29B") == 0)
31 cout << "The price is $" << BPRICE << endl;
32 else
33 cout << partNum << " is not a valid part number.\n";
34 return 0;
35 }

Program Output with Example Input Shown in Bold
The stereo part numbers are:
 Boom Box, part number S147-29A
 Shelf Model, part number S147-29B
Enter the part number of the stereo you
wish to purchase: S147-29B [Enter]
The price is $299.00

Program 4-25 (continued)

4.13 Comparing Strings 213

Sorting Strings
Programs are frequently written to print alphabetically sorted lists of items. For example,
consider a department store computer system that keeps customers’ names and addresses
in a file. The names do not appear in the file alphabetically, but in the order the operator
entered them. If a list were to be printed in this order, it would be very difficult to locate
any specific name. The list would have to be sorted before it was printed.

Because strcmp’s return value indicates which of the two strings is higher on the ASCII
chart, it can be used in programs that sort strings. Program 4-26 asks the user to enter two
names. Then it prints the names alphabetically.

Program 4-26

 1 // This program uses the return value of strcmp to alphabetically
 2 // sort two strings entered by the user.
 3 #include <iostream>
 4 #include <cstring>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 30;
10 char name1[SIZE], name2[SIZE];
11
12 // Get the first name.
13 cout << "Enter a name (last name first): ";
14 cin.getline(name1, SIZE);
15
16 // Get the second name.
17 cout << "Enter another name: ";
18 cin.getline(name2, SIZE);
19
20 // Display them sorted in alphabetical order.
21 cout << "Here are the names sorted alphabetically:\n";
22 if (strcmp(name1, name2) < 0)
23 cout << name1 << endl << name2 << endl;
24 else if (strcmp(name1, name2) > 0)
25 cout << name2 << endl << name1 << endl;
26 else
27 cout << "You entered the same name twice!\n";
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter a name (last name first): Smith, Richard [Enter]
Enter another name: Jones, John [Enter]
Here are the names sorted alphabetically:
Jones, John
Smith, Richard

214 Chapter 4 Making Decisions

Checkpoint
4.28 Indicate whether the following strcmp function calls will return 0, a negative num-

ber, or a positive number. Refer to the ASCII table in Appendix A if necessary.
A) strcmp("ABC", "abc");

B) strcmp("Jill", "Jim");

C) strcmp("123", "ABC");

D) strcmp("Sammy", "Sally");

4.29 Complete the if statements in the following program skeleton.

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

const int SIZE = 20;
char iceCream[SIZE];

cout << "What flavor of ice cream do you like best? ";
cout << "Chocolate, Vanilla, or Pralines and Pecan? ";
cin.getline(iceCream, SIZE);
cout << "Here is the number of fat grams for a half ";
cout << "cup serving:\n";
//
// Finish the following if/else if statement
// so the program will select the ice cream entered
// by the user.
//
if (/* insert your code here */)

cout << "Chocolate: 9 fat grams.\n";
else if (/* insert your code here */)

cout << "Vanilla: 10 fat grams.\n";
else if (/* insert your code here */)

cout << "Pralines & Pecan: 14 fat grams.\n";
else

cout << "That's not one of our flavors!\n";
return 0;

}

4.14 The Conditional Operator

CONCEPT: You can use the conditional operator to create short expressions that
work like if/else statements.

The conditional operator is powerful and unique. It provides a shorthand method of
expressing a simple if/else statement. The operator consists of the question-mark (?)
and the colon(:). Its format is:

expression ? expression : expression;

4.14 The Conditional Operator 215

Here is an example of a statement using the conditional operator:

x < 0 ? y = 10 : z = 20;

The statement above is called a conditional expression and consists of three sub-expressions
separated by the ? and : symbols. The expressions are x < 0, y = 10, and z = 20, as illus-
trated here:

The conditional expression above performs the same operation as the following if/else
statement:

if (x < 0)
 y = 10;
else
 z = 20;

The part of the conditional expression that comes before the question mark is the expression
to be tested. It’s like the expression in the parentheses of an if statement. If the expression is
true, the part of the statement between the ? and the : is executed. Otherwise, the part after
the : is executed. Figure 4-10 illustrates the roles played by the three sub-expressions.

If it helps, you can put parentheses around the sub-expressions, as in the following:

(x < 0) ? (y = 10) : (z = 20);

Using the Value of a Conditional Expression
Remember, in C++ all expressions have a value, and this includes the conditional expres-
sion. If the first sub-expression is true, the value of the conditional expression is the value
of the second sub-expression. Otherwise it is the value of the third sub-expression. Here is
an example of an assignment statement using the value of a conditional expression:

a = x > 100 ? 0 : 1;

x < 0 ? y = 10 : z = 20;

NOTE: Since it takes three operands, the conditional operator is considered a
ternary operator.

Figure 4-10

x < 0 ? y = 10 : z = 20;

1st Expression:
Expression to
be tested.

3rd Expression:
Executes if the 1st
expression is false.

2nd Expression:
Executes if the 1st
expression is true.

216 Chapter 4 Making Decisions

The value assigned to a will be either 0 or 1, depending upon whether x is greater than
100. This statement could be expressed as the following if/else statement:

if (x > 100)
 a = 0;
else
 a = 1;

Program 4-27 can be used to help a consultant calculate her charges. Her rate is $50.00
per hour, but her minimum charge is for five hours. The conditional operator is used in a
statement that ensures the number of hours does not go below five.

Here is the statement in line 15, with the conditional expression:

hours = hours < 5 ? 5 : hours;

If the value in hours is less than 5, then 5 is stored in hours. Otherwise hours is assigned
the value it already has. hours will not have a value less than 5 when it is used in the next
statement, which calculates the consultant’s charges.

As you can see, the conditional operator gives you the ability to pack decision-making
power into a concise line of code. With a little imagination it can be applied to many other
programming problems. For instance, consider the following statement:

cout << "Your grade is: " << (score < 60 ? "Fail." : "Pass.");

Program 4-27

 1 // This program calculates a consultant's charges at $50
 2 // per hour, for a minimum of 5 hours. The ?: operator
 3 // adjusts hours to 5 if less than 5 hours were worked.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const double PAY_RATE = 50.0;
11 double hours, charges;
12
13 cout << "How many hours were worked? ";
14 cin >> hours;
15 hours = hours < 5 ? 5 : hours; //conditional operator
16 charges = PAY_RATE * hours;
17 cout << fixed << showpoint << setprecision(2);
18 cout << "The charges are $" << charges << endl;
19 return 0;
20 }

Program Output with Example Input Shown in Bold
How many hours were worked? 10 [Enter]
The charges are $500.00

Program Output with Example Input Shown in Bold
How many hours were worked? 2 [Enter]
The charges are $250.00

4.14 The Conditional Operator 217

If you were to use an if/else statement, the statement above would be written as follows:

if (score < 60)
cout << "Your grade is: Fail.";

else
cout << "Your grade is: Pass.";

Checkpoint
4.30 Rewrite the following if/else statements as conditional expressions:

A) if (x > y)
 z = 1;
else
 z = 20;

B) if (temp > 45)
 population = base * 10;
else
 population = base * 2;

C) if (hours > 40)
 wages *= 1.5;
else
 wages *= 1;

D) if (result >= 0)
 cout << "The result is positive\n";
else
 cout << "The result is negative.\n";

4.31 The following statements use conditional expressions. Rewrite each with an if/
else statement.
A) j = k > 90 ? 57 : 12;

B) factor = x >= 10 ? y * 22 : y * 35;

C) total += count == 1 ? sales : count * sales;

D) cout << (((num % 2) == 0) ? "Even\n" : "Odd\n");

4.32 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
 const int UPPER = 8, LOWER = 2;
 int num1, num2, num3 = 12, num4 = 3;

 num1 = num3 < num4 ? UPPER : LOWER;
 num2 = num4 > UPPER ? num3 : LOWER;
 cout << num1 << " " << num2 << endl;
 return 0;
}

NOTE: The parentheses are placed around the conditional expression because the <<
operator has higher precedence than the ?: operator. Without the parentheses, just the
value of the expression score < 60 would be sent to cout.

218 Chapter 4 Making Decisions

4.15 The switch Statement

CONCEPT: The switch statement lets the value of a variable or expression
determine where the program will branch.

A branch occurs when one part of a program causes another part to execute. The if/else
if statement allows your program to branch into one of several possible paths. It per-
forms a series of tests (usually relational) and branches when one of these tests is true. The
switch statement is a similar mechanism. It, however, tests the value of an integer expres-
sion and then uses that value to determine which set of statements to branch to. Here is
the format of the switch statement:

The first line of the statement starts with the word switch, followed by an integer expres-
sion inside parentheses. This can be either of the following:

• a variable of any of the integer data types (including char)
• an expression whose value is of any of the integer data types

On the next line is the beginning of a block containing several case statements. Each case
statement is formatted in the following manner:

 case ConstantExpression:
 // place one or more
 // statements here

After the word case is a constant expression (which must be of an integer type), followed
by a colon. The constant expression may be an integer literal or an integer named con-
stant. The case statement marks the beginning of a section of statements. The program
branches to these statements if the value of the switch expression matches that of the
case expression.

 switch (IntegerExpression)
 {
 case ConstantExpression:
 // place one or more
 // statements here

 case ConstantExpression:
 // place one or more
 // statements here

 // case statements may be repeated as many
 // times as necessary

 default:
 // place one or more
 // statements here
 }

WARNING! The expression of each case statement in the block must be unique.

4.15 The switch Statement 219

An optional default section comes after all the case statements. The program branches
to this section if none of the case expressions match the switch expression. So, it func-
tions like a trailing else in an if/else if statement.

Program 4-28 shows how a simple switch statement works.

The first case statement is case 'A':, the second is case 'B':, and the third is case
'C':. These statements mark where the program is to branch to if the variable choice
contains the values 'A', 'B', or 'C'. (Remember, character variables and literals are con-
sidered integers.) The default section is branched to if the user enters anything other
than A, B, or C.

NOTE: The expression following the word case must be an integer literal or constant. It
cannot be a variable, and it cannot be an expression such as x < 22 or n == 50.

Program 4-28

 1 // The switch statement in this program tells the user something
 2 // he or she already knows: the data just entered!
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char choice;
 9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12 switch (choice)
13 {
14 case 'A': cout << "You entered A.\n";
15 break;
16 case 'B': cout << "You entered B.\n";
17 break;
18 case 'C': cout << "You entered C.\n";
19 break;
20 default: cout << "You did not enter A, B, or C!\n";
21 }
22 return 0;
23 }

Program Output with Example Input Shown in Bold
Enter A, B, or C: B [Enter]
You entered B.

Program Output with Example Input Shown in Bold
Enter A, B, or C: F [Enter]
You did not enter A, B, or C!

220 Chapter 4 Making Decisions

Notice the break statements that are in the case 'A', case 'B', and case 'C' sections.

switch (choice)
{
 case 'A':cout << "You entered A.\n";
 break;
 case 'B':cout << "You entered B.\n";
 break;
 case 'C':cout << "You entered C.\n";
 break;
 default: cout << "You did not enter A, B, or C!\n";
}

The case statements show the program where to start executing in the block and the break
statements show the program where to stop. Without the break statements, the program
would execute all of the lines from the matching case statement to the end of the block.

Program 4-29 is a modification of Program 4-28, without the break statements.

NOTE: The default section (or the last case section, if there is no default) does not
need a break statement. Some programmers prefer to put one there anyway, for
consistency.

Program 4-29

 1 // The switch statement in this program tells the user something
 2 // he or she already knows: the data just entered!
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char choice;
 9
10 cout << "Enter A, B, or C: ";
11 cin >> choice;
12 // The following switch is
13 // missing its break statements!
14 switch (choice)
15 {
16 case 'A': cout << "You entered A.\n";
17 case 'B': cout << "You entered B.\n";
18 case 'C': cout << "You entered C.\n";
19 default: cout << "You did not enter A, B, or C!\n";
20 }
21 return 0;
22 }

Program Output with Example Input Shown in Bold
Enter A, B, or C: A [Enter]
You entered A.
You entered B.
You entered C.
You did not enter A, B, or C!

4.15 The switch Statement 221

Without the break statement, the program “falls through” all of the statements below the
one with the matching case expression. Sometimes this is what you want. Program 4-30
lists the features of three TV models a customer may choose from. The Model 100 has
remote control. The Model 200 has remote control and stereo sound. The Model 300 has
remote control, stereo sound, and picture-in-a-picture capability. The program uses a
switch statement with carefully omitted breaks to print the features of the selected model.

Program Output with Example Input Shown in Bold
Enter A, B, or C: C [Enter]
You entered C.
You did not enter A, B, or C!

Program 4-30

 1 // This program is carefully constructed to use the "fallthrough"
 2 // feature of the switch statement.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int modelNum; // Model number
 9
10 // Get a model number from the user.
11 cout << "Our TVs come in three models:\n";
12 cout << "The 100, 200, and 300. Which do you want? ";
13 cin >> modelNum;
14
15 // Display the model's features.
16 cout << "That model has the following features:\n";
17 switch (modelNum)
18 {
19 case 300: cout << "\tPicture-in-a-picture.\n";
20 case 200: cout << "\tStereo sound.\n";
21 case 100: cout << "\tRemote control.\n";
22 break;
23 default: cout << "You can only choose the 100,";
24 cout << "200, or 300.\n";
25 }
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 100 [Enter]
That model has the following features:

Remote control.
(program output continues)

222 Chapter 4 Making Decisions

Another example of how useful this “fall through” capability can be is when you want the
program to branch to the same set of statements for multiple case expressions. For
instance, Program 4-31 asks the user to select a grade of pet food. The available choices
are A, B, and C. The switch statement will recognize either upper or lowercase letters.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 200 [Enter]
That model has the following features:

Stereo sound.
Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 300 [Enter]
That model has the following features:

Picture-in-a-picture.
Stereo sound.
Remote control.

Program Output with Example Input Shown in Bold
Our TVs come in three models:
The 100, 200, and 300. Which do you want? 500 [Enter]
That model has the following features:
You can only choose the 100, 200, or 300.

Program 4-31

 1 // The switch statement in this program uses the "fall through"
 2 // feature to catch both uppercase and lowercase letters entered
 3 // by the user.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 char feedGrade;
10
11 // Get the desired grade of feed.
12 cout << "Our pet food is available in three grades:\n";
13 cout << "A, B, and C. Which do you want pricing for? ";
14 cin >> feedGrade;
15
16 // Display the price.
17 switch(feedGrade)
18 {
19 case 'a':
20 case 'A': cout << "30 cents per pound.\n";
21 break;

Program 4-30 (continued)

4.15 The switch Statement 223

When the user enters 'a' the corresponding case has no statements associated with it, so
the program falls through to the next case, which corresponds with 'A'.

case 'a':
case 'A': cout << "30 cents per pound.\n";
 break;

The same technique is used for 'b' and 'c'.

Using switch in Menu Systems
The switch statement is a natural mechanism for building menu systems. Recall that
Program 4-15 gives a menu to select which health club package the user wishes to pur-
chase. The program uses if/else if statements to determine which package the user has
selected and displays the calculated charges. Program 4-32 is a modification of that pro-
gram, using a switch statement instead of if/else if.

22 case 'b':
23 case 'B': cout << "20 cents per pound.\n";
24 break;
25 case 'c':
26 case 'C': cout << "15 cents per pound.\n";
27 break;
28 default: cout << "That is an invalid choice.\n";
29 }
30 return 0;
31 }

Program Output with Example Input Shown in Bold
Our pet food is available in three grades:
A, B, and C. Which do you want pricing for? b [Enter]
20 cents per pound.

Program Output with Example Input Shown in Bold
Our pet food is available in three grades:
A, B, and C. Which do you want pricing for? B [Enter]
20 cents per pound.

Program 4-32

 1 // This program displays a menu and asks the user to make a
 2 // selection. A switch statement determines which item
 3 // the user has chosen.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {

(program continues)

224 Chapter 4 Making Decisions

10 int choice; // Menu choice
11 int months; // Number of months
12 double charges; // Monthly charges
13
14 // Constants for membership rates
15 const double ADULT = 40.0;
16 const double SENIOR = 30.0;
17 const double CHILD = 20.0;
18
19 // Display the menu and get a choice.
20 cout << "\t\tHealth Club Membership Menu\n\n";
21 cout << "1. Standard Adult Membership\n";
22 cout << "2. Child Membership\n";
23 cout << "3. Senior Citizen Membership\n";
24 cout << "4. Quit the Program\n\n";
25 cout << "Enter your choice: ";
26 cin >> choice;
27
28 // Set the numeric output formatting.
29 cout << fixed << showpoint << setprecision(2);
30
31 // Respond to the user's menu selection.
32 switch (choice)
33 {
34 case 1:
35 cout << "For how many months? ";
36 cin >> months;
37 charges = months * ADULT;
38 cout << "The total charges are $" << charges << endl;
39 break;
40
41 case 2:
42 cout << "For how many months? ";
43 cin >> months;
44 charges = months * CHILD;
45 cout << "The total charges are $" << charges << endl;
46 break;
47
48 case 3:
49 cout << "For how many months? ";
50 cin >> months;
51 charges = months * SENIOR;
52 cout << "The total charges are $" << charges << endl;
53 break;
54
55 case 4:
56 cout << "Program ending.\n";
57 break;
58

Program 4-32 (continued)

4.15 The switch Statement 225

Checkpoint
4.33 Explain why you cannot convert the following if/else if statement into a

switch statement.

if (temp == 100)
 x = 0;
else if (population > 1000)
 x = 1;
else if (rate < .1)
 x = -1;

4.34 What is wrong with the following switch statement?

switch (temp)
{
 case temp < 0 : cout << "Temp is negative.\n";
 break;
 case temp == 0: cout << "Temp is zero.\n";
 break;
 case temp > 0 : cout << "Temp is positive.\n";
 break;
}

4.35 What will the following program display?

#include <iostream>
using namespace std;

int main()
{
 int funny = 7, serious = 15;

 funny = serious * 2;
 switch (funny)

59 default:
60 cout << "The valid choices are 1 through 4. Run the\n";
61 cout << "program again and select one of those.\n";
62 }
63
64 return 0;
65 }

Program Output with Example Input Shown in Bold
Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 2 [Enter]
For how many months? 6 [Enter]
The total charges are $120.00

226 Chapter 4 Making Decisions

 { case 0 : cout << "That is funny.\n";
 break;
 case 30: cout << "That is serious.\n";
 break;
 case 32: cout << "That is seriously funny.\n";
 break;
 default: cout << funny << endl;
 }
 return 0;
}

4.36 Complete the following program skeleton by writing a switch statement that dis-
plays “one” if the user has entered 1, “two” if the user has entered 2, and “three”
if the user has entered 3. If a number other than 1, 2, or 3 is entered, the program
should display an error message.

#include <iostream>
using namespace std;

int main()
{
 int userNum;

 cout << "Enter one of the numbers 1, 2, or 3: ";
 cin >> userNum;
 //
 // Write the switch statement here.
 //
 return 0;
}

4.37 Rewrite the following program. Use a switch statement instead of the if/else
if statement.

#include <iostream>
using namespace std;

int main()
{
 int selection;

 cout << "Which formula do you want to see?\n\n";
 cout << "1. Area of a circle\n";
 cout << "2. Area of a rectangle\n";
 cout << "3. Area of a cylinder\n"
 cout << "4. None of them!\n";
 cin >> selection;
 if (selection == 1)
 cout << "Pi times radius squared\n";
 else if (selection == 2)
 cout << "Length times width\n";
 else if (selection == 3)
 cout << "Pi times radius squared times height\n";
 else if (selection == 4)
 cout << "Well okay then, good bye!\n";
 else
 cout << "Not good with numbers, eh?\n";
 return 0;
}

4.16 Testing for File Open Errors 227

4.16 Testing for File Open Errors

CONCEPT: When opening a file you can test the file stream object to determine if an
error occurred.

In Chapter 3 you were introduced to file operations and saw that the file stream member
function open is used to open a file. Sometimes the open member function will not work.
For example, the following code will fail if the file info.txt does not exist:

ifstream inputFile;
inputFile.open("info.txt");

You can determine when a file has failed to open by testing the value of the file stream
object with the ! operator. The following program segment attempts to open the file
customers.txt. If the file cannot be opened, an error message is displayed:

ifstream inputFile;
inputFile.open("customers.txt");
if (!inputFile)
{

cout << "Error opening file.\n";
}

Another way to detect a failed attempt to open a file is with the fail member function, as
shown in the following code:

ifstream inputFile;
inputFile.open("customers.txt");
if (inputFile.fail())
{

cout << "Error opening file.\n";
}

The fail member function returns true when an attempted file operation is unsuccessful.
When using file I/O, you should always test the file stream object to make sure the file was
opened successfully. If the file could not be opened, the user should be informed and
appropriate action taken by the program. For instance, the following program segment
attempts to open the file customer.txt for output. In the event the file cannot be opened,
the user is informed and given some clue as to why.

ofstream outputFile;
outputFile.open("customer.txt");
if (outputFile.fail())
{

cout << "The customer.txt file could not be opened.\n";
cout << "Perhaps the disk is full or you do not have\n";
cout << "sufficient privileges. Contact your system\n";
cout << "manager for assistance.\n";

}

Case Study on CD: See the Sales Commission Case Study on the Student CD.

228 Chapter 4 Making Decisions

Review Questions and Exercises

Short Answer

1. Describe the difference between the if/else if statement and a series of if
statements.

2. In an if/else if statement, what is the purpose of a trailing else?

3. What is a flag and how does it work?

4. Can an if statement test expressions other than relational expressions? Explain.

5. Briefly describe how the && operator works.

6. Briefly describe how the || operator works.

7. Why are the relational operators called relational?

8. Why do most programmers indent the conditionally executed statements in a decision
structure?

Fill-in-the-Blank

9. An expression using the greater-than, less-than, greater-than-or-equal to, less-than-or-
equal-to, equal, or not-equal to operator is called a(n) __________ expression.

10. A relational expression is either __________ or __________.

11. The value of a relational expression is 0 if the expression is __________ or 1 if the
expression is __________.

12. The if statement regards an expression with the value 0 as __________.

13. The if statement regards an expression with a nonzero value as __________.

14. For an if statement to conditionally execute a group of statements, the statements
must be enclosed in a set of __________.

15. In an if/else statement, the if part executes its statement or block if the expression
is __________, and the else part executes its statement or block if the expression is
__________.

16. The trailing else in an if/else if statement has a similar purpose as the
__________ section of a switch statement.

17. The if/else if statement is actually a form of the __________ if statement.

18. If the sub-expression on the left of the __________ logical operator is false, the right
sub-expression is not checked.

19. If the sub-expression on the left of the __________ logical operator is true, the right
sub-expression is not checked.

20. The __________ logical operator has higher precedence than the other logical operators.

21. The logical operators have __________ associativity.

22. The __________ logical operator works best when testing a number to determine if it
is within a range.

23. The __________ logical operator works best when testing a number to determine if it
is outside a range.

Review Questions and Exercises 229

24. A variable with __________ scope is only visible when the program is executing in the
block containing the variable’s definition.

25. The strcmp function is used to compare __________.

26. An expression using the conditional operator is called a(n) __________ expression.

27. The expression that follows the switch statement must have a(n) __________ value.

28. The expression following a case statement must be a(n) __________ __________.

29. A program will “fall through” a case section if it is missing the __________ statement.

30. What value will be stored in the variable t after each of the following statements executes?

A) t = (12 > 1);__________

B) t = (2 < 0);__________

C) t = (5 == (3 * 2));__________

D) t = (5 == 5);__________

Algorithm Workbench

31. Write an if statement that assigns 100 to x when y is equal to 0.

32. Write an if/else statement that assigns 0 to x when y is equal to 10. Otherwise it
should assign 1 to x.

33. Using the following chart, write an if/else if statement that assigns .10, .15, or .20
to commission, depending on the value in sales.

34. Write an if statement that sets the variable hours to 10 when the flag variable
minimum is set.

35. Write nested if statements that perform the following tests: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

36. Write an if statement that prints the message “The number is valid” if the variable
grade is within the range 0 through 100.

37. Write an if statement that prints the message “The number is valid” if the variable
temperature is within the range –50 through 150.

38. Write an if statement that prints the message “The number is not valid” if the vari-
able hours is outside the range 0 through 80.

39. Write an if/else statement that displays the strings in the arrays title1 and
title2 in alphabetical order.

40. Convert the following if/else if statement into a switch statement:

if (choice == 1)
{
 cout << fixed << showpoint << setprecision(2);

Sales Commission Rate

Up to $10,000
$10,000 to $15,000
Over $15,000

10%
15%
20%

230 Chapter 4 Making Decisions

}
else if (choice == 2 || choice == 3)
{
 cout << fixed << showpoint << setprecision(4);
}
else if (choice == 4)
{
 cout << fixed << showpoint << setprecision(6);
}
else
{
 cout << fixed << showpoint << setprecision(8);
}

41. Match the conditional expression with the if/else statement that performs the same
operation.

A) q = x < y ? a + b : x * 2;

B) q = x < y ? x * 2 : a + b;

C) x < y ? q = 0 : q = 1;

____ if (x < y)
 q = 0;
 else
 q = 1;

____ if (x < y)
 q = a + b;
 else
 q = x * 2;

____ if (x < y)
 q = x * 2;
 else
 q = a + b;

True or False
42. T F The = operator and the == operator perform the same operation.
43. T F A variable defined in an inner block may not have the same name as a vari-

able defined in the outer block.
44. T F A conditionally executed statement should be indented one level from the if

statement.
45. T F All lines in a block should be indented one level.
46. T F It’s safe to assume that all uninitialized variables automatically start with 0 as

their value.
47. T F When an if statement is nested in the if part of another statement, the only

time the inner if is executed is when the expression of the outer if is true.
48. T F When an if statement is nested in the else part of another statement, as in

an if/else if, the only time the inner if is executed is when the expression
of the outer if is true.

Review Questions and Exercises 231

49. T F The scope of a variable is limited to the block in which it is defined.
50. T F Strings may be directly compared by using the == operator.
51. T F x != y is the same as (x > y || x < y)
52. T F y < x is the same as x >= y
53. T F x >= y is the same as (x > y && x = y)

Assume the variables x = 5, y = 6, and z = 8. Indicate by circling the T or F whether each
of the following conditions is true or false:
54. T F x == 5 || y > 3
55. T F 7 <= x && z > 4
56. T F 2 != y && z != 4
57. T F x >= 0 || x <= y

Find the Errors

Each of the following programs has errors. Find as many as you can.

58. // This program averages 3 test scores.
// It uses the variable perfectScore as a flag.
include <iostream>
using namespace std;

int main()
{

cout << "Enter your 3 test scores and I will ";
 << "average them:";
int score1, score2, score3,
cin >> score1 >> score2 >> score3;
double average;
average = (score1 + score2 + score3) / 3.0;
if (average = 100);

 perfectScore = true; // Set the flag variable
cout << "Your average is " << average << endl;
bool perfectScore;
if (perfectScore);
{

cout << "Congratulations!\n";
cout << "That's a perfect score.\n";
cout << "You deserve a pat on the back!\n";
return 0;

}

59. // This program divides a user-supplied number by another
// user-supplied number. It checks for division by zero.
#include <iostream>
using namespace std;

int main()
{

double num1, num2, quotient;

cout << "Enter a number: ";
cin >> num1;
cout << "Enter another number: ";

232 Chapter 4 Making Decisions

cin >> num2;
if (num2 == 0)

cout << "Division by zero is not possible.\n";
cout << "Please run the program again ";
cout << "and enter a number besides zero.\n";

else
quotient = num1 / num2;
cout << "The quotient of " << num1 <<
cout << " divided by " << num2 << " is ";
cout << quotient << endl;

return 0;
}

60. // This program uses an if/else if statement to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>
using namespace std;

int main()
{

int testScore;

cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";
cin >> testScore;
if (testScore < 60)

cout << "Your grade is F.\n";
else if (testScore < 70)

cout << "Your grade is D.\n";
else if (testScore < 80)

cout << "Your grade is C.\n";
else if (testScore < 90)

cout << "Your grade is B.\n";
else

cout << "That is not a valid score.\n";
else if (testScore <= 100)

cout << "Your grade is A.\n";
return 0;

}

61. // This program tests two strings for equality.
#include <iostream>
using namespace std;

int main()
{

const int SIZE = 40;
char string1[SIZE], string2[SIZE];

cout << "Enter a string: ";
cin.getline(string1, 80);
cout << "Enter another string: ";
cin.getline(string2, 80);
if (string1 == string2)

cout << "The strings are the same.\n";
else

Review Questions and Exercises 233

cout << "The strings are not the same.\n";
return 0;

}

62. // This program uses a switch-case statement to assign a
// letter grade (A, B, C, D, or F) to a numeric test score.
#include <iostream>
using namespace std;

int main()
{

double testScore;
cout << "Enter your test score and I will tell you\n";
cout << "the letter grade you earned: ";
cin >> testScore;
switch (testScore)
{

case (testScore < 60.0):
cout << "Your grade is F.\n";
break;

case (testScore < 70.0):
cout << "Your grade is D.\n";
break;

case (testScore < 80.0):
cout << "Your grade is C.\n";
break;

case (testScore < 90.0):
cout << "Your grade is B.\n";
break;

case (testScore <= 100.0):
cout << "Your grade is A.\n";
break;

default:
cout << "That score isn't valid\n";

return 0;
}

63. The following statement should determine if x is not greater than 20. What is wrong
with it?

if (!x > 20)

64. The following statement should determine if count is within the range of 0 through
100. What is wrong with it?

if (count >= 0 || count <= 100)

65. The following statement should determine if count is outside the range of 0 through
100. What is wrong with it?

if (count < 0 && count > 100)

66. The following statement should assign 0 to z if a is less than 10, otherwise it should
assign 7 to z. What is wrong with it?

z = (a < 10) : 0 ? 7;

234 Chapter 4 Making Decisions

Programming Challenges
1. Minimum/Maximum

Write a program that asks the user to enter two numbers. The program should use the
conditional operator to determine which number is the smaller and which is the larger.

2. Roman Numeral Converter

Write a program that asks the user to enter a number within the range of 1 through
10. Use a switch statement to display the Roman numeral version of that number.

Input Validation: Do not accept a number less than 1 or greater than 10.

3. Magic Dates

The date June 10, 1960 is special because when we write it in the following format,
the month times the day equals the year.

6/10/60

Write a program that asks the user to enter a month (in numeric form), a day, and a
two-digit year. The program should then determine whether the month times the day
is equal to the year. If so, it should display a message saying the date is magic. Other-
wise it should display a message saying the date is not magic.

4. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that
asks for the length and width of two rectangles. The program should tell the user
which rectangle has the greater area, or if the areas are the same.

5. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The
BMI is often used to determine whether a person with a sedentary lifestyle is over-
weight or underweight for his or her height. A person’s BMI is calculated with the fol-
lowing formula:

BMI = weight × 703 / height2

where weight is measured in pounds and height is measured in inches. The program
should display a message indicating whether the person has optimal weight, is under-
weight, or is overweight. A sedentary person’s weight is considered to be optimal if his
or her BMI is between 18.5 and 25. If the BMI is less than 18.5, the person is consid-
ered to be underweight. If the BMI value is greater than 25, the person is considered
to be overweight.

6. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you
know the amount of mass that an object has, you can calculate its weight, in newtons,
with the following formula:

Weight = mass × 9.8

Review Questions and Exercises 235

Write a program that asks the user to enter an object’s mass, and then calculates and
displays its weight. If the object weighs more than 1,000 newtons, display a message
indicating that it is too heavy. If the object weighs less than 10 newtons, display a
message indicating that the object is too light.

7. Time Calculator

Write a program that asks the user to enter a number of seconds.

• There are 60 seconds in a minute. If the number of seconds entered by the user is
greater than or equal to 60, the program should display the number of minutes in
that many seconds.

• There are 3,600 seconds in an hour. If the number of seconds entered by the user
is greater than or equal to 3,600, the program should display the number of hours
in that many seconds.

• There are 86,400 seconds in a day. If the number of seconds entered by the user is
greater than or equal to 86,400, the program should display the number of days
in that many seconds.

8. Sorted Names

Write a program that asks the user to enter three names, and then displays the names
sorted in alphabetical order. Assume that none of the names are the same. For exam-
ple, if the user entered “Charlie,” “Leslie,” and “Andy,” the program would display:

Andy
Charlie
Leslie

9. Math Tutor

This is a modification of Programming Challenge 15 from Chapter 3. Write a pro-
gram that can be used as a math tutor for a young student. The program should dis-
play two random numbers that are to be added, such as:

247
+ 129

The program should wait for the student to enter the answer. If the answer is correct,
a message of congratulations should be printed. If the answer is incorrect, a message
should be printed showing the correct answer.

10. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table.

Quantity Discount

10–19 20%

20–49 30%

50–99 40%

100 or more 50%

Solving
the Time

Calculator
problem

236 Chapter 4 Making Decisions

Write a program that asks for the number of units sold and computes the total cost of
the purchase.

Input Validation: Make sure the number of units is greater than 0.

11. Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based on
the number of books purchased each month. The points are awarded as follows:

• If a customer purchases 0 books, he or she earns 0 points.
• If a customer purchases 1 book, he or she earns 5 points.
• If a customer purchases 2 books, he or she earns 15 points.
• If a customer purchases 3 books, he or she earns 30 points.
• If a customer purchases 4 or more books, he or she earns 60 points.

Write a program that asks the user to enter the number of books that he or she has
purchased this month and then displays the number of points awarded.

12. Bank Charges

A bank charges $10 per month plus the following check fees for a commercial check-
ing account:

$.10 each for fewer than 20 checks
$.08 each for 20–39 checks
$.06 each for 40–59 checks
$.04 each for 60 or more checks

The bank also charges an extra $15 if the balance of the account falls below $400
(before any check fees are applied). Write a program that asks for the beginning bal-
ance and the number of checks written. Compute and display the bank’s service fees
for the month.

Input Validation: Do not accept a negative value for the number of checks written. If
a negative value is given for the beginning balance, display an urgent message indicat-
ing the account is overdrawn.

13. Shipping Charges

The Fast Freight Shipping Company charges the following rates:

Write a program that asks for the weight of the package and the distance it is to be
shipped, and then displays the charges.

Input Validation: Do not accept values of 0 or less for the weight of the package. Do
not accept weights of more than 20 Kg (this is the maximum weight the company will
ship). Do not accept distances of less than 10 miles or more than 3,000 miles. These
are the company’s minimum and maximum shipping distances.

Weight of Package (in Kilograms) Rate per 500 Miles Shipped

2 Kg or less $1.10

Over 2 Kg but not more than 6 kg $2.20

Over 6 Kg but not more than 10 kg $3.70

Over 10 Kg but not more than 20 kg $4.80

Review Questions and Exercises 237

14. Running the Race

Write a program that asks for the names of three runners and the time it took each of
them to finish a race. The program should display who came in first, second, and third
place.

Input Validation: Be sure the names do not overflow the arrays. Only accept positive
numbers for the times.

15. Personal Best

Write a program that asks for the name of a pole vaulter and the dates and vault
heights (in meters) of the athlete’s three best vaults. It should then report, in order of
height (best first), the date on which each vault was made and its height.

Input Validation: Only accept values between 2.0 and 5.0 for the heights.

16. Fat Gram Calculator

Write a program that asks for the number of calories and fat grams in a food. The
program should display the percentage of calories that come from fat. If the calories
from fat are less than 30% of the total calories of the food, it should also display a
message indicating that the food is low in fat.

One gram of fat has 9 calories, so

Calories from fat = fat grams * 9

The percentage of calories from fat can be calculated as

Calories from fat ÷ total calories

Input Validation: Make sure the number of calories and fat grams are not less than 0.
Also, the number of calories from fat cannot be greater than the total number of calo-
ries. If that happens, display an error message indicating that either the calories or fat
grams were incorrectly entered.

17. Spectral Analysis

If a scientist knows the wavelength of an electromagnetic wave, he or she can determine
what type of radiation it is. Write a program that asks for the wavelength of an electro-
magnetic wave in meters and then displays what that wave is according to the chart
below. (For example, a wave with a wavelength of 1E-10 meters would be an X-ray.)

18. The Speed of Sound

The following table shows the approximate speed of sound in air, water, and steel.

Medium Speed

Air 1,100 feet per second

Water 4,900 feet per second

Steel 16,400 feet per second

1 × 10–2 1 × 10–3 7 × 10–7 4 × 10–7 1 × 10–8 1 × 10–11

Radio Waves Microwaves Infrared Visible Light Ultraviolet X Rays Gamma Rays

238 Chapter 4 Making Decisions

Write a program that displays a menu allowing the user to select air, water, or steel.
After the user has made a selection, he or she should be asked to enter the distance a
sound wave will travel in the selected medium. The program will then display the
amount of time it will take. (Round the answer to four decimal places.)

Input Validation: Check that the user has selected one of the available choices from
the menu. Do not accept distances less than 0.

19. The Speed of Sound in Gases

When sound travels through a gas, its speed depends primarily on the density of the
medium. The less dense the medium, the faster the speed will be. The following table
shows the approximate speed of sound at 0 degrees centigrade, measured in meters
per second, when traveling through carbon dioxide, air, helium, and hydrogen.

Write a program that displays a menu allowing the user to select one of these four
gases. After a selection has been made, the user should enter the number of seconds it
took for the sound to travel in this medium from its source to the location at which it
was detected. The program should then report how far away (in meters) the source of
the sound was from the detection location.

Input Validation: Check that the user has selected one of the available menu choices.
Do not accept times less than 0 seconds or more than 30 seconds.

20. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances. Write a
program that asks the user to enter a temperature, and then shows all the substances
that will freeze at that temperature and all that will boil at that temperature. For
example, if the user enters –20 the program should report that water will freeze and
oxygen will boil at that temperature.

Medium Speed (Meters per Second)

Carbon Dioxide 258.0

Air 331.5

Helium 972.0

Hydrogen 1,270.0

Substance Freezing Point (°F) Boiling Point (°F)

Ethyl alcohol –173 172

Mercury –38 676

Oxygen –362 –306

Water 32 212

Review Questions and Exercises 239

21. Geometry Calculator

Write a program that displays the following menu:

Geometry Calculator

1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit

Enter your choice (1-4):

If the user enters 1, the program should ask for the radius of the circle and then dis-
play its area. Use the following formula:

area = πr2

Use 3.14159 for π and the radius of the circle for r. If the user enters 2, the program
should ask for the length and width of the rectangle and then display the rectangle’s
area. Use the following formula:

area = length * width

If the user enters 3 the program should ask for the length of the triangle’s base and its
height, and then display its area. Use the following formula:

area = base * height * .5

If the user enters 4, the program should end.

Input Validation: Display an error message if the user enters a number outside the range
of 1 through 4 when selecting an item from the menu. Do not accept negative values for
the circle’s radius, the rectangle’s length or width, or the triangle’s base or height.

22. Long-Distance Calls

A long-distance carrier charges the following rates for telephone calls:

Write a program that asks for the starting time and the number of minutes of the call,
and displays the charges. The program should ask for the time to be entered as a floating-
point number in the form HH.MM. For example, 07:00 hours will be entered as
07.00, and 16:28 hours will be entered as 16.28.

Input Validation: The program should not accept times that are greater than 23:59.
Also, no number whose last two digits are greater than 59 should be accepted. Hint:
Assuming num is a floating-point variable, the following expression will give you its
fractional part:

num – static_cast<int>(num)

Starting Time of Call Rate per Minute

00:00–06:59 0.12

07:00–19:00 0.55

19:01–23:59 0.35

240 Chapter 4 Making Decisions

23. Internet Service Provider

An Internet service provider has three different subscription packages for its customers:

Package A: For $9.95 per month 10 hours of access are provided. Additional hours
are $2.00 per hour.

Package B: For $14.95 per month 20 hours of access are provided. Additional hours
are $1.00 per hour.

Package C: For $19.95 per month unlimited access is provided.

Write a program that calculates a customer’s monthly bill. It should ask which pack-
age the customer has purchased and how many hours were used. It should then dis-
play the total amount due.

Input Validation: Be sure the user only selects package A, B, or C. Also, the number
of hours used in a month cannot exceed 744.

24. Internet Service Provider, Part 2

Modify the Program in Programming Challenge 23 so that it also displays how much
money Package A customers would save if they purchased packages B or C, and how
much money Package B customers would save if they purchased Package C. If there
would be no savings, no message should be printed.

25. Internet Service Provider, Part 3

Months with 30 days have 720 hours, and months with 31 days have 744 hours. Feb-
ruary, with 28 days, has 672 hours. Enhance the input validation of the Internet Ser-
vice Provider program by asking the user for the month (by name), and validating that
the number of hours entered is not more than the maximum for the entire month.
Here is a table of the months, their days, and number of hours in each.

26. File Input (Freezing and Boiling Points Modification)

Modify the program that you wrote for Programming Challenge 20 (Freezing and
Boiling Points) so it reads its input from a file instead of the keyboard. Perform the
necessary test to determine if an error occurs when the file is opened. If an error
occurs, display a message informing the user.

Month Days Hours

January 31 744

February 28 672

March 31 744

April 30 720

May 31 744

June 30 720

July 31 744

August 31 744

September 30 720

October 31 744

November 30 720

December 31 744

241

C
H

A
P

T
E

R

5 Looping

5.1 The Increment and Decrement Operators

CONCEPT: ++ and -- are operators that add and subtract 1 from their operands.

To increment a value means to increase it by one, and to decrement a value means to
decrease it by one. Both of the following statements increment the variable num:

num = num + 1;
num += 1;

And num is decremented in both of the following statements:

num = num - 1;
num -= 1;

TOPICS

5.1 The Increment and Decrement
Operators

5.2 Introduction to Loops:
The while Loop

5.3 Using the while Loop for Input
Validation

5.4 Counters
5.5 The do-while Loop
5.6 The for Loop

5.7 Keeping a Running Total
5.8 Sentinels
5.9 Using a Loop to Read Data

from a File
5.10 Focus on Software Engineering:

Deciding Which Loop to Use
5.11 Nested Loops
5.12 Breaking Out of a Loop
5.13 The continue Statement

242 Chapter 5 Looping

C++ provides a set of simple unary operators designed just for incrementing and decre-
menting variables. The increment operator is ++ and the decrement operator is --. The
following statement uses the ++ operator to increment num:

num++;

And the following statement decrements num:

num--;

Our examples so far show the increment and decrement operators used in postfix mode,
which means the operator is placed after the variable. The operators also work in prefix
mode, where the operator is placed before the variable name:

++num;
--num;

In both postfix and prefix mode, these operators add 1 to or subtract 1 from their oper-
and. Program 5-1 shows how they work.

NOTE: The expression num++ is pronounced “num plus plus,” and num-- is pronounced
“num minus minus.”

Program 5-1

 1 // This program demonstrates the ++ and -- operators.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int num = 4; // num starts out with 4.
 8
 9 // Display the value in num.
10 cout << "The variable num is " << num << endl;
11 cout << "I will now increment num.\n\n";
12
13 // Use postfix ++ to increment num.
14 num++;
15 cout << "Now the variable num is " << num << endl;
16 cout << "I will increment num again.\n\n";
17
18 // Use prefix ++ to increment num.
19 ++num;
20 cout << "Now the variable num is " << num << endl;
21 cout << "I will now decrement num.\n\n";
22
23 // Use postfix -- to decrement num.
24 num--;
25 cout << "Now the variable num is " << num << endl;
26 cout << "I will decrement num again.\n\n";
27

5.1 The Increment and Decrement Operators 243

The Difference Between Postfix and Prefix Modes
In the simple statements used in Program 5-1, it doesn’t matter if the increment or decre-
ment operator is used in postfix or prefix mode. The difference is important, however,
when these operators are used in statements that do more than just incrementing or decre-
menting. For example, look at the following lines:

num = 4;
cout << num++;

This cout statement is doing two things: (1) displaying the value of num, and (2) incre-
menting num. But which happens first? cout will display a different value if num is incre-
mented first than if num is incremented last. The answer depends on the mode of the
increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the example, cout will display 4, then num will be incremented to 5. Prefix
mode, however, causes the increment to happen first. In the following statements, num will
be incremented to 5, then cout will display 5:

num = 4;
cout << ++num;

Program 5-2 illustrates these dynamics further:

28 // Use prefix -- to increment num.
29 --num;
30 cout << "Now the variable num is " << num << endl;
31 return 0;
32 }

Program Output
The variable num is 4
I will now increment num.

Now the variable num is 5
I will increment num again.

Now the variable num is 6
I will now decrement num.

Now the variable num is 5
I will decrement num again.

Now the variable num is 4

Program 5-2

 1 // This program demonstrates the prefix and postfix
 2 // modes of the increment and decrement operators.
 3 #include <iostream>
 4 using namespace std;

(program continues)

244 Chapter 5 Looping

Let’s analyze the statements in this program. In line 8, num is initialized with the value 4,
so the cout statement in line 10 displays 4. Then, line 11 sends the expression num++ to
cout. Because the ++ operator is used in postfix mode, the value 4 is first sent to cout,
and then 1 is added to num, making its value 5.

When line 12 executes, num will hold the value 5, so 5 is displayed. Then, line 13 sends the
expression ++num to cout. Because the ++ operator is used in prefix mode, 1 is first added
to num (making it 6), and then the value 6 is sent to cout. This same sequence of events
happens in lines 16 through 19, except the -- operator is used.

For another example, look at the following code:

int x = 1;
int y
y = x++; // Postfix increment

The first statement defines the variable x (initialized with the value 1) and the second
statement defines the variable y. The third statement does two things:

• It assigns the value of x to the variable y.
• The variable x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the
++ operator is used in postfix mode, it acts after the assignment takes place. So, this code

 5
 6 int main()
 7 {
 8 int num = 4;
 9
10 cout << num << endl; // Displays 4
11 cout << num++ << endl; // Displays 4, then adds 1 to num
12 cout << num << endl; // Displays 5
13 cout << ++num << endl; // Adds 1 to num, then displays 6
14 cout << endl; // Displays a blank line
15
16 cout << num << endl; // Displays 6
17 cout << num-- << endl; // Displays 6, then subtracts 1 from num
18 cout << num << endl; // Displays 5
19 cout << --num << endl; // Subtracts 1 from num, then displays 4
20
21 return 0;
22 }

Program Output
4
4
5
6

6
6
5
4

Program 5-2 (continued)

5.1 The Increment and Decrement Operators 245

will store 1 in y. After the code has executed, x will contain 2. Let’s look at the same code,
but with the ++ operator used in prefix mode:

int x = 1;
int y;
y = ++x; // Prefix increment

In the third statement, the ++ operator is used in prefix mode, so it acts on the variable x
before the assignment takes place. So, this code will store 2 in y. After the code has exe-
cuted, x will also contain 2.

Using ++ and -- in Mathematical Expressions
The increment and decrement operators can also be used on variables in mathematical
expressions. Consider the following program segment:

a = 2;
b = 5;
c = a * b++;
cout << a << " " << b << " " << c;

In the statement c = a * b++, c is assigned the value of a times b, which is 10. The variable
b is then incremented. The cout statement will display

2 6 10

If the statement were changed to read

c = a * ++b;

The variable b would be incremented before it was multiplied by a. In this case c would be
assigned the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement
operators, but don’t get too tricky with them. You might be tempted to try something like
the following, thinking that c will be assigned 11:

a = 2;
b = 5;
c = ++(a * b); // Error!

But this assignment statement simply will not work because the operand of the increment
and decrement operators must be an lvalue. Recall from Chapter 2 that an lvalue identifies
a place in memory whose contents may be changed. The increment and decrement opera-
tors usually have variables for their operands, but generally speaking, anything that can
go on the left side of an = operator is legal.

Using ++ and -- in Relational Expressions
Sometimes you will see code where the ++ and -- operators are used in relational expres-
sions. Just as in mathematical expressions, the difference between postfix and prefix mode
is critical. Consider the following program segment:

x = 10;
if (x++ > 10)
 cout << "x is greater than 10.\n";

246 Chapter 5 Looping

Two operations are happening in this if statement: (1) The value in x is tested to deter-
mine if it is greater than 10, and (2) x is incremented. Because the increment operator is
used in postfix mode, the comparison happens first. Since 10 is not greater than 10, the
cout statement won’t execute. If the mode of the increment operator is changed, however,
the if statement will compare 11 to 10 and the cout statement will execute:

x = 10;
if (++x > 10)
 cout << "x is greater than 10.\n";

Checkpoint
5.1 What will the following program segments display?

A) x = 2;

y = x++;
cout << x << y;

B) x = 2;

y = ++x;
cout << x << y;

C) x = 2;

y = 4;
cout << x++ << --y;

D) x = 2;

y = 2 * x++;
cout << x << y;

E) x = 99;

if (x++ < 100)
 cout "It is true!\n";

else
 cout << "It is false!\n";

F) x = 0;

if (++x)
 cout << "It is true!\n";
else
 cout << "It is false!\n";

5.2 Introduction to Loops: The while Loop

CONCEPT: A loop is part of a program that repeats.

Chapter 4 introduced the concept of control structures, which direct the flow of a pro-
gram. A loop is a control structure that causes a statement or group of statements to
repeat. C++ has three looping control structures: the while loop, the do-while loop, and
the for loop. The difference between these structures is how they control the repetition.

The while
Loop

5.2 Introduction to Loops: The while Loop 247

The while Loop
The while loop has two important parts: (1) an expression that is tested for a true or false
value, and (2) a statement or block that is repeated as long as the expression is true. Figure
5-1 shows the logic of a while loop.

Here is the general format of the while loop:

In the general format, expression is any expression that can be evaluated as true or false,
and statement is any valid C++ statement. The first line shown in the format is some-
times called the loop header. It consists of the key word while followed by an expres-
sion enclosed in parentheses.

Here’s how the loop works: the expression is tested, and if it is true, the statement is
executed. Then, the expression is tested again. If it is true, the statement is executed.
This cycle repeats until the expression is false.

The statement that is repeated is known as the body of the loop. It is also considered a
conditionally executed statement, because it is executed only under the condition that the
expression is true.

Notice there is no semicolon after the expression in parentheses. Like the if statement,
the while loop is not complete without the statement that follows it.

If you wish the while loop to repeat a block of statements, its format is:

Figure 5-1

 while (expression)
statement;

 while (expression)
{

statement;
statement;
// Place as many statements here
// as necessary.

}

Statement(s)
True

False

Expression

248 Chapter 5 Looping

The while loop works like an if statement that executes over and over. As long as the
expression inside the parentheses is true, the conditionally executed statement or block
will repeat. Program 5-3 uses the while loop to print “Hello” five times.

Let’s take a closer look at this program. In line 7 an integer variable, number, is defined
and initialized with the value 1. In line 9 the while loop begins with this statement:

while (number <= 5)

This statement tests the variable number to determine whether it is less than or equal to 5.
If it is, then the statements in the body of the loop (lines 11 and 12) are executed:

cout << "Hello\n";
number++;

The statement in line 11 prints the word “Hello.” The statement in line 12 uses the incre-
ment operator to add one to number. This is the last statement in the body of the loop, so
after it executes, the loop starts over. It tests the expression number <= 5 again, and if it is
true, the statements in the body of the loop are executed again. This cycle repeats until the
expression number <= 5 is false. This is illustrated in Figure 5-2.

Each repetition of a loop is known as an iteration. This loop will perform five iterations
because the variable number is initialized with the value 1, and it is incremented each time
the body of the loop is executed. When the expression number <= 5 is tested and found to
be false, the loop will terminate and the program will resume execution at the statement
that immediately follows the loop. Figure 5-3 shows the logic of this loop.

Program 5-3

 1 // This program demonstrates a simple while loop.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number = 1;

 8
 9 while (number <= 5)
10 {
11 cout << "Hello\n";
12 number++;
13 }
14 cout << "That's all!\n";
15 return 0;
16 }

Program Output
Hello
Hello
Hello
Hello
Hello
That's all!

5.2 Introduction to Loops: The while Loop 249

In this example, the number variable is referred to as the loop control variable because it
controls the number of times that the loop iterates.

The while Loop Is a Pretest Loop
The while loop is known as a pretest loop, which means it tests its expression before each
iteration. Notice the variable definition in line 7 of Program 5-3:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a
value that is greater than 5, as shown in the following program segment, the loop would
never execute:

int number = 6;
while (number <= 5)
{
 cout << "Hello\n";
 number++;
}

An important characteristic of the while loop is that the loop will never iterate if the test
expression is false to start with. If you want to be sure that a while loop executes the first
time, you must initialize the relevant data in such a way that the test expression starts out
as true.

Figure 5-2

Figure 5-3

while (number <= 5)
{
 cout << "Hello\n";
 number++;
}

Test this expression.

If the expression is true,
perform these statements.

After executing the body of the loop, start over.

Print "Hello"
True

False

number
<= 5

Add 1 to
number

250 Chapter 5 Looping

Infinite Loops
In all but rare cases, loops must contain within themselves a way to terminate. This means
that something inside the loop must eventually make the test expression false. The loop in
Program 5-3 stops when the expression number <= 5 is false.

If a loop does not have a way of stopping, it is called an infinite loop. An infinite loop con-
tinues to repeat until the program is interrupted. Here is an example of an infinite loop:

int number = 1;
while (number <= 5)
{
 cout << "Hello\n";
}

This is an infinite loop because it does not contain a statement that changes the value of
the number variable. Each time the expression number <= 5 is tested, number will contain
the value 1.

It’s also possible to create an infinite loop by accidentally placing a semicolon after the
first line of the while loop. Here is an example:

int number = 1;
while (number <= 5); // This semicolon is an ERROR!
{
 cout << "Hello\n";
 number++;
}

The semicolon at the end of the first line is assumed to be a null statement and disconnects
the while statement from the block that comes after it. To the compiler, this loop looks
like:

while (number <= 5);

This while loop will forever execute the null statement, which does nothing. The program
will appear to have “gone into space” because there is nothing to display screen output or
show activity.

Don’t Forget the Braces with a Block of Statements
If you write a loop that conditionally executes a block of statements, don’t forget to
enclose all of the statements in a set of braces. If the braces are accidentally left out, the
while statement conditionally executes only the very next statement. For example, look at
the following code.

int number = 1;
// This loop is missing its braces!
while (number <= 5)
 cout << "Hello\n";
 number++;

In this code the number++ statement is not in the body of the loop. Because the braces
are missing, the while statement only executes the statement that immediately follows
it. This loop will execute infinitely because there is no code in its body that changes the
number variable.

5.2 Introduction to Loops: The while Loop 251

Another common pitfall with loops is accidentally using the = operator when you intend to
use the == operator. The following is an infinite loop because the test expression assigns 1 to
remainder each time it is evaluated instead of testing whether remainder is equal to 1.

while (remainder = 1) // Error: Notice the assignment
{
 cout << "Enter a number: ";
 cin >> num;
 remainder = num % 2;
}

Remember, any nonzero value is evaluated as true.

Programming Style and the while Loop
It’s possible to create loops that look like this:

while (number <= 5) { cout << "Hello\n"; number++; }

Avoid this style of programming. The programming style you should use with the while
loop is similar to that of the if statement:

• If there is only one statement repeated by the loop, it should appear on the line
after the while statement and be indented one additional level.

• If the loop repeats a block, each line inside the braces should be indented.

This programming style should visually set the body of the loop apart from the surround-
ing code. In general, you’ll find a similar style being used with the other types of loops pre-
sented in this chapter.

In the Spotlight:
Designing a Program with a while Loop

A project currently underway at Chemical Labs, Inc. requires that a substance be continu-
ally heated in a vat. A technician must check the substance’s temperature every 15 min-
utes. If the substance’s temperature does not exceed 102.5 degrees Celsius, then the
technician does nothing. However, if the temperature is greater than 102.5 degrees Cel-
sius, the technician must turn down the vat’s thermostat, wait 5 minutes, and check the
temperature again. The technician repeats these steps until the temperature does not
exceed 102.5 degrees Celsius. The director of engineering has asked you to write a pro-
gram that guides the technician through this process.

Here is the algorithm:

1. Prompt the user to enter the substance’s temperature.

2. Repeat the following steps as long as the temperature is greater than 102.5 degrees
Celsius:

a. Tell the technician to turn down the thermostat, wait 5 minutes, and check the
temperature again.

b. Prompt the user to enter the substance’s temperature.

252 Chapter 5 Looping

3. After the loop finishes, tell the technician that the temperature is acceptable and to
check it again in 15 minutes.

After reviewing this algorithm, you realize that steps 2a and 2b should not be performed if
the test condition (temperature is greater than102.5) is false to begin with. The while
loop will work well in this situation, because it will not execute even once if its condition
is false. Program 5-4 shows the code for the program.

Program 5-4

 1 // This program assists a technician in the process
 2 // of checking a substance's temperature.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const double MAX_TEMP = 102.5; // Maximum temperature
 9 double temperature; // To hold the temperature
10
11 // Get the current temperature.
12 cout << "Enter the substance's Celsius temperature: ";
13 cin >> temperature;
14
15 // As long as necessary, instruct the technician
16 // to adjust the thermostat.
17 while (temperature > MAX_TEMP)
18 {
19 cout << "The temperature is too high. Turn the\n";
20 cout << "thermostat down and wait 5 minutes.\n";
21 cout << "Then take the Celsius temperature again\n";
22 cout << "and enter it here: ";
23 cin >> temperature;
24 }
25
26 // Remind the technician to check the temperature
27 // again in 15 minutes.
28 cout << "The temperature is acceptable.\n";
29 cout << "Check it again in 15 minutes.\n";
30
31 return 0;
32 }

Program Output with Example Input Shown in Bold
Enter the substance's Celsius temperature: 104.7 [Enter]
The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then take the Celsius temperature again
and enter it here: 103.2 [Enter]
The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then take the Celsius temperature again
and enter it here: 102.1 [Enter]
The temperature is acceptable.
Check it again in 15 minutes.

5.3 Using the while Loop for Input Validation 253

5.3 Using the while Loop for Input Validation

CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.”
The integrity of a program’s output is only as good as its input, so you should try to make
sure garbage does not go into your programs. Input validation is the process of inspecting
data given to a program by the user and determining if it is valid. A good program should
give clear instructions about the kind of input that is acceptable, and not assume the user
has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a
loop can require that the user re-enter it as many times as necessary. For example, the fol-
lowing loop asks for a number in the range of 1 through 100:

cout << "Enter a number in the range 1-100: ";
cin >> number;
while (number < 1 || number > 100)
{
 cout << "ERROR: Enter a value in the range 1-100: ";
 cin >> number;
}

This code first allows the user to enter a number. This takes place just before the loop. If
the input is valid, the loop will not execute. If the input is invalid, however, the loop will
display an error message and require the user to enter another number. The loop will con-
tinue to execute until the user enters a valid number. The general logic of performing input
validation is shown in Figure 5-4.

Figure 5-4

Display an
error message.

Yes

No

Is the
value

invalid?

Read another
value.

Read the first
value.

254 Chapter 5 Looping

The read operation that takes place just before the loop is called a priming read. It pro-
vides the first value for the loop to test. Subsequent values are obtained by the loop.

Program 5-5 calculates the number of soccer teams a youth league may create, based on a
given number of players and a maximum number of players per team. The program uses
while loops (in lines 21 through 27 and lines 34 through 38) to validate the user’s input.

Program 5-5

1 // This program calculates the number of soccer teams
 2 // that a youth league may create from the number of
 3 // available players. Input validation is demonstrated
 4 // with while loops.
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int players, // Number of available players
11 teamPlayers, // Number of desired players per team
12 numTeams, // Number of teams
13 leftOver; // Number of players left over
14
15 // Get the number of players per team.
16 cout << "How many players do you wish per team?\n";
17 cout << "(Enter a value in the range 9-15): ";
18 cin >> teamPlayers;
19
20 // Validate the input.
21 while (teamPlayers < 9 || teamPlayers > 15)
22 {
23 cout << "You should have at least 9 but no\n";
24 cout << "more than 15 per team.\n";
25 cout << "How many players do you wish per team? ";
26 cin >> teamPlayers;
27 }
28
29 // Get the number of players available.
30 cout << "How many players are available? ";
31 cin >> players;

 32
33 // Validate the input.
34 while (players <= 0)
35 {
36 cout << "Please enter a positive number: ";
37 cin >> players;
38 }
39
40 // Calculate the number of teams.
41 numTeams = players / teamPlayers;
42
43 // Calculate the number of leftover players.
44 leftOver = players % teamPlayers;
45

5.4 Counters 255

Checkpoint
5.2 Write an input validation loop that asks the user to enter a number in the range of

10 through 25.

5.3 Write an input validation loop that asks the user to enter ‘Y’, ‘y’, ‘N’, or ‘n’.

5.4 Write an input validation loop that asks the user to enter “Yes” or “No”.

5.4 Counters

CONCEPT: A counter is a variable that is regularly incremented or decremented each
time a loop iterates.

Sometimes it’s important for a program to control or keep track of the number of itera-
tions a loop performs. For example, Program 5-6 displays a table consisting of the num-
bers 1 through 10 and their squares, so its loop must iterate 10 times.

46 // Display the results.
47 cout << "There will be " << numTeams << " teams with ";
48 cout << leftOver << " players left over.\n";
49 return 0;
50 }

Program Output with Example Input Shown in Bold
How many players do you wish per team?
(Enter a value in the range 9-15): 4 [Enter]
You should have at least 9 but no
more than 15 per team.
How many players do you wish per team? 12 [Enter]
How many players are available? –142 [Enter]
Please enter a positive number: 142 [Enter]
There will be 11 teams with 10 players left over.

Program 5-6

 1 // This program displays the numbers 1 through 10 and
 2 // their squares.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int num = 1; //Initialize the counter.
 9
10 cout << "Number Number Squared\n";

(program continues)

256 Chapter 5 Looping

In Program 5-6, the variable num, which starts at 1, is incremented each time through the
loop. When num reaches 11 the loop stops. num is used as a counter variable, which means
it is regularly incremented in each iteration of the loop. In essence, num keeps count of the
number of iterations the loop has performed.

In Program 5-6, num is incremented in the last statement of the loop. Another approach is
to combine the increment operation with the relational test, as shown here:

int num = 0;
while (num++ < 10)
 cout << num << "\t\t" << (num * num) << endl;

This code will produce the same output as Program 5-6.

Notice that num is now initialized to 0, rather than 1, and the relational expression uses
the < operator instead of <=. This is because of the way the increment operator works
when combined with the relational expression.

The increment operator is used in postfix mode, which means it adds one to num after the
relational test. When the loop first executes, num is set to 0, so 0 is compared to 10. The ++
operator then increments num immediately after the comparison. When the cout state-
ment executes, num has the value 1. This is shown in Figure 5-5.

11 cout << "-------------------------\n";
12 while (num <= 10)
13 {
14 cout << num << "\t\t" << (num * num) << endl;
15 num++; //Increment the counter.
16 }
17 return 0;
18 }

Program Output
Number Number Squared

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

NOTE: It’s important that num be properly initialized. Remember, variables defined
inside a function have no guaranteed starting value.

Program 5-6 (continued)

5.5 The do-while Loop 257

Inside the loop, num always has a value of 1 greater than the value previously compared to
10. That’s why the relational operator is < instead of <=. When num is 9 in the relational
test, it will be 10 in the cout statement.

5.5 The do-while Loop

CONCEPT: The do-while loop is a posttest loop, which means its expression is
tested after each iteration.

The do-while loop looks something like an inverted while loop. Here is the do-while
loop’s format when the body of the loop contains only a single statement:

Here is the format of the do-while loop when the body of the loop contains multiple
statements:

The do-while loop is a posttest loop. This means it does not test its expression until it has
completed an iteration. As a result, the do-while loop always performs at least one itera-
tion, even if the expression is false to begin with. This differs from the behavior of a while
loop, which you will recall is a pretest loop. For example, in the following while loop the
cout statement will not execute at all:

int x = 1;
while (x < 0)
 cout << x << endl;

Figure 5-5

 do
statement;

 while (expression);

 do
 {
 statement;
 statement;
// Place as many statements here
// as necessary.

 } while (expression);

NOTE: The do-while loop must be terminated with a semicolon.

while (num++ <10)
 cout << num << "\t\t" << (num * num) << endl;

num is compared to 10, then it is
incremented. When the cout statement
executes, num is 1 greater than it was
in the relational test.

258 Chapter 5 Looping

But the cout statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;
do
 cout << x << endl;
while (x < 0);

Figure 5-6 illustrates the logic of the do-while loop.

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, Program 5-7 averages a series of three test scores for a student. After
the average is displayed, it asks the user if he or she wants to average another set of test
scores. The program repeats as long as the user enters Y for yes.

Figure 5-6

Program 5-7

 1 // This program averages 3 test scores. It repeats as
 2 // many times as the user wishes.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int score1, score2, score3; // Three scores
 9 double average; // Average score
10 char again; // To hold Y or N input
11
12 do
13 {
14 // Get three scores.
15 cout << "Enter 3 scores and I will average them: ";
16 cin >> score1 >> score2 >> score3;
17
18 // Calculate and display the average.

True

False

Expression

Statement(s)

5.5 The do-while Loop 259

When this program was written, the programmer had no way of knowing the number of
times the loop would iterate. This is because the loop asks the user if he or she wants to
repeat the process. This type of loop is known as a user-controlled loop, because it allows
the user to decide the number of iterations.

Using do-while with Menus
The do-while loop is a good choice for repeating a menu. Recall Program 4-32, which dis-
played a menu of health club packages. Program 5-8 is a modification of that program which
uses a do-while loop to repeat the program until the user selects item 4 from the menu.

19 average = (score1 + score2 + score3) / 3.0;
20 cout << "The average is " << average << ".\n";
21
22 // Does the user want to average another set?
23 cout << "Do you want to average another set? (Y/N) ";
24 cin >> again;
25 } while (again == 'Y' || again == 'y');
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter 3 scores and I will average them: 80 90 70 [Enter]
The average is 80.
Do you want to average another set? (Y/N) y [Enter]
Enter 3 scores and I will average them: 60 75 88 [Enter]
The average is 74.3333.
Do you want to average another set? (Y/N) n [Enter]

Program 5-8

 1 // This program displays a menu and asks the user to make a
 2 // selection. An if/else if statement determines which item
 3 // the user has chosen.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int choice; // Menu choice
11 int months; // Number of months
12 double charges; // Monthly charges
13
14 // Constants for membership rates
15 const double ADULT = 40.0;
16 const double SENIOR = 30.0;
17 const double CHILD = 20.0;
18

(program continues)

260 Chapter 5 Looping

19 // Set the numeric output formatting.
20 cout << fixed << showpoint << setprecision(2);
21

 22 do
23 {
24 // Display the menu and get a choice.
25 cout << "\n\t\tHealth Club Membership Menu\n\n";
26 cout << "1. Standard Adult Membership\n";
27 cout << "2. Child Membership\n";
28 cout << "3. Senior Citizen Membership\n";
29 cout << "4. Quit the Program\n\n";
30 cout << "Enter your choice: ";
31 cin >> choice;
32
33 // Validate the menu selection.
34 while (choice < 1 || choice > 4)
35 {
36 cout << "Please enter 1, 2, 3, or 4: ";
37 cin >> choice;
38 }
39
40 // Respond to the user's menu selection.
41 switch (choice)
42 {
43 case 1:
44 cout << "For how many months? ";
45 cin >> months;
46 charges = months * ADULT;
47 cout << "The total charges are $"
48 << charges << endl;
49 break;
50
51 case 2:
52 cout << "For how many months? ";
53 cin >> months;
54 charges = months * CHILD;
55 cout << "The total charges are $"
56 << charges << endl;
57 break;
58
59 case 3:
60 cout << "For how many months? ";
61 cin >> months;
62 charges = months * SENIOR;
63 cout << "The total charges are $"
64 << charges << endl;
65 break;
66
67 case 4:
68 cout << "Program ending.\n";

Program 5-8 (continued)

5.5 The do-while Loop 261

Checkpoint
5.5 What will the following program segments display?

A) int count = 10;
do
 cout << "Hello World\n";
while (count++ < 1);

B) int v = 0;
do
 cout << v++;
while (v < 5);

C) int count = 0, funny = 1, serious = 0, limit = 4;
do
{
 funny++;
 serious += 2;
} while (count++ < limit);
cout << funny << " " << serious << " ";
cout << count << endl;

69 break;
70 }
71
72 } while (choice != 4);
73
74 return 0;
75 }

Program Output with Example Input Shown in Bold

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4 [Enter]
Program ending.

262 Chapter 5 Looping

5.6 The for Loop

CONCEPT: The for loop is ideal for performing a known number of iterations.

In general, there are two categories of loops: conditional loops and count-controlled
loops. A conditional loop executes as long as a particular condition exists. For example,
an input validation loop executes as long as the input value is invalid. When you write a
conditional loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop
that repeats a specific number of times is known as a count-controlled loop. For example,
if a loop asks the user to enter the sales amounts for each month in the year, it will iterate
twelve times. In essence, the loop counts to twelve and asks the user to enter a sales
amount each time it makes a count. A count-controlled loop must possess three elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a maximum value. When the
counter variable reaches its maximum value, the loop terminates.

3. It must update the counter variable during each iteration. This is usually done by
incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop when it is used to repeat
a single statement:

The format of the for loop when it is used to repeat a block is

 The first line of the for loop is the loop header. After the key word for, there are three
expressions inside the parentheses, separated by semicolons. (Notice there is not a semico-
lon after the third expression.) The first expression is the initialization expression. It is
normally used to initialize a counter variable to its starting value. This is the first action
performed by the loop, and it is only done once. The second expression is the test expres-
sion. This is an expression that controls the execution of the loop. As long as this expres-
sion is true, the body of the for loop will repeat. The for loop is a pretest loop, so it
evaluates the test expression before each iteration. The third expression is the update

 for (initialization; test; update)
statement;

 for (initialization; test; update)
 {

statement;
statement;

 // Place as many statements here
 // as necessary.
 }

The for Loop

5.6 The for Loop 263

expression. It executes at the end of each iteration. Typically, this is a statement that incre-
ments the loop’s counter variable.

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the update expression is count++. The body of the loop has one statement, which is
the cout statement. Figure 5-7 illustrates the sequence of events that takes place during the
loop’s execution. Notice that Steps 2 through 4 are repeated as long as the test expression
is true.

Figure 5-8 shows the loop’s logic in the form of a flowchart.

Notice how the counter variable, count, is used to control the number of times that the
loop iterates. During the execution of the loop, this variable takes on the values 1 through
5, and when the test expression count <= 5 is false, the loop terminates. Also notice
that in this example the count variable is used only in the loop header, to control the

Figure 5-7

Figure 5-8

for (count = 1; count <= 5; count++)
 cout << "Hello" << endl;

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression. If it is true, go to Step 3.
 Otherwise, terminate the loop.

Step 3: Execute the body of the loop.

Step 4: Perform the update expression,
 then go back to Step 2.

cout
statement

True

False

count
<= 5

Increment
count

Assign 1 to
count

264 Chapter 5 Looping

number of loop iterations. It is not used for any other purpose. It is also possible to use the
counter variable within the body of the loop. For example, look at the following code:

for (number = 1; number <= 10; number++)
cout << number << " " << endl;

The counter variable in this loop is number. In addition to controlling the number of itera-
tions, it is also used in the body of the loop. This loop will produce the following output:

1 2 3 4 5 6 7 8 9 10

As you can see, the loop displays the contents of the number variable during each itera-
tion. Program 5-9 shows another example of a for loop that uses its counter variable
within the body of the loop. This is yet another program that displays a table showing the
numbers 1 through 10 and their squares.

Figure 5-9 illustrates the sequence of events performed by this for loop, and Figure 5-10
shows the logic of the loop as a flowchart.

Program 5-9

 1 // This program displays the numbers 1 through 10 and
 2 // their squares.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int num;
 9
10 cout << "Number Number Squared\n";
11 cout << "-------------------------\n";
12
13 for (num = 1; num <= 10; num++)
14 cout << num << "\t\t" << (num * num) << endl;
15 return 0;
16 }

Program Output
Number Number Squared

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

5.6 The for Loop 265

Using the for Loop Instead of while or do-while
You should use the for loop instead of the while or do-while loop in any situation that
clearly requires an initialization, uses a false condition to stop the loop, and requires an
update to occur at the end of each loop iteration. Program 5-9 is a perfect example. It
requires that the num variable be initialized to 1, it stops the loop when the expression num
<= 10 is false, and it increments num at the end of each loop iteration.

Recall that when we first introduced the idea of a counter variable we examined
Program 5-6, which uses a while loop to display the table of numbers and their squares.
Because the loop in that program requires an initialization, uses a false test expression to
stop, and performs an increment at the end of each iteration, it can easily be converted to
a for loop. Figure 5-11 shows how the while loop in Program 5-6 and the for loop in
Program 5-9 each have initialization, test, and update expressions.

Figure 5-9

Figure 5-10

for (num = 1; num <= 10; num++)
 cout << num << "\t\t" << (num * num) << endl;

Step 1: Perform the initialization expression.

Step 2: Evaluate the test expression. If it is true, go to Step 3.
 Otherwise, terminate the loop.

Step 3: Execute the body of the loop.

Step 4: Perform the update expression,
 then go back to Step 2.

Display num
and num * num

True

False

num <= 10 Increment
num

Assign 1 to
num

266 Chapter 5 Looping

The for Loop Is a Pretest Loop
Because the for loop tests its test expression before it performs an iteration, it is a pretest
loop. It is possible to write a for loop in such a way that it will never iterate. Here is an
example:

for (count = 11; count <= 10; count++)
 cout << "Hello" << endl;

Because the variable count is initialized to a value that makes the test expression false
from the beginning, this loop terminates as soon as it begins.

Avoid Modifying the Counter Variable
in the Body of the for Loop
Be careful not to place a statement that modifies the counter variable in the body of the
for loop. All modifications of the counter variable should take place in the update expres-
sion, which is automatically executed at the end of each iteration. If a statement in the
body of the loop also modifies the counter variable, the loop will probably not terminate
when you expect it to. The following loop, for example, increments x twice for each itera-
tion:

for (x = 1; x <= 10; x++)
{
 cout << x << endl;
 x++; // Wrong!
}

Figure 5-11

int num = 1;
while (num <= 10)
{
 cout << num << "\t\t" << (num * num) << endl;
 num++;
}

Initialization expression

Test expression

Update expression

for (num = 1; num <= 10; num++)
 cout << num << "\t\t" << (num * num) << endl;

Test
expression

Initialization
expression

Update
expression

5.6 The for Loop 267

Other Forms of the Update Expression
You are not limited to using increment statements in the update expression. Here is a loop
that displays all the even numbers from 2 through 100 by adding 2 to its counter:

for (num = 2; num <= 100; num += 2)
 cout << num << endl;

And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)
 cout << num << endl;

Defining a Variable in the for Loop’s
Initialization Expression
Not only may the counter variable be initialized in the initialization expression, it may be
defined there as well. The following code shows an example. This is a modified version of
the loop in Program 5-9.

for (int num = 1; num <= 10; num++)
 cout << num << "\t\t" << (num * num) << endl;

In this loop, the num variable is both defined and initialized in the initialization expression.
If the counter variable is used only in the loop, it makes sense to define it in the loop
header. This makes the variable’s purpose more clear.

When a variable is defined in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements
outside the loop. For example, the following program segment will not compile because
the last cout statement cannot access the variable count.

for (int count = 1; count <= 10; count++)
 cout << count << endl;
cout << "count is now " << count << endl; // ERROR!

Creating a User Controlled for Loop
Sometimes you want the user to determine the maximum value of the counter variable in
a for loop, and therefore determine the number of times the loop iterates. For example,
look at Program 5-10. It is a modification of Program 5-9. Instead of displaying the num-
bers 1 through 10 and their squares, this program allows the user to enter the maximum
value to display.

Program 5-10

 1 // This program demonstrates a user controlled for loop.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int num; // Loop counter variable

(program continues)

268 Chapter 5 Looping

Before the loop, this program asks the user to enter the highest value to display. This value
is stored in the maxValue variable:

cout << "I will display a table of numbers and\n";
cout << "their squares. How high should I go? ";
cin >> maxValue;

The for loop’s test expression then uses this value as the upper limit for the control
variable:

for (num = 1; num <= maxValue; num++)

In this loop, the num variable takes on the values 1 through maxValue, and then the loop
terminates.

Using Multiple Statements in the Initialization
and Update Expressions
It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following
code, which has two statements in the initialization expression.

int x, y;
for (x = 1, y = 1; x <= 5; x++)
{

 8 int maxValue; // Maximum value to display
 9
10 // Get the maximum value to display.
11 cout << "I will display a table of numbers and\n";
12 cout << "their squares. How high should I go? ";
13 cin >> maxValue;
14
15 cout << "\nNumber Number Squared\n";
16 cout << "-------------------------\n";
17
18 for (num = 1; num <= maxValue; num++)
19 cout << num << "\t\t" << (num * num) << endl;
20 return 0;
21 }

Program Output with Example Input Shown in Bold
I will display a table of numbers and
their squares. How high should I go? 5 [Enter]

Number Number Squared

1 1
2 4
3 9
4 16
5 25

Program 5-10 (continued)

5.6 The for Loop 269

 cout << x << " plus " << y
 << " equals " << (x + y)
 << endl;
}

This loop’s initialization expression is

x = 1, y = 1

This initializes two variables, x and y. The output produced by this loop is

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4
4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here
is an example:

int x, y;
for (x = 1, y = 1; x <= 5; x++, y++)
{
 cout << x << " plus " << y
 << " equals " << (x + y)
 << endl;
}

The loop’s update expression is

x++, y++

This update expression increments both the x and y variables. The output produced by
this loop is

1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

Connecting multiple statements with commas works well in the initialization and update
expressions, but do not try to connect multiple expressions this way in the test expression.
If you wish to combine multiple expressions in the test expression, you must use the && or
|| operators.

Omitting the for Loop’s Expressions
The initialization expression may be omitted from inside the for loop’s parentheses if it
has already been performed or no initialization is needed. Here is an example of the loop
in Program 5-10 with the initialization being performed prior to the loop:

int num = 1;
for (; num <= maxValue; num++)
 cout << num << "\t\t" << (num * num) << endl;

270 Chapter 5 Looping

You may also omit the update expression if it is being performed elsewhere in the loop or
if none is needed. Although this type of code is not recommended, the following for loop
works just like a while loop:

int num = 1;
for (; num <= maxValue;)
{
 cout << num << "\t\t" << (num * num) << endl;
 num++;
}

You can even go so far as to omit all three expressions from the for loop’s parentheses. Be
warned, however, that if you leave out the test expression, the loop has no built-in way of
terminating. Here is an example:

for (; ;)
 cout << "Hello World\n";

Because this loop has no way of stopping, it will display "Hello World\n" forever (or
until something interrupts the program).

In the Spotlight:
Designing a Count-Controlled Loop with the for Statement

Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speed-
ometer indicates kilometers per hour. She has asked you to write a program that displays a
table of speeds in kilometers per hour with their values converted to miles per hour. The
formula for converting kilometers per hour to miles per hour is:

MPH = KPH * 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers per
hour.

The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values converted to
miles per hour. The table should look something like this:

After thinking about this table of values, you decide that you will write a for loop that
uses a counter variable to hold the kilometer-per-hour speeds. The counter’s starting value

KPH MPH

60 37.3

70 43.5

80 49.7

etc. . . .

130 80.8

5.6 The for Loop 271

will be 60, its ending value will be 130, and you will add 10 to the counter variable after
each iteration. Inside the loop you will use the counter variable to calculate a speed in
miles-per-hour. Program 5-11 shows the code.

Program 5-11

 1 // This program converts the speeds 60 kph through
 2 // 130 kph (in 10 kph increments) to mph.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int kph; // To hold speeds in kph
10 double mph; // To hold speeds in mph
11
12 // Set the numeric output formatting.
13 cout << fixed << showpoint << setprecision(1);
14
15 // Display the table headings.
16 cout << "KPH\tMPH\n";
17 cout << "--------------\n";
18
19 // Display the speeds.
20 for (kph = 60; kph <= 130; kph += 10)
21 {
22 // Calculate mph
23 mph = kph * 0.6214;
24
25 // Display the speeds in kph and mph.
26 cout << kph << "\t" << mph << endl;
27
28 }
29 return 0;
30 }

Program Output
KPH MPH

60 37.3
70 43.5
80 49.7
90 55.9
100 62.1
110 68.4
120 74.6
130 80.8

272 Chapter 5 Looping

Checkpoint
5.6 Name the three expressions that appear inside the parentheses in the for loop’s

header.

5.7 You want to write a for loop that displays “I love to program” 50 times. Assume
that you will use a counter variable named count.
A) What initialization expression will you use?
B) What test expression will you use?
C) What update expression will you use?
D) Write the loop.

5.8 What will the following program segments display?
A) for (int count = 0; count < 6; count++)

 cout << (count + count);

B) for (int value = -5; value < 5; value++)
 cout << value;

C) int x;
for (x = 5; x <= 14; x += 3)
 cout << x << endl;
cout << x << endl;

5.9 Write a for loop that displays your name 10 times.

5.10 Write a for loop that displays all of the odd numbers, 1 through 49.

5.11 Write a for loop that displays every fifth number, zero through 100.

5.7 Keeping a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each iteration
of a loop. The variable used to keep the running total is called an
accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For
example, suppose you are writing a program that calculates a business’s total sales for a
week. The program would read the sales for each day as input and calculate the total of
those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

• A loop that reads each number in the series.
• A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator.
It is often said that the loop keeps a running total because it accumulates the total as it
reads each number in the series. Figure 5-12 shows the general logic of a loop that calcu-
lates a running total.

5.7 Keeping a Running Total 273

When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator vari-
able to 0. This is a critical step. Each time the loop reads a number, it adds it to the accu-
mulator. If the accumulator starts with any value other than 0, it will not contain the
correct total when the loop finishes.

Let’s look at a program that calculates a running total. Program 5-12 calculates a com-
pany’s total sales over a period of time by taking daily sales figures as input and calculat-
ing a running total of them as they are gathered

Figure 5-12 Logic for calculating a running total

Program 5-12

 1 // This program takes daily sales figures over a period of time
 2 // and calculates their total.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int days; // Number of days
10 double total = 0.0; // Accumulator, initialized with 0
11
12 // Get the number of days.
13 cout << "For how many days do you have sales figures? ";

(program continues)

274 Chapter 5 Looping

Let’s take a closer look at this program. Line 9 defines the days variable, which will hold
the number of days that we have sales figures for. Line 10 defines the total variable,
which will hold the total sales. Because total is an accumulator, it is initialized with 0.0.

In line 14 the user enters the number of days that he or she has sales figures for. The num-
ber is assigned to the days variable. Next, the for loop in lines 17 through 23 executes.
In the loop’s initialization expression, in line 17, the variable count is defined and initial-
ized with 1. The test expression specifies the loop will repeat as long as count is less than
or equal to days. The update expression increments count by one at the end of each loop
iteration.

Line 19 defines a variable named sales. Because the variable is defined in the body of the
loop, its scope is limited to the loop. During each loop iteration, the user enters the
amount of sales for a specific day, which is assigned to the sales variable. This is done in
line 21. Then, in line 22 the value of sales is added to the existing value in the total
variable. (Note that line 22 does not assign sales to total, but adds sales to total. Put
another way, this line increases total by the amount in sales.)

Because total was initially assigned 0.0, after the first iteration of the loop, total will
be set to the same value as sales. After each subsequent iteration, total will be
increased by the amount in sales. After the loop has finished, total will contain the
total of all the daily sales figures entered. Now it should be clear why we assigned 0.0 to
total before the loop executed. If total started at any other value, the total would be
incorrect.

14 cin >> days;
15
16 // Get the sales for each day and accumulate a total.
17 for (int count = 1; count <= days; count++)
18 {
19 double sales;
20 cout << "Enter the sales for day " << count << ": ";
21 cin >> sales;
22 total += sales; // Accumulate the running total.
23 }
24
25 // Display the total sales.
26 cout << fixed << showpoint << setprecision(2);
27 cout << "The total sales are $" << total << endl;
28 return 0;
29 }

Program Output with Example Input Shown in Bold
For how many days do you have sales figures? 5 [Enter]
Enter the sales for day 1: 489.32 [Enter]
Enter the sales for day 2: 421.65 [Enter]
Enter the sales for day 3: 497.89 [Enter]
Enter the sales for day 4: 532.37 [Enter]
Enter the sales for day 5: 506.92 [Enter]
The total sales are $2448.15

Program 5-12 (continued)

5.8 Sentinels 275

5.8 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-12, in the previous section, requires the user to know in advance the number
of days he or she wishes to enter sales figures for. Sometimes the user has a list that is
very long and doesn’t know how many items there are. In other cases, the user might be
entering several lists and it is impractical to require that every item in every list be
counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the
end of the list. A sentinel is a special value that cannot be mistaken as a member of the list
and signals that there are no more values to be entered. When the user enters the sentinel,
the loop terminates.

Program 5-13 calculates the total points earned by a soccer team over a series of games. It
allows the user to enter the series of game points, then -1 to signal the end of the list.

Program 5-13

 1 // This program calculates the total number of points a
 2 // soccer team has earned over a series of games. The user
 3 // enters a series of point values, then -1 when finished.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int game = 1, // Game counter
10 points, // To hold a number of points
11 total = 0; // Accumulator
12
13 cout << "Enter the number of points your team has earned\n";
14 cout << "so far in the season, then enter -1 when finished.\n\n";
15 cout << "Enter the points for game " << game << ": ";
16 cin >> points;
17
18 while (points != -1)
19 {
20 total += points;
21 game++;
22 cout << "Enter the points for game " << game << ": ";
23 cin >> points;
24 }
25 cout << "\nThe total points are " << total << endl;
26 return 0;
27 }

(program output continues)

276 Chapter 5 Looping

The value -1 was chosen for the sentinel in this program because it is not possible for a
team to score negative points. Notice that this program performs a priming read in line 18
to get the first value. This makes it possible for the loop to immediately terminate if the
user enters -1 as the first value. Also note that the sentinel value is not included in the run-
ning total.

5.9 Using a Loop to Read Data from a File

CONCEPT: When reading a value from a file with the stream extraction operator, the
operator returns a true or false value indicating whether the value was
successfully read. This return value can be used to detect when the end of
a file has been reached.

A loop can be used to read the items stored in a file. For example, suppose the file
numbers.txt exists with the following contents.

8
7
3
9
12

As you can see, there are five numbers stored in the file. Program 5-14 uses a loop to read
the five numbers and display them on the screen.

Program Output with Example Input Shown in Bold
Enter the number of points your team has earned
so far in the season, then enter -1 when finished.

Enter the points for game 1: 7 [Enter]
Enter the points for game 2: 9 [Enter]
Enter the points for game 3: 4 [Enter]
Enter the points for game 4: 6 [Enter]
Enter the points for game 5: 8 [Enter]
Enter the points for game 6: –1 [Enter]

The total points are 34

Program 5-14

 1 // This program displays five numbers in a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 ifstream inputFile; // File stream object

Program 5-13 (continued)

5.9 Using a Loop to Read Data from a File 277

This program is limited, however, because it depends on the file having five numbers
stored in it. If the file contains fewer than five numbers, an error will occur because the
program will attempt to read beyond the end of the file. If the file has more than five num-
bers stored in it, the program will only display the first five. In many cases the exact num-
ber of items stored in a file is unknown and the program must have a way of detecting the
end of the file. Fortunately, you can use the >> operator to do this.

The stream extraction operator (>>) not only reads data from a file, but it also returns a
value indicating whether the data was successfully read or not. If the operator returns
true, then a value was successfully read. If the operator returns false, it means that no
value was read from the file. For example, look at the following code.

if (inputFile >> number)
{

// Data was successfully read from the file.
cout << "The data read from the file is " << number << endl;

}
else
{

// No data was read from the file.
cout << "Could not read an item from the file.\n";

}

Notice that the statement that reads an item from the file is also used as the conditional
expression in the if statement:

if (inputFile >> number)

This statement does two things:

1. It uses the expression inputFile >> number to read an item from the file and stores
the item in the number variable. The >> operator returns true if the item was success-
fully read, or false otherwise.

2. It tests the value returned by the stream extraction operator.

 9 int number; // To hold a value from the file
10 int count = 1; // Loop counter, initialized with 1
11
12 inputFile.open("numbers.txt"); // Open the file.
13 if (!inputFile) // Test for errors.
14 cout << "Error opening file.\n";
15 else
16 {
17 while (count <= 5)
18 {
19 inputFile >> number; // Read a number.
20 cout << number << endl; // Display the number.
21 count++; // Increment the counter.
22 }
23 inputFile.close(); // Close the file.
24 }
25 return 0;
26 }

278 Chapter 5 Looping

You can use the stream extraction operator’s return value in a loop to determine when the
end of the file has been reached. Here is an example:

while (inputFile >> number)
{

cout << number << endl;
}

Because the value returned from the >> operator controls the loop, it will read items from
the file until the end of the file has been reached.

Program 5-15 is a modification of Program 5-14. Instead of reading the first five items in the
file, however, this program reads all of the items in the file regardless of how many there are.

Checkpoint
5.12 Write a for loop that repeats seven times, asking the user to enter a number. The

loop should also calculate the sum of the numbers entered.

5.13 In the following program segment, which variable is the counter variable and
which is the accumulator?

int a, x, y = 0;
for (x = 0; x < 10; x++)
{
 cout << "Enter a number: ";
 cin >> a;
 y += a;
}
cout << "The sum of those numbers is " << y << endl;

Program 5-15

 1 // This program displays all of the numbers in a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 ifstream inputFile; // File stream object
 9 int number; // To hold a value from the file
10
11 inputFile.open("numbers.txt"); // Open the file.
12 if (!inputFile) // Test for errors.
13 cout << "Error opening file.\n";
14 else
15 {
16 while (inputFile >> number) // Read a number
17 {
18 cout << number << endl; // Display the number.
19 }
20 inputFile.close(); // Close the file.
21 }
22 return 0;
23 }

5.11 Neted Loops 279

5.14 Why should you be careful when choosing a sentinel value?

5.15 How would you modify program 5-13 so any negative value is a sentinel?

5.16 Assume that a file named values.txt exists and that it contains a series of num-
bers, one per line in the file. Also assume that a program can successfully execute
the following statements to open the file:

ifstream inputFile;
inputFile.open("values.txt");

Write a loop that reads each number from the file and displays each number on the
screen.

5.10
Focus on Software Engineering:
Deciding Which Loop to Use

CONCEPT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of the three C++ loops is ideal to use in different situations. Here’s a short summary
of when each loop should be used.

• The while loop. The while loop is a conditional loop, which means it repeats as
long as a particular condition exists. It is also a pretest loop, so it is ideal in situa-
tions where you do not want the loop to iterate if the condition is false from the
beginning. For example, validating input that has been read and reading lists of
data terminated by a sentinel value are good applications of the while loop.

• The do-while loop. The do-while loop is also a conditional loop. Unlike the
while loop, however, do-while is a posttest loop. It is ideal in situations where
you always want the loop to iterate at least once. The do-while loop is a good
choice for repeating a menu.

• The for loop. The for loop is a pretest loop that has built-in expressions for ini-
tializing, testing, and updating. These expressions make it very convenient to use
a counter variable to control the number of iterations that the loop performs. The
initialization expression can initialize the counter variable to a starting value, the
test expression can test the counter variable to determine whether it holds the
maximum value, and the update expression can increment the counter variable.
The for loop is ideal in situations where the exact number of iterations is known.

5.11 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

A nested loop is a loop that appears inside another loop. A clock is a good example of some-
thing that works like a nested loop. The second hand, minute hand, and hour hand all spin
around the face of the clock. The hour hand, however, only makes one revolution for every
12 of the minute hand’s revolutions. And it takes 60 revolutions of the second hand for the

280 Chapter 5 Looping

minute hand to make one revolution. This means that for every complete revolution of the
hour hand, the second hand has revolved 720 times.

Here is a program segment with a for loop that partially simulates a digital clock. It dis-
plays the seconds from 0 to 59:

cout << fixed << right;
cout.fill('0');
for (int seconds = 0; seconds < 60; seconds++)
 cout << setw(2) << seconds << endl;

We can add a minutes variable and nest the loop above inside another loop that cycles
through 60 minutes:

cout << fixed << right;
cout.fill('0');
for (int minutes = 0; minutes < 60; minutes++)
{

for (int seconds = 0; seconds < 60; seconds++)
{

cout << setw(2) << minutes << ":";
cout << setw(2) << seconds << endl;

}
}

To make the simulated clock complete, another variable and loop can be added to count
the hours:

cout << fixed << right;
cout.fill('0');
for (int hours = 0; hours < 24; hours++)
{

for (int minutes = 0; minutes < 60; minutes++)
{

for (int seconds = 0; seconds < 60; seconds++)
{

cout << setw(2) << hours << ":";
cout << setw(2) << minutes << ":";
cout << setw(2) << seconds << endl;

}
}

}

The output of the previous program segment follows:

00:00:00
00:00:01
00:00:02

. (The program will count through each second of 24 hours.)

.

.
23:59:59

NOTE: The fill member function of cout changes the fill character, which is a space by
default. In the program segment above, the fill function causes a zero to be printed in
front of all single digit numbers.

5.11 Nested Loops 281

The innermost loop will iterate 60 times for each iteration of the middle loop. The middle
loop will iterate 60 times for each iteration of the outermost loop. When the outermost
loop has iterated 24 times, the middle loop will have iterated 1,440 times and the inner-
most loop will have iterated 86,400 times!

The simulated clock example brings up a few points about nested loops:

• An inner loop goes through all of its iterations for each iteration of an outer loop.
• Inner loops complete their iterations faster than outer loops.
• To get the total number of iterations of a nested loop, multiply the number of

iterations of all the loops.

Program 5-16 is another test-averaging program. It asks the user for the number of stu-
dents and the number of test scores per student. A nested inner loop, in lines 26 through
33, asks for all the test scores for one student, iterating once for each test score. The outer
loop in lines 23 through 37 iterates once for each student.

Program 5-16

 1 // This program averages test scores. It asks the user for the
 2 // number of students and the number of test scores per student.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int numStudents, // Number of students
10 numTests; // Number of tests per student
11 double total, // Accumulator for total scores
12 average; // Average test score
13
14 // Set up numeric output formatting.
15 cout << fixed << showpoint << setprecision(1);
16
17 // Get the number of students.
18 cout << "This program averages test scores.\n";
19 cout << "For how many students do you have scores? ";
20 cin >> numStudents;
21
22 // Get the number of test scores per student.
23 cout << "How many test scores does each student have? ";
24 cin >> numTests;
25
26 // Determine each student's average score.
27 for (int student = 1; student <= numStudents; student++)
28 {
29 total = 0; // Initialize the accumulator.
30 for (int test = 1; test <= numTests; test++)
31 {
32 double score;
33 cout << "Enter score " << test << " for ";
34 cout << "student " << student << ": ";

(program continues)

282 Chapter 5 Looping

5.12 Breaking Out of a Loop

CONCEPT: The break statement causes a loop to terminate early.

Sometimes it’s necessary to stop a loop before it goes through all its iterations. The break
statement, which was used with switch in Chapter 4, can also be placed inside a loop.
When it is encountered, the loop stops and the program jumps to the statement immedi-
ately following the loop.

The while loop in the following program segment appears to execute 10 times, but the
break statement causes it to stop after the fifth iteration.

int count = 0;
while (count++ < 10)
{
 cout << count << endl;
 if (count == 5)
 break;
}

35 cin >> score;
36 total += score;
37 }
38 average = total / numTests;
39 cout << "The average score for student " << student;
40 cout << " is " << average << ".\n\n";
41 }
42 return 0;
43 }

Program Output with Example Input Shown in Bold
This program averages test scores.
For how many students do you have scores? 2 [Enter]
How many test scores does each student have? 3 [Enter]
Enter score 1 for student 1: 84 [Enter]
Enter score 2 for student 1: 79 [Enter]
Enter score 3 for student 1: 97 [Enter]
The average score for student 1 is 86.7.

Enter score 1 for student 2: 92 [Enter]
Enter score 2 for student 2: 88 [Enter]
Enter score 3 for student 2: 94 [Enter]
The average score for student 2 is 91.3.

WARNING! Use the break statement with great caution. Because it bypasses the loop
condition to terminate the loop, it makes code difficult to understand and debug. For this
reason, you should avoid using break when possible. Because it is part of the C++
language, we discuss it briefly in this section.

Program 5-16 (continued)

5.12 Breaking Out of a Loop 283

Program 5-17 uses the break statement to interrupt a for loop. The program asks the
user for a number and then displays the value of that number raised to the powers of 0
through 10. The user can stop the loop at any time by entering Q.

Using break in a Nested Loop
In a nested loop, the break statement only interrupts the loop it is placed in. The following pro-
gram segment displays five rows of asterisks on the screen. The outer loop controls the number
of rows and the inner loop controls the number of asterisks in each row. The inner loop is
designed to display 20 asterisks, but the break statement stops it during the eleventh iteration.

for (int row = 0; row < 5; row++)
{
 for (int star = 0; star < 20; star++)
 {

Program 5-17

 1 // This program raises the user's number to the powers
 2 // of 0 through 10.
 3 #include <iostream>
 4 #include <cmath>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double value;
10 char choice;
11
12 cout << "Enter a number: ";
13 cin >> value;
14 cout << "This program will raise " << value;
15 cout << " to the powers of 0 through 10.\n";
16 for (int count = 0; count <= 10; count++)
17 {
18 cout << value << " raised to the power of ";
19 cout << count << " is " << pow(value, count);
20 cout << "\nEnter Q to quit or any other key ";
21 cout << "to continue. ";
22 cin >> choice;
23 if (choice == 'Q' || choice == 'q')
24 break;
25 }
26 return 0;
27 }

Program Output with Example Input Shown in Bold
Enter a number: 2 [Enter]
This program will raise 2 to the powers of 0 through 10.
2 raised to the power of 0 is 1
Enter Q to quit or any other key to continue. C [Enter]
2 raised to the power of 1 is 2
Enter Q to quit or any other key to continue. C [Enter]
2 raised to the power of 2 is 4
Enter Q to quit or any other key to continue. Q [Enter]

284 Chapter 5 Looping

 cout << '*';
 if (star == 10)
 break;
 }
 cout << endl;
}

The output of the program segment above is:

5.13 The continue Statement

CONCEPT: The continue statement causes a loop to stop its current iteration and
begin the next one.

The continue statement causes the current iteration of a loop to end immediately. When
continue is encountered, all the statements in the body of the loop that appear after it are
ignored, and the loop prepares for the next iteration.

In a while loop, this means the program jumps to the test expression at the top of the
loop. As usual, if the expression is still true, the next iteration begins. In a do-while loop,
the program jumps to the test expression at the bottom of the loop, which determines
whether the next iteration will begin. In a for loop, continue causes the update expres-
sion to be executed, and then the test expression to be evaluated.

The following program segment demonstrates the use of continue in a while loop:

int testVal = 0;
while (testVal++ < 10)
{
 if (testVal == 4)
 continue;
 cout << testVal << " ";
}

This loop looks like it displays the integers 1 through 10. When testVal is equal to 4,
however, the continue statement causes the loop to skip the cout statement and begin
the next iteration. The output of the loop is

1 2 3 5 6 7 8 9 10

Program 5-18 shows a practical application of the continue statement. The program cal-
culates the charges for DVD rentals, where current releases cost $3.50 and all others cost

WARNING! As with the break statement, use continue with great caution. It makes
code difficult to understand and debug. Because it is part of the C++ language, we discuss
it briefly in this section.

5.13 The continue Statement 285

$2.50. If a customer rents several DVDs, every third one is free. The continue statement
is used to skip the part of the loop that calculates the charges for every third DVD.

Case Study on CD: See the Loan Amortization Case Study on the Student CD.

Program 5-18

 1 // This program calculates the charges for DVD rentals.
 2 // Every third DVD is free.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int dvdCount = 1; // DVD counter
10 int numDVDs; // Number of DVDs rented
11 double total = 0.0; // Accumulator
12 char current; // Current release, Y or N
13
14 // Get the number of DVDs.
15 cout << "How many DVDs are being rented? ";
16 cin >> numDVDs;
17
18 // Determine the charges.
19 do
20 {
21 if ((dvdCount % 3) == 0)
22 {
23 cout << "DVD #" << dvdCount << " is free!\n";
24 continue; // Immediately start the next iteration
25 }
26 cout << "Is DVD #" << dvdCount;
27 cout << " a current release? (Y/N) ";
28 cin >> current;
29 if (current == 'Y' || current == 'y')
30 total += 3.50;
31 else
32 total += 2.50;
33 } while (dvdCount++ < numDVDs);
34
35 // Display the total.
36 cout << fixed << showpoint << setprecision(2);
37 cout << "The total is $" << total << endl;
38 return 0;
39 }

Program Output with Example Input Shown in Bold
How many DVDs are being rented? 6 [Enter]
Is DVD #1 a current release? (Y/N) y [Enter]
Is DVD #2 a current release? (Y/N) n [Enter]
DVD #3 is free!
Is DVD #4 a current release? (Y/N) n [Enter]
Is DVD #5 a current release? (Y/N) y [Enter]
DVD #6 is free!
The total is $12.00

286 Chapter 5 Looping

Review Questions and Exercises

Short Answer
1. Why should you indent the statements in the body of a loop?

2. Describe the difference between pretest loops and posttest loops.

3. Why are the statements in the body of a loop called conditionally executed state-
ments?

4. What is the difference between the while loop and the do-while loop?

5. Which loop should you use in situations where you wish the loop to repeat until the
test expression is false, and the loop should not execute if the test expression is false to
begin with?

6. Which loop should you use in situations where you wish the loop to repeat until the
test expression is false, but the loop should execute at least one time?

7. Which loop should you use when you know the number of required iterations?

8. Why is it critical that counter variables be properly initialized?

9. Why is it critical that accumulator variables be properly initialized?

10. Why should you be careful not to place a statement in the body of a for loop that
changes the value of the loop’s counter variable?

Fill-in-the-Blank

11. To __________ a value means to increase it by one, and to __________ a value means
to decrease it by one.

12. When the increment or decrement operator is placed before the operand (or to the
operand’s left), the operator is being used in __________ mode.

13. When the increment or decrement operator is placed after the operand (or to the oper-
and’s right), the operator is being used in __________ mode.

14. The statement or block that is repeated is known as the __________ of the loop.

15. Each repetition of a loop is known as a(n) __________.

16. A loop that evaluates its test expression before each repetition is a(n) __________ loop.

17. A loop that evaluates its test expression after each repetition is a(n) __________ loop.

18. A loop that does not have a way of stopping is a(n) __________ loop.

19. A(n) __________ is a variable that “counts” the number of times a loop repeats.

20. A(n) __________ is a sum of numbers that accumulates with each iteration of a loop.

21. A(n) __________ is a variable that is initialized to some starting value, usually zero,
and then has numbers added to it in each iteration of a loop.

22. A(n) __________ is a special value that marks the end of a series of values.

23. The __________ loop always iterates at least once.

Review Questions and Exercises 287

24. The __________ and __________ loops will not iterate at all if their test expressions
are false to start with.

25. The __________ loop is ideal for situations that require a counter.

26. Inside the for loop’s parentheses, the first expression is the __________ , the second
expression is the __________ , and the third expression is the __________.

27. A loop that is inside another is called a(n) __________ loop.

28. The __________ statement causes a loop to terminate immediately.

29. The __________ statement causes a loop to skip the remaining statements in the cur-
rent iteration.

Algorithm Workbench

30. Write a while loop that lets the user enter a number. The number should be multi-
plied by 10, and the result stored in the variable product. The loop should iterate as
long as product contains a value less than 100.

31. Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The user should be asked if he or she wishes to per-
form the operation again. If so, the loop should repeat; otherwise it should terminate.

32. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

33. Write a loop that asks the user to enter a number. The loop should iterate 10 times
and keep a running total of the numbers entered.

34. Write a nested loop that displays 10 rows of ‘#’ characters. There should be 15 ‘#’
characters in each row.

35. Convert the following while loop to a do-while loop:

int x = 1;
while (x > 0)
{
 cout << "enter a number: ";
 cin >> x;
}

36. Convert the following do-while loop to a while loop:

char sure;
do
{
 cout << "Are you sure you want to quit? ";
 cin >> sure;
} while (sure != 'Y' && sure != 'N');

37. Convert the following while loop to a for loop:

int count = 0;
while (count < 50)
{
 cout << "count is " << count << endl;
 count++;
}

288 Chapter 5 Looping

38. Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)
{
 cout << x << " seconds to go.\n";
}

True or False

39. T F The operand of the increment and decrement operators can be any valid
mathematical expression.

40. T F The cout statement in the following program segment will display 5:

int x = 5;
cout << x++;

41. T F The cout statement in the following program segment will display 5:

int x = 5;
cout << ++x;

42. T F The while loop is a pretest loop.

43. T F The do-while loop is a pretest loop.

44. T F The for loop is a posttest loop.

45. T F It is not necessary to initialize counter variables.

46. T F All three of the for loop’s expressions may be omitted.

47. T F One limitation of the for loop is that only one variable may be initialized in
the initialization expression.

48. T F Variables may be defined inside the body of a loop.

49. T F A variable may be defined in the initialization expression of the for loop.

50. T F In a nested loop, the outer loop executes faster than the inner loop.

51. T F In a nested loop, the inner loop goes through all of its iterations for every sin-
gle iteration of the outer loop.

52. T F To calculate the total number of iterations of a nested loop, add the number
of iterations of all the loops.

53. T F The break statement causes a loop to stop the current iteration and begin the
next one.

54. T F The continue statement causes a terminated loop to resume.

55. T F In a nested loop, the break statement only interrupts the loop it is placed in.

Find the Errors

Each of the following programs has errors. Find as many as you can.

56. // Find the error in this program.
#include <iostream>
using namespace std;

int main()
{
 int num1 = 0, num2 = 10, result;

Review Questions and Exercises 289

 num1++;
 result = ++(num1 + num2);
 cout << num1 << " " << num2 << " " << result;
 return 0;
}

57. // This program adds two numbers entered by the user.
#include <iostream>
using namespace std;

int main()
{
 int num1, num2;
 char again;

 while (again == 'y' || again == 'Y')
 cout << "Enter a number: ";
 cin >> num1;
 cout << "Enter another number: ";
 cin >> num2;
 cout << "Their sum is << (num1 + num2) << endl;
 cout << "Do you want to do this again? ";
 cin >> again;
 return 0;
}

58. // This program uses a loop to raise a number to a power.
#include <iostream>
using namespace std;

int main()
{
 int num, bigNum, power, count;

 cout << "Enter an integer: ";
 cin >> num;
 cout << "What power do you want it raised to? ";
 cin >> power;
 bigNum = num;
 while (count++ < power);
 bigNum *= num;
 cout << "The result is << bigNum << endl;
 return 0;
}

59. // This program averages a set of numbers.
#include <iostream>
using namespace std;

int main()
{
 int numCount, total;
 double average;

 cout << "How many numbers do you want to average? ";
 cin >> numCount;

290 Chapter 5 Looping

 for (int count = 0; count < numCount; count++)
 {
 int num;
 cout << "Enter a number: ";
 cin >> num;
 total += num;
 count++;
 }
 average = total / numCount;
 cout << "The average is << average << endl;
 return 0;
}

60. // This program displays the sum of two numbers.
#include <iostream>
using namespace std;

int main()
{
 int choice, num1, num2;

 do
 {
 cout << "Enter a number: ";
 cin >> num1;
 cout << "Enter another number: ";
 cin >> num2;
 cout << "Their sum is " << (num1 + num2) << endl;
 cout << "Do you want to do this again?\n";
 cout << "1 = yes, 0 = no\n";
 cin >> choice;
 } while (choice = 1)
 return 0;
}

61. // This program displays the sum of the numbers 1-100.
#include <iostream>
using namespace std;

int main()
{
 int count = 1, total;

 while (count <= 100)
 total += count;
 cout << "The sum of the numbers 1-100 is ";
 cout << total << endl;
 return 0;
}

Review Questions and Exercises 291

Programming Challenges
1. Sum of Numbers

Write a program that asks the user for a positive integer value. The program should
use a loop to get the sum of all the integers from 1 up to the number entered. For
example, if the user enters 50, the loop will find the sum of 1, 2, 3, 4, ... 50.

Input Validation: Do not accept a negative starting number.

2. Characters for the ASCII Codes

Write a program that uses a loop to display the characters for the ASCII codes 0
through 127. Display 16 characters on each line.

3. Ocean Levels

Assuming the ocean’s level is currently rising at about 1.5 millimeters per year, write a
program that displays a table showing the number of millimeters that the ocean will
have risen each year for the next 25 years.

4. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program
that uses a loop to display the number of calories burned after 10, 15, 20, 25, and 30
minutes.

5. Membership Fees Increase

A country club, which currently charges $2,500 per year for membership, has
announced it will increase its membership fee by 4% each year for the next six years.
Write a program that uses a loop to display the projected rates for the next six years.

6. Distance Traveled

The distance a vehicle travels can be calculated as follows:

distance = speed * time

For example, if a train travels 40 miles per hour for 3 hours, the distance traveled is
120 miles.

Write a program that asks the user for the speed of a vehicle (in miles per hour) and
how many hours it has traveled. The program should then use a loop to display the
distance the vehicle has traveled for each hour of that time period. Here is an example
of the output:

What is the speed of the vehicle in mph? 40
How many hours has it traveled? 3
Hour Distance Traveled

 1 40
 2 80
 3 120

Input Validation: Do not accept a negative number for speed and do not accept any
value less than 1 for time traveled.

Solving the
Calories
Burned

Problem

292 Chapter 5 Looping

7. Pennies for Pay

Write a program that calculates how much a person would earn over a period of time
if his or her salary is one penny the first day and two pennies the second day, and con-
tinues to double each day. The program should ask the user for the number of days.
Display a table showing how much the salary was for each day, and then show the
total pay at the end of the period. The output should be displayed in a dollar amount,
not the number of pennies.

Input Validation: Do not accept a number less than 1 for the number of days worked.

8. Math Tutor

This program started in Programming Challenge 15 of Chapter 3, and was modified
in Programming Challenge 9 of Chapter 4. Modify the program again so it displays a
menu allowing the user to select an addition, subtraction, multiplication, or division
problem. The final selection on the menu should let the user quit the program. After
the user has finished the math problem, the program should display the menu again.
This process is repeated until the user chooses to quit the program.

Input Validation: If the user selects an item not on the menu, display an error message
and display the menu again.

9. Hotel Occupancy

Write a program that calculates the occupancy rate for a hotel. The program should
start by asking the user how many floors the hotel has. A loop should then iterate
once for each floor. In each iteration, the loop should ask the user for the number of
rooms on the floor and how many of them are occupied. After all the iterations, the
program should display how many rooms the hotel has, how many of them are occu-
pied, how many are unoccupied, and the percentage of rooms that are occupied. The
percentage may be calculated by dividing the number of rooms occupied by the num-
ber of rooms.

Input Validation: Do not accept a value less than 1 for the number of floors. Do not
accept a number less than 10 for the number of rooms on a floor.

10. Average Rainfall

Write a program that uses nested loops to collect data and calculate the average rain-
fall over a period of years. The program should first ask for the number of years. The
outer loop will iterate once for each year. The inner loop will iterate twelve times,
once for each month. Each iteration of the inner loop will ask the user for the inches
of rainfall for that month.

After all iterations, the program should display the number of months, the total
inches of rainfall, and the average rainfall per month for the entire period.

Input Validation: Do not accept a number less than 1 for the number of years. Do not
accept negative numbers for the monthly rainfall.

NOTE: It is traditional that most hotels do not have a thirteenth floor. The loop in this
program should skip the entire thirteenth iteration.

Review Questions and Exercises 293

11. Population

Write a program that will predict the size of a population of organisms. The program
should ask the user for the starting number of organisms, their average daily population
increase (as a percentage), and the number of days they will multiply. A loop should dis-
play the size of the population for each day.

Input Validation: Do not accept a number less than 2 for the starting size of the pop-
ulation. Do not accept a negative number for average daily population increase. Do
not accept a number less than 1 for the number of days they will multiply.

12. Celsius to Fahrenheit Table

In Programming Challenge 10 of Chapter 3 you were asked to write a program that
converts a Celsius temperature to Fahrenheit. Modify that program so it uses a loop
to display a table of the Celsius temperatures 0–20, and their Fahrenheit equivalents.

13. The Greatest and Least of These

Write a program with a loop that lets the user enter a series of integers. The user
should enter -99 to signal the end of the series. After all the numbers have been
entered, the program should display the largest and smallest numbers entered.

14. Student Line Up

A teacher has asked all her students to line up single file according to their first name.
For example, in one class Amy will be at the front of the line and Yolanda will be at
the end. Write a program that prompts the user to enter the number of students in the
class, then loops to read in that many names. Once all the names have been read in it
reports which student would be at the front of the line and which one would be at the
end of the line. You may assume that no two students have the same name.

Input Validation: Do not accept a number less than 1 or greater than 25 for the num-
ber of students.

15. Payroll Report

Write a program that displays a weekly payroll report. A loop in the program should
ask the user for the employee number, gross pay, state tax, federal tax, and FICA
withholdings. The loop will terminate when 0 is entered for the employee number.
After the data is entered, the program should display totals for gross pay, state tax,
federal tax, FICA withholdings, and net pay.

Input Validation: Do not accept negative numbers for any of the items entered. Do not
accept values for state, federal, or FICA withholdings that are greater than the gross pay.
If the sum state tax + federal tax + FICA withholdings for any employee is greater than
gross pay, print an error message and ask the user to re-enter the data for that employee.

16. Savings Account Balance

Write a program that calculates the balance of a savings account at the end of a period
of time. It should ask the user for the annual interest rate, the starting balance, and
the number of months that have passed since the account was established. A loop
should then iterate once for every month, performing the following:

294 Chapter 5 Looping

A) Ask the user for the amount deposited into the account during the month. (Do not
accept negative numbers.) This amount should be added to the balance.

B) Ask the user for the amount withdrawn from the account during the month. (Do
not accept negative numbers.) This amount should be subtracted from the balance.

C) Calculate the monthly interest. The monthly interest rate is the annual interest rate
divided by twelve. Multiply the monthly interest rate by the balance, and add the
result to the balance.

After the last iteration, the program should display the ending balance, the total
amount of deposits, the total amount of withdrawals, and the total interest earned.

17. Sales Bar Chart

Write a program that asks the user to enter today’s sales for five stores. The program
should then display a bar graph comparing each store’s sales. Create each bar in the bar
graph by displaying a row of asterisks. Each asterisk should represent $100 of sales.

Here is an example of the program’s output.

Enter today's sales for store 1: 1000 [Enter]
Enter today's sales for store 2: 1200 [Enter]
Enter today's sales for store 3: 1800 [Enter]
Enter today's sales for store 4: 800 [Enter]
Enter today's sales for store 5: 1900 [Enter]

SALES BAR CHART
(Each * = $100)
Store 1: **********
Store 2: ************
Store 3: ******************
Store 4: ********
Store 5: *******************

18. Population Bar Chart

Write a program that produces a bar chart showing the population growth of Prai-
rieville, a small town in the Midwest, at 20-year intervals during the past 100 years.
The program should read in the population figures (rounded to the nearest 1,000 peo-
ple) for 1900, 1920, 1940, 1960, 1980, and 2000 from a file. For each year it should
display the date and a bar consisting of one asterisk for each 1,000 people. The data
can be found in the people.dat file.

Here is an example of how the chart might begin:

PRAIRIEVILLE POPULATION GROWTH
(each * represents 1,000 people)
1900 **
1920 ****
1940 *****

NOTE: If a negative balance is calculated at any point, a message should be displayed
indicating the account has been closed and the loop should terminate.

Review Questions and Exercises 295

19. Budget Analysis

Write a program that asks the user to enter the amount that he or she has budgeted
for a month. A loop should then prompt the user to enter each of his or her expenses
for the month, and keep a running total. When the loop finishes, the program should
display the amount that the user is over or under budget.

20. Random Number Guessing Game

Write a program that generates a random number and asks the user to guess what the
number is. If the user's guess is higher than the random number, the program should
display “Too high, try again.” If the user’s guess is lower than the random number, the
program should display “Too low, try again.” The program should use a loop that
repeats until the user correctly guesses the random number.

21. Random Number Guessing Game Enhancement

Enhance the program that you wrote for Programming Challenge 20 so it keeps a
count of the number of guesses that the user makes. When the user correctly guesses
the random number, the program should display the number of guesses.

22. Square Display

Write a program that asks the user for a positive integer no greater than 15. The pro-
gram should then display a square on the screen using the character ‘X’. The number
entered by the user will be the length of each side of the square. For example, if the
user enters 5, the program should display the following:

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

If the user enters 8, the program should display the following:

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

23. Pattern Displays

Write a program that uses a loop to display Pattern A below, followed by another
loop that displays Pattern B.

296 Chapter 5 Looping

24. Using Files—Numeric Processing

The Student CD contains a file named random.txt. This file contains a long list of
random numbers. Copy the file to your hard drive and then write a program that
opens the file, reads all the numbers from the file, and calculates the following:

A) The number of numbers in the file

B) The sum of all the numbers in the file (a running total)

C) The average of all the numbers in the file

The program should display the number of numbers found in the file, the sum of the
numbers, and the average of the numbers.

25. Using Files—Student Line Up

Modify the Student Line Up program described in Programming Challenge 14 so that
it gets the names from a data file. Names should be read in until there is no more data
to read. Data to test your program can be found in the LineUp.dat file.

26. Using Files—Savings Account Balance Modification

Modify the Savings Account Balance program described in Programming Challenge
16 so that it writes the final report to a file. After the program runs, print the file to
hand in to your instructor.

Pattern A Pattern B

+
++
+++
++++
+++++
++++++
+++++++
++++++++
+++++++++
++++++++++

++++++++++
+++++++++
++++++++
+++++++
++++++
+++++
++++
+++
++
+

297

C
H

A
P

T
E

R

6 Functions

6.1 Focus on Software Engineering: Modular Programming

CONCEPT: A program may be broken up into manageable functions.

A function is a collection of statements that performs a specific task. So far you have experi-
enced functions in two ways: (1) you have created a function named main in every program
you’ve written, and (2) you have used library functions such as pow and strcmp. In this chap-
ter you will learn how to create your own functions that can be used like library functions.

Functions are commonly used to break a problem down into small manageable pieces.
Instead of writing one long function that contains all of the statements necessary to solve
a problem, several small functions that each solve a specific part of the problem can be
written. These small functions can then be executed in the desired order to solve the prob-
lem. This approach is sometimes called divide and conquer because a large problem is

TOPICS

6.1 Focus on Software Engineering:
Modular Programming

6.2 Defining and Calling Functions
6.3 Function Prototypes
6.4 Sending Data into a Function
6.5 Passing Data by Value
6.6 Focus on Software Engineering:

Using Functions in a Menu-Driven
Program

6.7 The return Statement
6.8 Returning a Value from a Function

6.9 Returning a Boolean Value
6.10 Local and Global Variables
6.11 Static Local Variables
6.12 Default Arguments
6.13 Using Reference Variables

as Parameters
6.14 Overloading Functions
6.15 The exit() Function
6.16 Stubs and Drivers

298 Chapter 6 Functions

divided into several smaller problems that are easily solved. Figure 6-1 illustrates this idea
by comparing two programs: one that uses a long complex function containing all of the
statements necessary to solve a problem, and another that divides a problem into smaller
problems, each of which are handled by a separate function.

Another reason to write functions is that they simplify programs. If a specific task is per-
formed in several places in a program, a function can be written once to perform that
task, and then be executed anytime it is needed. This benefit of using functions is known
as code reuse because you are writing the code to perform a task once and then reusing it
each time you need to perform the task.

Figure 6-1

main function

function 2

function 3

function 4

 int main()
 {
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 statement;
 }

 int main()
 {
 statement;
 statement;
 statement;
 }

 void function2()
 {
 statement;
 statement;
 statement;
 }

 void function3()
 {
 statement;
 statement;
 statement;
 }

 void function4()
 {
 statement;
 statement;
 statement;
 }

This program has one long, complex
function containing all of the statements
necessary to solve a problem.

In this program the problem has been
divided into smaller problems, each of
which is handled by a separate function.

6.2 Defining and Calling Functions 299

6.2 Defining and Calling Functions

CONCEPT: A function call is a statement that causes a function to execute. A
function definition contains the statements that make up the function.

When creating a function, you must write its definition. All function definitions have the
following parts:

Return type: A function can send a value to the part of the program that executed it.
The return type is the data type of the value that is sent from the function.

Name: You should give each function a descriptive name. In general, the same
rules that apply to variable names also apply to function names.

Parameter list: The program can send data into a function. The parameter list is a list of
variables that hold the values being passed to the function.

Body: The body of a function is the set of statements that perform the function’s
operation. They are enclosed in a set of braces.

Figure 6-2 shows the definition of a simple function with the various parts labeled.

The line in the definition that reads int main() is called the function header.

void Functions
You already know that a function can return a value. The main function in all of the pro-
grams you have seen in this book is declared to return an int value to the operating sys-
tem. The return 0; statement causes the value 0 to be returned when the main function
finishes executing.

It isn’t necessary for all functions to return a value, however. Some functions simply per-
form one or more statements which follows terminate. These are called void functions.
The displayMessage function, which follows is an example.

void displayMessage()
{
 cout << "Hello from the function displayMessage.\n";
}

Figure 6-2

int main ()
{
 cout << "Hello World\n";
 return 0;
}

Function name
Parameter list (This one is empty)

Function body

Return type

300 Chapter 6 Functions

The function’s name is displayMessage. This name gives an indication of what the func-
tion does: It displays a message. You should always give functions names that reflect their
purpose. Notice that the function’s return type is void. This means the function does not
return a value to the part of the program that executed it. Also notice the function has no
return statement. It simply displays a message on the screen and exits.

Calling a Function
A function is executed when it is called. Function main is called automatically when a
program starts, but all other functions must be executed by function call statements.
When a function is called, the program branches to that function and executes the state-
ments in its body. Let’s look at Program 6-1, which contains two functions: main and
displayMessage.

The function displayMessage is called by the following statement in line 22:

displayMessage();

Program 6-1

 1 // This program has two functions: main and displayMessage
 2 #include <iostream>
 3 using namespace std;
 4
 5 //***
 6 // Definition of function displayMessage *
 7 // This function displays a greeting. *
 8 //***
 9
10 void displayMessage()
11 {
12 cout << "Hello from the function displayMessage.\n";
13 }
14
15 //***
16 // Function main *
17 //***
18
19 int main()
20 {
21 cout << "Hello from main.\n";
22 displayMessage();
23 cout << "Back in function main again.\n";
24 return 0;
25 }

Program Output
Hello from main.
Hello from the function displayMessage.
Back in function main again.

6.2 Defining and Calling Functions 301

This statement is the function call. It is simply the name of the function followed by a set
of parentheses and a semicolon. Let’s compare this with the function header:

Function Header void displayMessage()
Function Call displayMessage();

The function header is part of the function definition. It declares the function’s return
type, name, and parameter list. It is not terminated with a semicolon because the defini-
tion of the function’s body follows it.

The function call is a statement that executes the function, so it is terminated with a semi-
colon like all other C++ statements. The return type is not listed in the function call, and,
if the program is not passing data into the function, the parentheses are left empty.

Even though the program starts executing at main, the function displayMessage is
defined first. This is because the compiler must know the function’s return type, the num-
ber of parameters, and the type of each parameter before the function is called. One way
to ensure the compiler will know this information is to place the function definition before
all calls to that function. (Later you will see an alternative, preferred method of accom-
plishing this.)

Notice how Program 6-1 flows. It starts, of course, in function main. When the call to
displayMessage is encountered, the program branches to that function and performs its
statements. Once displayMessage has finished executing, the program branches back to
function main and resumes with the line that follows the function call. This is illustrated
in Figure 6-3.

NOTE: Later in this chapter you will see how data can be passed into a function by being
listed inside the parentheses.

NOTE: You should always document your functions by writing comments that describe
what they do. These comments should appear just before the function definition.

Figure 6-3

void displayMessage()
{
 cout << "Hello from the function displayMessage.\n";
}

int main()
{
 cout << "Hello from main.\n"
 displayMessage();
 cout << "Back in function main again.\n";
 return 0;
}

302 Chapter 6 Functions

Function call statements may be used in control structures like loops, if statements, and
switch statements. Program 6-2 places the displayMessage function call inside a loop.

It is possible to have many functions and function calls in a program. Program 6-3 has
three functions: main, first, and second.

Program 6-2

 1 // The function displayMessage is repeatedly called from a loop.
 2 #include <iostream>
 3 using namespace std;
 4
 5 //***
 6 // Definition of function displayMessage *
 7 // This function displays a greeting. *
 8 //***
 9
10 void displayMessage()
11 {
12 cout << "Hello from the function displayMessage.\n";
13 }
14
15 //***
16 // Function main *
17 //***
18
19 int main()
20 {
21 cout << "Hello from main.\n";
22 for (int count = 0; count < 5; count++)
23 displayMessage(); // Call displayMessage
24 cout << "Back in function main again.\n";
25 return 0;
26 }

Program Output
Hello from main.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Hello from the function displayMessage.
Back in function main again.

Program 6-3

 1 // This program has three functions: main, first, and second.
 2 #include <iostream>
 3 using namespace std;
 4

6.2 Defining and Calling Functions 303

In lines 32 and 33 of Program 6-3, function main contains a call to first and a call to
second:

first();
second();

Each call statement causes the program to branch to a function and then back to main
when the function is finished. Figure 6-4 illustrates the paths taken by the program.

 5 //***
 6 // Definition of function first *
 7 // This function displays a message. *
 8 //***
 9
10 void first()
11 {
12 cout << "I am now inside the function first.\n";
13 }

 14
15 //***
16 // Definition of function second *
17 // This function displays a message. *
18 //***
19
20 void second()
21 {
22 cout << "I am now inside the function second.\n";
23 }
24
25 //***
26 // Function main *
27 //***
28
29 int main()
30 {
31 cout << "I am starting in function main.\n";
32 first(); // Call function first
33 second(); // Call function second
34 cout << "Back in function main again.\n";
35 return 0;
36 }

Program Output
I am starting in function main.
I am now inside the function first.
I am now inside the function second.
Back in function main again.

304 Chapter 6 Functions

Functions may also be called in a hierarchical, or layered fashion. This is demonstrated by
Program 6-4, which has three functions: main, deep, and deeper.

Figure 6-4

Program 6-4

 1 // This program has three functions: main, deep, and deeper
 2 #include <iostream>
 3 using namespace std;
 4
 5 //***
 6 // Definition of function deeper *
 7 // This function displays a message. *
 8 //***
 9
10 void deeper()
11 {
12 cout << "I am now inside the function deeper.\n";
13 }
14
15 //***
16 // Definition of function deep *
17 // This function displays a message. *
18 //***
19

void first()
{
 cout << "I am now inside the function first.\n";
}

void second()
{
 cout << "I am now inside the function second.\n";
}

int main()
{
 cout << "I am starting in function main.\n"
 first();
 second();
 cout << "Back in function main again.\n";
 return 0;
}

6.2 Defining and Calling Functions 305

In Program 6-4, function main only calls the function deep. In turn, deep calls deeper.
The paths taken by the program are shown in Figure 6-5.

20 void deep()
21 {
22 cout << "I am now inside the function deep.\n";
23 deeper(); // Call function deeper
24 cout << "Now I am back in deep.\n";
25 }
26
27 //***
28 // Function main *
29 //***
30
31 int main()
32 {
33 cout << "I am starting in function main.\n";
34 deep(); // Call function deep
35 cout << "Back in function main again.\n";
36 return 0;
37 }

Program Output
I am starting in function main.
I am now inside the function deep.
I am now inside the function deeper.
Now I am back in deep.
Back in function main again.

Figure 6-5

void deep()
{
 cout << "I am now inside the function deep.\n";
 deeper();
 cout << "Now I am back in deep.\n";
}

void deeper()
{
 cout << "I am now in the function deeper.\n";
}

int main()
{
 cout << "I am starting in function main.\n";
 deep();
 cout << "Back in function main again.\n";
 return 0;
}

306 Chapter 6 Functions

Checkpoint
6.1 Is the following a function header or a function call?

calcTotal();

6.2 Is the following a function header or a function call?

void showResults()

6.3 What will the output of the following program be if the user enters 10?

#include <iostream>
using namespace std;

void func1()
{
 cout << "Able was I\n";
}

void func2()
{
 cout << "I saw Elba\n";
}

int main()
{
 int input;
 cout << "Enter a number: ";
 cin >> input;
 if (input < 10)
 {
 func1();
 func2();
 }
 else
 {
 func2();
 func1();
 }
 return 0;
}

6.4 The following program skeleton determines whether a person qualifies for a
credit card. To qualify, the person must have worked on his or her current job for
at least two years and make at least $17,000 per year. Finish the program by writ-
ing the definitions of the functions qualify and noQualify. The function
qualify should explain that the applicant qualifies for the card and that the
annual interest rate is 12%. The function noQualify should explain that the
applicant does not qualify for the card and give a general explanation why.

#include <iostream>
using namespace std;

// You must write definitions for the two functions qualify
// and noQualify.

6.3 Function Prototypes 307

int main()
{
 double salary;
 int years;

 cout << "This program will determine if you qualify\n";
 cout << "for our credit card.\n";
 cout << "What is your annual salary? ";
 cin >> salary;
 cout << "How many years have you worked at your ";
 cout << "current job? ";
 cin >> years;
 if (salary >= 17000.0 && years >= 2)
 qualify();
 else
 noQualify();
 return 0;
}

6.3 Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function definition
before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know the
function’s return type, the number of parameters it uses, and the type of each parameter.
(You will learn how to use parameters in the next section.)

One way of ensuring that the compiler has this information is to place the function defini-
tion before all calls to that function. This was the approach taken in Programs 6-1, 6-2,
6-3, and 6-4. Another method is to declare the function with a function prototype. Here is
a prototype for the displayMessage function in Program 6-1:

void displayMessage();

The prototype looks similar to the function header, except there is a semicolon at the end.
The statement above tells the compiler that the function displayMessage has a void
return type (it doesn’t return a value) and uses no parameters.

Function prototypes are usually placed near the top of a program so the compiler will
encounter them before any function calls. Program 6-5 is a modification of Program 6-3.
The definitions of the functions first and second have been placed after main, and a
function prototype has been placed after the using namespace std statement.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must place either the function definition or the function prototype
ahead of all calls to the function. Otherwise the program will not compile.

308 Chapter 6 Functions

When the compiler is reading Program 6-5, it encounters the calls to the functions first
and second in lines 12 and 13 before it has read the definition of those functions. Because
of the function prototypes, however, the compiler already knows the return type and
parameter information of first and second.

Program 6-5

 1 // This program has three functions: main, first, and second.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function Prototypes
 6 void first();
 7 void second();
 8
 9 int main()
10 {
11 cout << "I am starting in function main.\n";
12 first(); // Call function first
13 second(); // Call function second
14 cout << "Back in function main again.\n";
15 return 0;
16 }
17
18 //*************************************
19 // Definition of function first. *
20 // This function displays a message. *
21 //*************************************
22
23 void first()
24 {
25 cout << "I am now inside the function first.\n";
26 }
27
28 //*************************************
29 // Definition of function second. *
30 // This function displays a message. *
31 //*************************************
32
33 void second()
34 {
35 cout << "I am now inside the function second.\n";
36 }

Program Output

(The program’s output is the same as the output of Program 6-3.)

NOTE: Although some programmers make main the last function in the program, many
prefer it to be first because it is the program’s starting point.

6.4 Sending Data into a Function 309

6.4 Sending Data into a Function

CONCEPT: When a function is called, the program may send values into the
function.

Values that are sent into a function are called arguments. You’re already familiar with
how to use arguments in a function call. In the following statement the function pow is
being called and two arguments, 2.0 and 4.0, are passed to it:

result = pow(2.0, 4.0);

By using parameters, you can design your own functions that accept data this way. A
parameter is a special variable that holds a value being passed into a function. Here is the
definition of a function that uses a parameter:

void displayValue(int num)
{
 cout << "The value is " << num << endl;
}

Notice the integer variable definition inside the parentheses (int num). The variable num
is a parameter. This enables the function displayValue to accept an integer value as an
argument. Program 6-6 is a complete program using this function.

NOTE: In this text, the values that are passed into a function are called arguments, and
the variables that receive those values are called parameters. There are several variations
of these terms in use. Some call the arguments actual parameters and call the parameters
formal parameters. Others use the terms actual argument and formal argument.
Regardless of which set of terms you use, it is important to be consistent.

Program 6-6

 1 // This program demonstrates a function with a parameter.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function Prototype
 6 void displayValue(int);
 7
 8 int main()
 9 {
10 cout << "I am passing 5 to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 cout << "Now I am back in main.\n";
13 return 0;
14 }
15

(program continues)

Functions and
Arguments

310 Chapter 6 Functions

First, notice the function prototype for displayValue in line 6:

void displayValue(int);

It is not necessary to list the name of the parameter variable inside the parentheses. Only
its data type is required. The function prototype shown above could optionally have been
written as:

void displayValue(int num);

However, the compiler ignores the name of the parameter variable in the function prototype.

In main, the displayValue function is called with the argument 5 inside the parentheses.
The number 5 is passed into num, which is displayValue’s parameter. This is illustrated
in Figure 6-6.

Any argument listed inside the parentheses of a function call is copied into the function’s
parameter variable. In essence, parameter variables are initialized to the value of their cor-
responding arguments. Program 6-7 shows the function displayValue being called sev-
eral times with a different argument being passed each time.

16 //***
17 // Definition of function displayValue. *
18 // It uses an integer parameter whose value is displayed. *
19 //***
20
21 void displayValue(int num)
22 {
23 cout << "The value is " << num << endl;
24 }

Program Output
I am passing 5 to displayValue.
The value is 5
Now I am back in main.

Figure 6-6

Program 6-6 (continued)

displayValue(5);

void displayValue(int num)
{
 cout << "The value is " << num << endl;
}

6.4 Sending Data into a Function 311

Each time the function is called in Program 6-7, num takes on a different value. Any
expression whose value could normally be assigned to num may be used as an argument.
For example, the following function call would pass the value 8 into num:

displayValue(3 + 5);

Program 6-7

 1 // This program demonstrates a function with a parameter.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function Prototype
 6 void displayValue(int);
 7
 8 int main()
 9 {
10 cout << "I am passing several values to displayValue.\n";
11 displayValue(5); // Call displayValue with argument 5
12 displayValue(10); // Call displayValue with argument 10
13 displayValue(2); // Call displayValue with argument 2
14 displayValue(16); // Call displayValue with argument 16
15 cout << "Now I am back in main.\n";
16 return 0;
17 }
18
19 //***
20 // Definition of function displayValue. *
21 // It uses an integer parameter whose value is displayed. *
22 //***
23
24 void displayValue(int num)
25 {
26 cout << "The value is " << num << endl;
27 }

Program Output
I am passing several values to displayValue.
The value is 5
The value is 10
The value is 2
The value is 16
Now I am back in main.

WARNING! When passing a variable as an argument, simply write the variable name
inside the parentheses of the function call. Do not write the data type of the argument
variable in the function call. For example, the following funtion call will cause an error:

displayValue(int x); // Error!

The function call should appear as

displayValue(x); // Correct

312 Chapter 6 Functions

If you pass an argument whose type is not the same as the parameter’s type, the argument
will be promoted or demoted automatically. For instance, the argument in the following
function call would be truncated, causing the value 4 to be passed to num:

displayValue(4.7);

Often, it’s useful to pass several arguments into a function. Program 6-8 shows the defini-
tion of a function with three parameters.

In the function header for showSum, the parameter list contains three variable definitions
separated by commas:

void showSum(int num1, int num2, int num3)

Program 6-8

 1 // This program demonstrates a function with three parameters.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function Prototype
 6 void showSum(int, int, int);

 7
 8 int main()
 9 {
10 int value1, value2, value3;
11
12 // Get three integers.
13 cout << "Enter three integers and I will display ";
14 cout << "their sum: ";
15 cin >> value1 >> value2 >> value3;
16
17 // Call showSum passing three arguments.
18 showSum(value1, value2, value3);
19 return 0;
20 }
21
22 //**
23 // Definition of function showSum. *
24 // It uses three integer parameters. Their sum is displayed. *
25 //**
26
27 void showSum(int num1, int num2, int num3)
28 {
29 cout << (num1 + num2 + num3) << endl;
30 }

Program Output with Example Input Shown in Bold
Enter three integers and I will display their sum: 4 8 7 [Enter]
19

6.4 Sending Data into a Function 313

In the function call in line 18, the variables value1, value2, and value3 are passed as
arguments:

showSum(value1, value2, value3);

When a function with multiple parameters is called, the arguments are passed to the
parameters in order. This is illustrated in Figure 6-7.

The following function call will cause 5 to be passed into the num1 parameter, 10 to be
passed into num2, and 15 to be passed into num3:

showSum(5, 10, 15);

However, the following function call will cause 15 to be passed into the num1 parameter, 5
to be passed into num2, and 10 to be passed into num3:

showSum(15, 5, 10);

WARNING! Each parameter variable in a parameter list must have a data type listed
before its name. For example, a compiler error would occur if the parameter list for the
showSum function were defined as shown in the following header:

void showSum(int num1, num2, num3) // Error!

A data type for all three of the parameter variables must be listed, as shown here:

void showSum(int num1, int num2, int num3) // Correct

Figure 6-7

NOTE: The function prototype must list the data type of each parameter.

NOTE: Like all variables, parameters have a scope. The scope of a parameter is limited
to the body of the function that uses it.

 showSum(value1, value2, value3)

 void showSum(int num1, int num2, int num3)
 {
 cout << (num1 + num2 + num3) << endl;
 }

Function Call

314 Chapter 6 Functions

6.5 Passing Data by Value

CONCEPT: When an argument is passed into a parameter, only a copy of the
argument’s value is passed. Changes to the parameter do not affect the
original argument.

As you’ve seen in this chapter, parameters are special-purpose variables that are defined
inside the parentheses of a function definition. They are separate and distinct from the
arguments that are listed inside the parentheses of a function call. The values that are
stored in the parameter variables are copies of the arguments. Normally, when a parame-
ter’s value is changed inside a function it has no effect on the original argument. Program
6-9 demonstrates this concept.

Program 6-9

 1 // This program demonstrates that changes to a function parameter
 2 // have no effect on the original argument.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function Prototype
 7 void changeMe(int);
 8
 9 int main()
10 {
11 int number = 12;
12
13 // Display the value in number.
14 cout << "number is " << number << endl;
15
16 // Call changeMe, passing the value in number
17 // as an argument.
18 changeMe(number);
19
20 // Display the value in number again.
21 cout << "Now back in main again, the value of ";
22 cout << "number is " << number << endl;
23 return 0;
24 }
25
26 //**
27 // Definition of function changeMe. *
28 // This function changes the value of the parameter myValue. *
29 //**
30

6.5 Passing Data by Value 315

Even though the parameter variable myValue is changed in the changeMe function, the
argument number is not modified. The myValue variable contains only a copy of the
number variable.

The changeMe function does not have access to the original argument. When only a copy
of an argument is passed to a function, it is said to be passed by value. This is because the
function receives a copy of the argument’s value, and does not have access to the original
argument.

Figure 6-8 illustrates that a parameter variable’s storage location in memory is separate
from that of the original argument.

31 void changeMe(int myValue)
32 {
33 // Change the value of myValue to 0.
34 myValue = 0;
35
36 // Display the value in myValue.
37 cout << "Now the value is " << myValue << endl;
38 }

Program Output
number is 12
Now the value is 0
Now back in main again, the value of number is 12

Figure 6-8

NOTE: Later in this chapter you will learn ways to give a function access to its original
arguments.

Original Argument
(in its memory location)

 12

 Function Parameter
 (in its memory location)

 12

316 Chapter 6 Functions

6.6 Focus on Software Engineering: Using Functions
in a Menu-Driven Program

CONCEPT: Functions are ideal for use in menu-driven programs. When the user
selects an item from a menu, the program can call the appropriate
function.

In Chapters 4 and 5 you saw a menu-driven program that calculates the charges for a
health club membership. Program 6-10 shows the program redesigned as a modular pro-
gram. A modular program is broken up into functions that perform specific tasks.

Program 6-10

 1 // This is a menu-driven program that makes a function call
 2 // for each selection the user makes.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 // Function prototypes
 8 void showMenu();
 9 void showFees(double, int);
10
11 int main()
12 {
13 int choice; // To hold a menu choice
14 int months; // To hold a number of months
15
16 // Constants for membership rates
17 const double ADULT = 40.0;
18 const double SENIOR = 30.0;
19 const double CHILD = 20.0;
20
21 // Set up numeric output formatting.
22 cout << fixed << showpoint << setprecision(2);
23
24 do
25 {
26 // Display the menu and get the user's choice.
27 showMenu();
28 cin >> choice;
29

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 317

30 // Validate the menu selection.
31 while (choice < 1 || choice > 4)
32 {
33 cout << "Please enter 1, 2, 3, or 4: ";
34 cin >> choice;
35 }
36
37 if (choice != 4)
38 {
39 // Get the number of months.
40 cout << "For how many months? ";
41 cin >> months;
42
43 // Display the membership fees.
44 switch (choice)
45 {
46 case 1: showFees(ADULT, months);
47 break;
48 case 2: showFees(CHILD, months);
49 break;
50 case 3: showFees(SENIOR, months);
51 }
52 }
53 } while (choice != 4);
54 return 0;
55 }
56
57 //***
58 // Definition of function showMenu which displays the menu. *
59 //***
60
61 void showMenu()
62 {
63 cout << "\n\t\tHealth Club Membership Menu\n\n";
64 cout << "1. Standard Adult Membership\n";
65 cout << "2. Child Membership\n";
66 cout << "3. Senior Citizen Membership\n";
67 cout << "4. Quit the Program\n\n";
68 cout << "Enter your choice: ";
69 }
70
71 //***
72 // Definition of function showFees. The memberRate parameter holds*
73 // the monthly membership rate and the months parameter holds the *
74 // number of months. The function displays the total charges. *
75 //***
76
77 void showFees(double memberRate, int months)
78 {
79 cout << "The total charges are $"
80 << (memberRate * months) << endl;
81 }

(program output continues)

318 Chapter 6 Functions

Let’s take a closer look at this program. First notice that the double constants ADULT,
CHILD, and SENIOR are defined in lines 17 through 19. Recall that these constants hold the
monthly membership rates for adult, child, and senior citizen memberships.

Next, notice the showMenu function in lines 61 through 69. This function displays the
menu, and is called from the main function in line 27.

The showFees function appears in lines 77 through 81. Its purpose is to display the total
fees for a membership lasting a specified number of months. The function accepts two
arguments: the monthly membership fee (a double) and the number of months of mem-
bership (an int). The function uses these values to calculate and display the total charges.
For example, if we wanted the function to display the fees for an adult membership lasting
six months, we would pass the ADULT constant as the first argument and 6 as the second
argument.

The showFees function is called from three different locations in the switch statement
which is in the main function. The first location is line 46. This statement is executed
when the user has selected item 1, standard adult membership, from the menu. The
showFees function is called with the ADULT constant and the months variable passed as
arguments. The second location is line 48. This statement is executed when the user has
selected item 2, child membership, from the menu. The showFees function is called in this
line with the CHILD constant and the months variable passed as arguments. The third
location is line 50. This statement is executed when the user has selected item 3, senior cit-
izen membership, from the menu. The showFees function is called with the SENIOR con-
stant and the months variable passed as arguments. Each time the showFees function is
called, it displays the total membership fees for the specified type of membership, for the
specified number of months.

Program 6-10 (continued)

Program Output with Example Input Shown in Bold

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1 [Enter]
For how many months? 12 [Enter]
The total charges are $480.00

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4 [Enter]

6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program 319

Checkpoint
6.5 Indicate which of the following is the function prototype, the function header,

and the function call:

void showNum(double num)

void showNum(double);

showNum(45.67);

6.6 Write a function named timesTen The function should have an integer parameter
named number. When timesTen is called, it should display the product of number
times ten. (Note: just write the function. Do not write a complete program.)

6.7 Write a function prototype for the timesTen function you wrote in Question 6.6.

6.8 What is the output of the following program?

#include <iostream>
using namespace std;

void showDouble(int); // Function prototype

int main()
{
 int num;

 for (num = 0; num < 10; num++)
 showDouble(num);
 return 0;
}

// Definition of function showDouble.
void showDouble(int value)
{
 cout << value << "\t" << (value * 2) << endl;
}

6.9 What is the output of the following program?

#include <iostream>
using namespace std;

void func1(double, int); // Function prototype

int main()
{
 int x = 0;
 double y = 1.5;

 cout << x << " " << y << endl;
 func1(y, x);
 cout << x << " " << y << endl;
 return 0;
}

320 Chapter 6 Functions

void func1(double a, int b)
{
 cout << a << " " << b << endl;
 a = 0.0;
 b = 10;
 cout << a << " " << b << endl;
}

6.10 The following program skeleton asks for the number of hours you’ve worked and
your hourly pay rate. It then calculates and displays your wages. The function
showDollars, which you are to write, formats the output of the wages.

#include <iostream>
using namespace std;

void showDollars(double); // Function prototype

int main()
{
 double payRate, hoursWorked, wages;

 cout << "How many hours have you worked? "
 cin >> hoursWorked;
 cout << "What is your hourly pay rate? ";
 cin >> payRate;
 wages = hoursWorked * payRate;
 showDollars(wages);
 return 0;
}

// You must write the definition of the function showDollars
// here. It should take one parameter of the type double.
// The function should display the message "Your wages are $"
// followed by the value of the parameter. It should be displayed
// with 2 places of precision after the decimal point, in fixed
// notation, and the decimal point should always display.

6.7 The return Statement

CONCEPT: The return statement causes a function to end immediately.

When the last statement in a void function has finished executing, the function terminates
and the program returns to the statement following the function call. It’s possible, how-
ever, to force a function to return before the last statement has been executed. When the
return statement is encountered, the function immediately terminates and control of the
program returns to the statement that called the function. This is demonstrated in Pro-
gram 6-11. The function divide shows the quotient of arg1 divided by arg2. If arg2 is
set to zero, the function returns.

6.7 The return Statement 321

In the example running of the program, the user entered 12 and 0 as input. In line 16 the
divide function was called, passing 12 into the arg1 parameter and 0 into the arg2
parameter. Inside the divide function, the if statement in line 29 executes. Because arg2
is equal to 0.0, the code in lines 31 and 32 execute. When the return statement in line 32
executes, the divide function immediately ends. This means the cout statement in line 34
does not execute. The program resumes at line 17 in the main function.

Program 6-11

 1 // This program uses a function to perform division. If division
 2 // by zero is detected, the function returns.
 3 #include <iostream>
 4 using namespace std;

 5
 6 // Function prototype.
 7 void divide(double, double);
 8
 9 int main()
10 {
11 double num1, num2;
12
13 cout << "Enter two numbers and I will divide the first\n";
14 cout << "number by the second number: ";
15 cin >> num1 >> num2;
16 divide(num1, num2);
17 return 0;
18 }
19
20 //***
21 // Definition of function divide. *
22 // Uses two parameters: arg1 and arg2. The function divides arg1*
23 // by arg2 and shows the result. If arg2 is zero, however, the *
24 // function returns. *
25 //***
26
27 void divide(double arg1, double arg2)
28 {
29 if (arg2 == 0.0)
30 {
31 cout << "Sorry, I cannot divide by zero.\n";
32 return;
33 }
34 cout << "The quotient is " << (arg1 / arg2) << endl;
35 }

Program Output with Example Input Shown in Bold
Enter two numbers and I will divide the first
number by the second number: 12 0 [Enter]
Sorry, I cannot divide by zero.

322 Chapter 6 Functions

6.8 Returning a Value from a Function

CONCEPT: A function may send a value back to the part of the program that called
the function.

You’ve seen that data may be passed into a function by way of parameter variables. Data
may also be returned from a function, back to the statement that called it. Functions that
return a value are appropriately known as value-returning functions.

The pow function, which you have already seen, is an example of a value-returning func-
tion. Here is an example:

double x;
x = pow(4.0, 2.0);

The second line in this code calls the pow function, passing 4.0 and 2.0 as arguments. The
function calculates the value of 4.0 raised to the power of 2.0 and returns that value. The
value, which is 16.0, is assigned to the x variable by the = operator.

Although several arguments may be passed into a function, only one value may be
returned from it. Think of a function as having multiple communication channels for
receiving data (parameters), but only one channel for sending data (the return value). This
is illustrated in Figure 6-9.

Defining a Value-Returning Function
When you are writing a value-returning function, you must decide what type of value the
function will return. This is because you must specify the data type of the return value in
the function header, and in the function prototype. Recall that a void function, which does
not return a value, uses the key word void as its return type in the function header. A

Figure 6-9

NOTE: It is possible to return multiple values from a function, but they must be
“packaged” in such a way that they are treated as a single value. This is a topic of
Chapter 11.

Value-Return-
ing Functions

argument

argument
 Function Return value
argument

argument

6.8 Returning a Value from a Function 323

value-returning function will use int, double, bool, or any other valid data type in its
header. Here is an example of a function that returns an int value:

int sum(int num1, int num2)
{
 int result;

 result = num1 + num2;
 return result;
}

The name of this function is sum. Notice in the function header that the return type is int,
as illustrated in Figure 6-10.

 This code defines a function named sum that accepts two int arguments. The arguments
are passed into the parameter variables num1 and num2. Inside the function, a variable,
result, is defined. Variables that are defined inside a function are called local variables.
After the variable definition, the parameter variables num1 and num2 are added, and their
sum is assigned to the result variable. The last statement in the function is

return result;

This statement causes the function to end, and it sends the value of the result variable
back to the statement that called the function. A value-returning function must have a
return statement written in the following general format:

In the general format, expression is the value to be returned. It can be any expression
that has a value, such as a variable, literal, or mathematical expression. The value of
the expression is converted to the data type that the function returns, and is sent back
to the statement that called the function. In this case, the sum function returns the value
in the result variable.

However, we could have eliminated the result variable and returned the expression
num1 + num2, as shown in the following code:

int sum(int num1, int num2)
{
 return num1 + num2;
}

When writing the prototype for a value-returning function, follow the same conventions
that we have covered earlier. Here is the prototype for the sum function:

int sum(int, int);

Figure 6-10

 return expression;

int sum(int num1, int num2)

Return Type

324 Chapter 6 Functions

Calling a Value-Returning Function
Program 6-12 shows an example of how to call the sum function.

Here is the statement in line 17 that calls the sum function, passing value1 and value2 as
arguments.

total = sum(value1, value2);

This statement assigns the value returned by the sum function to the total variable. In
this case, the function will return 60. Figure 6-11 shows how the arguments are passed
into the function and how a value is passed back from the function.

Program 6-12

 1 // This program uses a function that returns a value.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function prototype
 6 int sum(int, int);
 7
 8 int main()
 9 {
10 int value1 = 20, // The first value
11 value2 = 40, // The second value
12 total; // To hold the total
13
14 // Call the sum function, passing the contents of
15 // value1 and value2 as arguments. Assign the return
16 // value to the total variable.
17 total = sum(value1, value2);
18
19 // Display the sum of the values.
20 cout << "The sum of " << value1 << " and "
21 << value2 << " is " << total << endl;
22 return 0;
23 }
24
25 //***
26 // Definition of function sum. This function returns *
27 // the sum of its two parameters. *
28 //***
29
30 int sum(int num1, int num2)
31 {
32 return num1 + num2;
33 }

Program Output
The sum of 20 and 40 is 60

6.8 Returning a Value from a Function 325

When you call a value-returning function, you usually want to do something meaningful
with the value it returns. Program 6-12 shows a function’s return value being assigned to a
variable. This is commonly how return values are used, but you can do many other things
with them. For example, the following code shows a mathematical expression that uses a
call to the sum function:

int x = 10, y = 15;
double average;
average = sum(x, y) / 2.0;

In the last statement, the sum function is called with x and y as its arguments. The func-
tion’s return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to average.
Here is another example:

int x = 10, y = 15;
cout << "The sum is " << sum(x, y) << endl;

This code sends the sum function’s return value to cout so it can be displayed on the
screen. The message “The sum is 25” will be displayed.

Remember, a value-returning function returns a value of a specific data type. You can use
the function’s return value anywhere that you can use a regular value of the same data
type. This means that anywhere an int value can be used, a call to an int value-returning
function can be used. Likewise, anywhere a double value can be used, a call to a double
value-returning function can be used. The same is true for all other data types.

Let’s look at another example. Program 6-13, which calculates the area of a circle, has
two functions in addition to main. One of the functions is named square, and it returns
the square of any number passed to it as an argument. The square function is called in a
mathematical statement. The program also has a function named getRadius, which
prompts the user to enter the circle’s radius. The value entered by the user is returned from
the function.

Figure 6-11

Program 6-13

 1 // This program demonstrates two value-returning functions.
 2 // The square function is called in a mathematical statement.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6

(program continues)

int sum(int num1, int num2)
{
 return num + num;
}

total = sum(value1, value2);

40

20

60

326 Chapter 6 Functions

 7 //Function prototypes
 8 double getRadius();
 9 double square(double);
10
11 int main()
12 {
13 const double PI = 3.14159; // Constant for pi
14 double radius; // To hold the circle's radius
15 double area; // To hold the circle's area
16
17 // Set the numeric output formatting.
18 cout << fixed << showpoint << setprecision(2);
19
20 // Get the radius of the circle.
21 cout << "This program calculates the area of ";
22 cout << "a circle.\n";
23 radius = getRadius();
24
25 // Caculate the area of the circle.
26 area = PI * square(radius);
27
28 // Display the area.
29 cout << "The area is " << area << endl;
30 return 0;
31 }
32
33 //**
34 // Definition of function getRadius. *
35 // This function asks the user to enter the radius of *
36 // the circle and then returns that number as a double.*
37 //**
38
39 double getRadius()
40 {
41 double rad;
42
43 cout << "Enter the radius of the circle: ";
44 cin >> rad;
45 return rad;
46 }
47
48 //**
49 // Definition of function square. *
50 // This function accepts a double argument and returns *
51 // the square of the argument as a double. *
52 //**
53
54 double square(double number)
55 {
56 return number * number;
57 }

Program 6-13 (continued)

6.8 Returning a Value from a Function 327

First, look at the getRadius function defined in lines 39 through 46. The purpose of the
function is to prompt the user to enter the radius of a circle. In line 41 the function defines
a local variable, rad. Lines 43 and 44 prompt the user to enter the circle’s radius, which is
stored in the rad variable. In line 45 the value of the rad value is returned. The getRa-
dius function is called in the main function, in line 23. The value that is returned from the
function is assigned to the radius variable.

Next look at the square function, which is defined in lines 54 through 57. When the func-
tion is called, a double argument is passed to it. The function stores the argument in the
number parameter. The return statement in line 56 returns the value of the expression
number * number, which is the square of the number parameter. The square function is
called in the main function, in line 26, with the value of radius passed as an argument.
The function will return the square of the radius variable, and that value will be used in
the mathematical expression.

Assuming the user has entered 10 as the radius, and this value is passed as an argument to
the square function, the square function will return the value 100. Figure 6-12 illustrates
how the value 100 is passed back to the mathematical expression in line 26. The value
100 will then be used in the mathematical expression.

Functions can return values of any type. Both the getRadius and square functions in
Program 6-13 return a double. The sum function you saw in Program 6-12 returned an
int. When a statement calls a value-returning function, it should properly handle the
return value. For example, if you assign the return value of the square function to a vari-
able, the variable should be a double. If the return value of the function has a fractional
portion and you assign it to an int variable, the value will be truncated.

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
Enter the radius of the circle: 10 [Enter]
The area is 314.16

Figure 6-12

double square(double number)
{
 return number * number;
}

area = PI * square(radius);
10

100

328 Chapter 6 Functions

main()

showIntro()
cupsToOunces
(double cups)getCups()

In the Spotlight:
Using Functions
Your friend Michael runs a catering company. Some of the ingredients that his recipes
require are measured in cups. When he goes to the grocery store to buy those ingredients,
however, they are sold only by the fluid ounce. He has asked you to write a simple pro-
gram that converts cups to fluid ounces.

You design the following algorithm:

1. Display an introductory screen that explains what the program does.

2. Get the number of cups.

3. Convert the number of cups to fluid ounces and display the result.

This algorithm lists the top level of tasks that the program needs to perform, and becomes
the basis of the program’s main function. The hierarchy chart shown in Figure 6-13 shows
how the program will broken down into functions.

As shown in the hierarchy chart, the main function will call three other functions. Here
are summaries of those functions:

• showIntro—This function will display a message on the screen that explains
what the program does.

• getCups—This function will prompt the user to enter the number of cups and
then will return that value as a double.

• cupsToOunces—This function will accept the number of cups as an argument
and then return an equivalent number of fluid ounces as a double.

Program 6-14 shows the code for the program.

Figure 6-13 Hierarchy chart for the program

6.8 Returning a Value from a Function 329

Program 6-14

1 // This program converts cups to fluid ounces.
2 #include <iostream>
3 #include <iomanip>
4 using namespace std;
5
6 // Function prototypes
7 void showIntro();
 8 double getCups();
 9 double cupsToOunces(double);
10
11 int main()
12 {
13 // Variables for the cups and ounces.
14 double cups, ounces;
15
16 // Set up numeric output formatting.
17 cout << fixed << showpoint << setprecision(1);
18
19 // Display an intro screen.
20 showIntro();
21
22 // Get the number of cups.
23 cups = getCups();
24
25 // Convert cups to fluid ounces.
26 ounces = cupsToOunces(cups);
27
28 // Display the number of ounces.
29 cout << cups << " cups equals "
30 << ounces << " ounces.\n";
31
32 return 0;
33 }
34
35 //**
36 // The showIntro function displays an *
37 // introductory screen. *
38 //**
39
40 void showIntro()
41 {
42 cout << "This program converts measurements\n"
43 << "in cups to fluid ounces. For your\n"
44 << "reference the formula is:\n"
45 << " 1 cup = 8 fluid ounces\n\n";
46 }
47
48 //**
49 // The getCups function prompts the user *
50 // to enter the number of cups and then *
51 // returns that value as a double. *
52 //**
53

(program continues)

330 Chapter 6 Functions

6.9 Returning a Boolean Value

CONCEPT: Functions may return true or false values.

Frequently there is a need for a function that tests an argument and returns a true or
false value indicating whether or not a condition exists. Such a function would return a
bool value. For example, the following function accepts an int argument and returns
true if the argument is within the range of 1 through 100, or false otherwise.

bool isValid(int number)
{
 bool status;

 if (number >= 1 && number <= 100)
 status = true;
 else
 status = false;
 return status;
}

54 double getCups()
55 {
56 double numCups;
57
58 cout << "Enter the number of cups: ";
59 cin >> numCups;
60 return numCups;
61 }
62
63 //**
64 // The cupsToOunces function accepts a *
65 // number of cups as an argument and *
66 // returns the equivalent number of fluid *
67 // ounces as a double. *
68 //**
69
70 double cupsToOunces(double numCups)
71 {
72 return numCups * 8.0;
73 }

Program Output with Example Input Shown in Bold
This program converts measurements
in cups to fluid ounces. For your
reference the formula is:
 1 cup = 8 fluid ounces

Enter the number of cups: 2 [Enter]
2.0 cups equals 16.0 ounces.

Program 6-14 (continued)

6.9 Returning a Boolean Value 331

The following code shows an if/else statement that uses a call to the function:

int value = 20;
if (isValid(value))
 cout << "The value is within range.\n";
else
 cout << "The value is out of range.\n";

When this code executes, the message “The value is within range.” will be displayed.

Program 6-15 shows another example. This program has a function named isEven which
returns true if its argument is an even number. Otherwise, the function returns false.

Program 6-15

 1 // This program uses a function that returns true or false.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function prototype
 6 bool isEven(int);
 7
 8 int main()
 9 {
10 int val;
11
12 // Get a number from the user.
13 cout << "Enter an integer and I will tell you ";
14 cout << "if it is even or odd: ";
15 cin >> val;
16
17 // Indicate whether it is even or odd.
18 if (isEven(val))
19 cout << val << " is even.\n";
20 else
21 cout << val << " is odd.\n";
22 return 0;
23 }
24
25 //***
26 // Definition of function isEven. This function accepts an *
27 // integer argument and tests it to be even or odd. The function *
28 // returns true if the argument is even or false if the argument *
29 // is odd. The return value is a bool. *
30 //***
31
32 bool isEven(int number)
33 {
34 bool status;
35
36 if (number % 2 == 0)
37 status = true; // The number is even if there is no remainder.
38 else
39 status = false; // Otherwise, the number is odd.
40 return status;
41 }

(program output continues)

332 Chapter 6 Functions

The isEven function is called in line 18, in the following statement:

if (isEven(val))

When the if statement executes, isEven is called with val as its argument. If val is even,
isEven returns true , otherwise it returns false.

Checkpoint
6.11 How many return values may a function have?

6.12 Write a header for a function named distance. The function should return a
double and have two double parameters: rate and time.

6.13 Write a header for a function named days. The function should return an int
and have three int parameters: years, months, and weeks.

6.14 Write a header for a function named getKey. The function should return a char
and use no parameters.

6.15 Write a header for a function named lightYears. The function should return a
long and have one long parameter: miles.

6.10 Local and Global Variables

CONCEPT: A local variable is defined inside a function and is not accessible outside
the function. A global variable is defined outside all functions and is
accessible to all functions in its scope.

Local Variables
Variables defined inside a function are local to that function. They are hidden from the
statements in other functions, which normally cannot access them. Program 6-16 shows
that because the variables defined in a function are hidden, other functions may have sepa-
rate, distinct variables with the same name.

Program Output with Example Input Shown in Bold
Enter an integer and I will tell you if it is even or odd: 5 [Enter]
5 is odd.

Program 6-16

 1 // This program shows that variables defined in a function
 2 // are hidden from other functions.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void anotherFunction(); // Function prototype

Program 6-15 (continued)

6.10 Local and Global Variables 333

Even though there are two variables named num, the program can only “see” one of them at
a time because they are in different functions. When the program is executing in main, the
num variable defined in main is visible. When anotherFunction is called, however, only
variables defined inside it are visible, so the num variable in main is hidden. Figure 6-14 illus-
trates the closed nature of the two functions. The boxes represent the scope of the variables.

 7
 8 int main()
 9 {
10 int num = 1; // Local variable
11
12 cout << "In main, num is " << num << endl;
13 anotherFunction();
14 cout << "Back in main, num is " << num << endl;
15 return 0;
16 }
17
18 //***
19 // Definition of anotherFunction *
20 // It has a local variable, num, whose initial value *
21 // is displayed. *
22 //***
23
24 void anotherFunction()
25 {
26 int num = 20; // Local variable
27
28 cout << "In anotherFunction, num is " << num << endl;
29 }

Program Output
In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

Figure 6-14

Function main

int num = 1;

Function anotherFunction

int num = 20;

This num variable is visible
only in main.

This num variable is visible
only in anotherFunction.

334 Chapter 6 Functions

Local Variable Lifetime
A function’s local variables exist only while the function is executing. This is known as the
lifetime of a local variable. When the function begins, its local variables and its parameter
variables are created in memory, and when the function ends, the local variables and
parameter variables are destroyed. This means that any value stored in a local variable is
lost between calls to the function in which the variable is declared.

Initializing Local Variables with Parameter Values
It is possible to use a parameter variable to initialize a local variable. Sometimes this simpli-
fies the code in a function. For example, recall the first version of the sum function we dis-
cussed earlier:

int sum(int num1, int num2)
{
 int result;

 result = num1 + num2;
 return result;
}

In the body of the function, the result variable is defined and then a separate assignment
statement assigns num1 + num2 to result. We can combine these statements into one, as
shown in the following modified version of the function.

int sum(int num1, int num2)
{
 int result = num1 + num2;
 return result;
}

Because the scope of a parameter variable is the entire function in which it is declared, we
can use parameter variables to initialize local variables.

Global Variables and Global Constants
A global variable is any variable defined outside all the functions in a program. The scope of
a global variable is the portion of the program from the variable definition to the end. This
means that a global variable can be accessed by all functions that are defined after the global
variable is defined. Program 6-17 shows two functions, main and anotherFunction, that
access the same global variable, num.

Program 6-17

 1 // This program shows that a global variable is visible
 2 // to all the functions that appear in a program after
 3 // the variable's declaration.
 4 #include <iostream>
 5 using namespace std;
 6
 7 void anotherFunction(); // Function prototype
 8 int num = 2; // Global variable

6.10 Local and Global Variables 335

In Program 6-17, num is defined outside of all the functions. Because its definition appears
before the definitions of main and anotherFunction, both functions have access to it.

Unless you explicitly initialize numeric global variables, they are automatically initialized
to zero. Global character variables are initialized to NULL.* The variable globalNum in
Program 6-18 is never set to any value by a statement, but because it is global, it is auto-
matically set to zero.

 9
10 int main()
11 {
12 cout << "In main, num is " << num << endl;
13 anotherFunction();
14 cout << "Back in main, num is " << num << endl;
15 return 0;
16 }
17
18 //***
19 // Definition of anotherFunction *
20 // This function changes the value of the *
21 // global variable num. *
22 //***
23
24 void anotherFunction()
25 {
26 cout << "In anotherFunction, num is " << num << endl;
27 num = 50;
28 cout << "But, it is now changed to " << num << endl;
29 }

Program Output
In main, num is 2
In anotherFunction, num is 2
But, it is now changed to 50
Back in main, num is 50

* The NULL character is stored as ASCII code 0.

Program 6-18

 1 // This program has an uninitialized global variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int globalNum; // Global variable, automatically set to zero
 6
 7 int main()
 8 {
 9 cout << "globalNum is " << globalNum << endl;
10 return 0;
11 }

(program output continues)

336 Chapter 6 Functions

Now that you’ve had a basic introduction to global variables, I must warn you to restrict
your use of them. When beginning students first learn to write programs with multiple
functions, they are sometimes tempted to make all their variables global. This is usually
because global variables can be accessed by any function in the program without being
passed as arguments. Although this approach might make a program easier to create, it
usually causes problems later. The reasons are as follows:

• Global variables make debugging difficult. Any statement in a program can
change the value of a global variable. If you find that the wrong value is being
stored in a global variable, you have to track down every statement that accesses
it to determine where the bad value is coming from. In a program with thousands
of lines of code, this can be difficult.

• Functions that use global variables are usually dependent on those variables. If
you want to use such a function in a different program, most likely you will have
to redesign it so it does not rely on the global variable.

• Global variables make a program hard to understand. A global variable can be
modified by any statement in the program. If you are to understand any part of
the program that uses a global variable, you have to be aware of all the other
parts of the program that access the global variable.

In most cases, you should declare variables locally and pass them as arguments to the
functions that need to access them.

Because of this, you should not use global variables for the conventional purposes of stor-
ing, manipulating, and retrieving data. Instead, you should only use them as global con-
stants, defining them with the const modifier. Because a constant cannot be changed
during program execution, you do not have to worry about a global constant’s value get-
ting corrupted.

Program 6-19 shows an example of how global constants might be used. The program
calculates an employee’s gross pay, including overtime. In addition to main, this program
has two functions: getBasePay and getOvertimePay. The getBasePay function accepts
the number of hours worked and returns the amount of pay for the non-overtime hours.
The getOvertimePay function accepts the number of hours worked and returns the
amount of pay for the overtime hours, if any.

Program Output
globalNum is 0

Program 6-19

 1 // This program calculates gross pay.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 // Global constants
 7 const double PAY_RATE = 22.55; // Hourly pay rate
 8 const double BASE_HOURS = 40.0; // Max non-overtime hours

Program 6-18 (continued)

6.10 Local and Global Variables 337

 9 const double OT_MULTIPLIER = 1.5; // Overtime multiplier
10
11 // Function prototypes
12 double getBasePay(double);
13 double getOvertimePay(double);
14
15 int main()
16 {
17 double hours, // Hours worked
18 basePay, // Base pay
19 overtime = 0.0, // Overtime pay
20 totalPay; // Total pay
21
22 // Get the number of hours worked.
23 cout << "How many hours did you work? ";
24 cin >> hours;
25
26 // Get the amount of base pay.
27 basePay = getBasePay(hours);
28
29 // Get overtime pay, if any.
30 if (hours > BASE_HOURS)
31 overtime = getOvertimePay(hours);
32
33 // Calculate the total pay.
34 totalPay = basePay + overtime;
35
36 // Set up numeric output formatting.
37 cout << setprecision(2) << fixed << showpoint;
38
39 // Display the pay.
40 cout << "Base pay: $" << basePay << endl;
41 cout << "Overtime pay: $" << overtime << endl;
42 cout << "Total pay: $" << totalPay << endl;
43 return 0;
44 }
45
46 //**
47 // The getBasePay function accepts the number of *
48 // hours worked as an argument and returns the *
49 // employee's pay for non-overtime hours. *
50 //**
51
52 double getBasePay(double hoursWorked)
53 {
54 double basePay; // To hold base pay
55
56 // Determine base pay.
57 if (hoursWorked > BASE_HOURS)
58 basePay = BASE_HOURS * PAY_RATE;
59 else
60 basePay = hoursWorked * PAY_RATE;

(program continues)

338 Chapter 6 Functions

Let’s take a closer look at the program. Three global constants are defined in lines 7, 8,
and 9. The PAY_RATE constant is set to the employee’s hourly pay rate, which is 22.55.
The BASE_HOURS constant is set to 40, which is the number of hours an employee can
work in a week without getting paid overtime. The OT_MULTIPLIER constant is set to 1.5,
which is the pay rate multiplier for overtime hours. This means that the employee’s hourly
pay rate is multiplied by 1.5 for all overtime hours.

Because these constants are global, and are defined before all of the functions in the pro-
gram, all the functions may access them. For example, the getBasePay function accesses
the BASE_HOURS constant in lines 57 and 58, and accesses the PAY_RATE constant in lines
58 and 60. The getOvertimePay function accesses the BASE_HOURS constant in lines 76
and 78, the PAY_RATE constant in line 79, and the OT_MULTIPLIER constant in line 79.

Local and Global Variables with the Same Name
You cannot have two local variables with the same name in the same function. This applies
to parameter variables as well. A parameter variable is, in essence, a local variable. So, you
cannot give a parameter variable and a local variable in the same function the same name.

Program 6-19 (continued)

61
62 return basePay;
63 }
64
65 //***
66 // The getOvertimePay function accepts the number *
67 // of hours worked as an argument and returns the *
68 // employee's overtime pay. *
69 //***
70
71 double getOvertimePay(double hoursWorked)
72 {
73 double overtimePay; // To hold overtime pay
74
75 // Determine overtime pay.
76 if (hoursWorked > BASE_HOURS)
77 {
78 overtimePay = (hoursWorked - BASE_HOURS) *
79 PAY_RATE * OT_MULTIPLIER;
80 }
81 else
82 overtimePay = 0.0;
83
84 return overtimePay;
85 }

Program Output with Example Input Shown in Bold
How many hours did you work? 48 [Enter]
Base pay: $902.00
Overtime pay: $270.60
Total pay: $1172.60

6.10 Local and Global Variables 339

However, you can have a local variable or a parameter variable with the same name as a glo-
bal variable, or a global constant. When you do, the name of the local or parameter variable
shadows the name of the global variable or global constant. This means that the global vari-
able or constant’s name is hidden by the name of the local or parameter variable. For exam-
ple, look at Program 6-20. This program has a global constant named BIRDS, set to 500.
The california function has a local constant named BIRDS, set to 10000.

When the program is executing in the main function, the global constant BIRDS, which is
set to 500, is visible. The cout statement in lines 14 and 15 displays “In main there are
500 birds.” (My apologies to folks living in Maine for the difference in spelling.) When
the program is executing in the california function, however, the local constant BIRDS
shadows the global constant BIRDS. When the california function accesses BIRDS, it
accesses the local constant. That is why the cout statement in lines 27 and 28 displays “In
california there are 10000 birds.”

Program 6-20

 1 // This program demonstrates how a local variable
 2 // can shadow the name of a global constant.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Global constant.
 7 const int BIRDS = 500;
 8
 9 // Function prototype
10 void california();
11
12 int main()
13 {
14 cout << "In main there are " << BIRDS
15 << " birds.\n";
16 california();
17 return 0;
18 }
19
20 //**
21 // california function *
22 //**
23
24 void california()
25 {
26 const int BIRDS = 10000;
27 cout << "In california there are " << BIRDS
28 << " birds.\n";
29 }

Program Output
In main there are 500 birds.
In california there are 10000 birds.

340 Chapter 6 Functions

6.11 Static Local Variables

If a function is called more than once in a program, the values stored in the function’s
local variables do not persist between function calls. This is because the local variables are
destroyed when the function terminates and are then re-created when the function starts
again. This is shown in Program 6-21.

Even though in line 28 the last statement in the showLocal function stores 99 in localNum,
the variable is destroyed when the function returns. The next time the function is called,
localNum is re-created and initialized to 5 again.

Sometimes it’s desirable for a program to “remember” what value is stored in a local vari-
able between function calls. This can be accomplished by making the variable static.

Program 6-21

 1 // This program shows that local variables do not retain
 2 // their values between function calls.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototype
 7 void showLocal();
 8
 9 int main()
10 {
11 showLocal();
12 showLocal();
13 return 0;
14 }
15
16 //***
17 // Definition of function showLocal. *
18 // The initial value of localNum, which is 5, is displayed. *
19 // The value of localNum is then changed to 99 before the *
20 // function returns. *
21 //***
22
23 void showLocal()
24 {
25 int localNum = 5; // Local variable
26
27 cout << "localNum is " << localNum << endl;
28 localNum = 99;
29 }

Program Output
localNum is 5
localNum is 5

6.11 Static Local Variables 341

Static local variables are not destroyed when a function returns. They exist for the lifetime
of the program, even though their scope is only the function in which they are defined.
Program 6-22 demonstrates some characteristics of static local variables:

In line 26 of Program 6-22, statNum is incremented in the showStatic function, and it
retains its value between each function call. Notice that even though statNum is not
explicitly initialized, it starts at zero. Like global variables, all static local variables are
initialized to zero by default. (Of course, you can provide your own initialization value, if
necessary.)

If you do provide an initialization value for a static local variable, the initialization only
occurs once. This is because initialization normally happens when the variable is created,
and static local variables are only created once during the running of a program. Pro-
gram 6-23, which is a slight modification of Program 6-22, illustrates this point.

Program 6-22

 1 // This program uses a static local variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 void showStatic(); // Function prototype

 6
 7 int main()
 8 {
 9 // Call the showStatic function five times.
10 for (int count = 0; count < 5; count++)
11 showStatic();
12 return 0;
13 }
14
15 //**
16 // Definition of function showStatic. *
17 // statNum is a static local variable. Its value is displayed *
18 // and then incremented just before the function returns. *
19 //**
20
21 void showStatic()
22 {
23 static int statNum;
24
25 cout << "statNum is " << statNum << endl;
26 statNum++;
27 }

Program Output
statNum is 0
statNum is 1
statNum is 2
statNum is 3
statNum is 4

342 Chapter 6 Functions

Even though the statement that defines statNum in line 24 initializes it to 5, the initializa-
tion does not happen each time the function is called. If it did, the variable would not be
able to retain its value between function calls.

Checkpoint
6.16 What is the difference between a static local variable and a global variable?

6.17 What is the output of the following program?

#include <iostream>
using namespace std;

void myFunc(); // Function prototype

int main()
{

Program 6-23

 1 // This program shows that a static local variable is only
 2 // initialized once.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void showStatic(); // Function prototype
 7
 8 int main()
 9 {
10 // Call the showStatic function five times.
11 for (int count = 0; count < 5; count++)
12 showStatic();
13 return 0;
14 }
15
16 //***
17 // Definition of function showStatic. *
18 // statNum is a static local variable. Its value is displayed *
19 // and then incremented just before the function returns. *
20 //***
21
22 void showStatic()
23 {
24 static int statNum = 5;
25
26 cout << "statNum is " << statNum << endl;
27 statNum++;
28 }

Program Output
statNum is 5
statNum is 6
statNum is 7
statNum is 8
statNum is 9

6.12 Default Arguments 343

 int var = 100;

 cout << var << endl;
 myFunc();
 cout << var << endl;
 return 0;
}

// Definition of function myFunc
void myFunc()
{
 int var = 50;

 cout << var << endl;
}

6.18 What is the output of the following program?

#include <iostream>
using namespace std;

void showVar(); // Function prototype

int main()
{
 for (int count = 0; count < 10; count++)
 showVar();
 return 0;
}

// Definition of function showVar
void showVar()
{
 static int var = 10;

 cout << var << endl;
 var++;
}

6.12 Default Arguments

CONCEPT: Default arguments are passed to parameters automatically if no argument
is provided in the function call.

It’s possible to assign default arguments to function parameters. A default argument is
passed to the parameter when the actual argument is left out of the function call. The
default arguments are usually listed in the function prototype. Here is an example:

void showArea(double = 20.0, double = 10.0);

Default arguments are literal values or constants with an = operator in front of them,
appearing after the data types listed in a function prototype. Since parameter names are
optional in function prototypes, the example prototype could also be declared as

void showArea(double length = 20.0, double width = 10.0);

344 Chapter 6 Functions

In both example prototypes, the function showArea has two double parameters. The first
is assigned the default argument 20.0 and the second is assigned the default argument
10.0. Here is the definition of the function:

void showArea(double length, double width)
{
 double area = length * width;
 cout << "The area is " << area << endl;
}

The default argument for length is 20.0 and the default argument for width is 10.0.
Because both parameters have default arguments, they may optionally be omitted in the
function call, as shown here:

showArea();

In this function call, both default arguments will be passed to the parameters. The param-
eter length will take the value 20.0 and width will take the value 10.0. The output of the
function will be

The area is 200

The default arguments are only used when the actual arguments are omitted from the
function call. In the call below, the first argument is specified, but the second is omitted:

showArea(12.0);

The value 12.0 will be passed to length, while the default value 10.0 will be passed to
width. The output of the function will be

The area is 120

Of course, all the default arguments may be overridden. In the function call below, argu-
ments are supplied for both parameters:

showArea(12.0, 5.5);

The output of the function call above will be

The area is 66

Program 6-24 uses a function that displays asterisks on the screen. Arguments are passed
to the function specifying how many columns and rows of asterisks to display. Default
arguments are provided to display one row of 10 asterisks.

NOTE: If a function does not have a prototype, default arguments may be specified in
the function header. The showArea function could be defined as follows:

 void showArea(double length = 20.0, double width = 10.0)
 {
 double area = length * width;
 cout << "The area is " << area << endl;
 }

WARNING! A function’s default arguments should be assigned in the earliest
occurrence of the function name. This will usually be the function prototype.

6.12 Default Arguments 345

Although C++’s default arguments are very convenient, they are not totally flexible in their
use. When an argument is left out of a function call, all arguments that come after it must
be left out as well. In the displayStars function in Program 6-24, it is not possible to
omit the argument for cols without also omitting the argument for rows. For example,
the following function call would be illegal:

displayStars(, 3); // Illegal function call.

Program 6-24

 1 // This program demonstrates default function arguments.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function prototype with default arguments
 6 void displayStars(int = 10, int = 1);
 7
 8 int main()
 9 {
10 displayStars(); // Use default values for cols and rows.
11 cout << endl;
12 displayStars(5); // Use default value for rows.
13 cout << endl;
14 displayStars(7, 3); // Use 7 for cols and 3 for rows.
15 return 0;
16 }
17
18 //**
19 // Definition of function displayStars. *
20 // The default argument for cols is 10 and for rows is 1.*
21 // This function displays a square made of asterisks. *
22 //**
23
24 void displayStars(int cols, int rows)
25 {
26 // Nested loop. The outer loop controls the rows
27 // and the inner loop controls the columns.
28 for (int down = 0; down < rows; down++)
29 {
30 for (int across = 0; across < cols; across++)
31 cout << "*";
32 cout << endl;
33 }
34 }

Program Output

346 Chapter 6 Functions

It’s possible for a function to have some parameters with default arguments and some
without. For example, in the following function (which displays an employee’s gross pay),
only the last parameter has a default argument:

// Function prototype
void calcPay(int empNum, double payRate, double hours = 40.0);

// Definition of function calcPay
void calcPay(int empNum, double payRate, double hours)
{
 double wages;

 wages = payRate * hours;
 cout << fixed << showpoint << setprecision(2);
 cout << "Gross pay for employee number ";
 cout << empNum << " is " << wages << endl;
}

When calling this function, arguments must always be specified for the first two parame-
ters (empNum and payRate) since they have no default arguments. Here are examples of
valid calls:

calcPay(769, 15.75); // Use default arg for 40 hours
calcPay(142, 12.00, 20); // Specify number of hours

When a function uses a mixture of parameters with and without default arguments, the
parameters with default arguments must be defined last. In the calcPay function, hours
could not have been defined before either of the other parameters. The following proto-
types are illegal:

// Illegal prototype
void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype
void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

• The value of a default argument must be a literal value or a named constant.
• When an argument is left out of a function call (because it has a default value), all

the arguments that come after it must be left out too.
• When a function has a mixture of parameters both with and without default

arguments, the parameters with default arguments must be declared last.

6.13 Using Reference Variables as Parameters

CONCEPT: When used as parameters, reference variables allow a function to access
the parameter’s original argument. Changes to the parameter are also
made to the argument.

Earlier you saw that arguments are normally passed to a function by value, and that the
function cannot change the source of the argument. C++ provides a special type of variable

6.13 Using Reference Variables as Parameters 347

called a reference variable that, when used as a function parameter, allows access to the
original argument.

A reference variable is an alias for another variable. Any changes made to the reference
variable are actually performed on the variable for which it is an alias. By using a refer-
ence variable as a parameter, a function may change a variable that is defined in another
function.

Reference variables are defined like regular variables, except you place an ampersand (&)
in front of the name. For example, the following function definition makes the parameter
refVar a reference variable:

void doubleNum(int &refVar)
{
 refVar *= 2;
}

This function doubles refVar by multiplying it by 2. Since refVar is a reference variable,
this action is actually performed on the variable that was passed to the function as an
argument. When prototyping a function with a reference variable, be sure to include the
ampersand after the data type. Here is the prototype for the doubleNum function:

void doubleNum(int &);

void doubleNum(int&);

Program 6-25 demonstrates how the doubleNum function works.

NOTE: The variable refVar is called “a reference to an int.”

NOTE: Some programmers prefer not to put a space between the data type and the
ampersand. The following prototype is equivalent to the one above:

NOTE: The ampersand must appear in both the prototype and the header of any function
that uses a reference variable as a parameter. It does not appear in the function call.

Program 6-25

 1 // This program uses a reference variable as a function
 2 // parameter.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototype. The parameter is a reference variable.
 7 void doubleNum(int &);
 8
 9 int main()

(program continues)

348 Chapter 6 Functions

The parameter refVar in Program 6-25 “points” to the value variable in function main.
When a program works with a reference variable, it is actually working with the variable
it references, or points to. This is illustrated in Figure 6-15.

Recall that function arguments are normally passed by value, which means a copy of the
argument’s value is passed into the parameter variable. When a reference parameter is
used, it is said that the argument is passed by reference.

Program 6-26 is a modification of Program 6-25. The function getNum has been added.
The function asks the user to enter a number, which is stored in userNum. userNum is a
reference to main’s variable value.

10 {
11 int value = 4;
12
13 cout << "In main, value is " << value << endl;
14 cout << "Now calling doubleNum..." << endl;
15 doubleNum(value);
16 cout << "Now back in main. value is " << value << endl;
17 return 0;
18 }
19
20 //**
21 // Definition of doubleNum. *
22 // The parameter refVar is a reference variable. The value *
23 // in refVar is doubled. *
24 //**
25
26 void doubleNum (int &refVar)
27 {
28 refVar *= 2;
29 }

Program Output
In main, value is 4
Now calling doubleNum...
Now back in main. value is 8

Figure 6-15

Program 6-25 (continued)

 Reference Variable

 Original Argument

 4

6.13 Using Reference Variables as Parameters 349

Program 6-26

 1 // This program uses reference variables as function parameters.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Function prototypes. Both functions use reference variables
 6 // as parameters.
 7 void doubleNum(int &);
 8 void getNum(int &);
 9
10 int main()
11 {
12 int value;
13
14 // Get a number and store it in value.
15 getNum(value);
16
17 // Double the number stored in value.
18 doubleNum(value);
19
20 // Display the resulting number.
21 cout << "That value doubled is " << value << endl;
22 return 0;
23 }
24
25 //***
26 // Definition of getNum. *
27 // The parameter userNum is a reference variable. The user is *
28 // asked to enter a number, which is stored in userNum. *
29 //***
30
31 void getNum(int &userNum)
32 {
33 cout << "Enter a number: ";
34 cin >> userNum;
35 }
36
37 //**
38 // Definition of doubleNum. *
39 // The parameter refVar is a reference variable. The value *
40 // in refVar is doubled. *
41 //**
42
43 void doubleNum (int &refVar)
44 {
45 refVar *= 2;
46 }

Program Output with Example Input Shown in Bold
Enter a number: 12 [Enter]
That value doubled is 24

350 Chapter 6 Functions

If a function uses more than one reference variable as a parameter, be sure to place the
ampersand before each reference variable name. Here is the prototype and definition for a
function that uses four reference variable parameters:

// Function prototype with four reference variables
// as parameters.
void addThree(int &, int &, int &, int &);

// Definition of addThree.
// All four parameters are reference variables.
void addThree(int &sum, int &num1, int &num2, int &num3)
{
 cout << "Enter three integer values: ";
 cin >> num1 >> num2 >> num3;
 sum = num1 + num2 + num3;
}

Checkpoint
6.19 What kinds of values may be specified as default arguments?

6.20 Write the prototype and header for a function called compute. The function
should have three parameters: an int, a double, and a long (not necessarily in
that order). The int parameter should have a default argument of 5, and the
long parameter should have a default argument of 65536. The double parame-
ter should not have a default argument.

6.21 Write the prototype and header for a function called calculate. The function
should have three parameters: an int, a reference to a double, and a long (not
necessarily in that order.) Only the int parameter should have a default argu-
ment, which is 47.

6.22 What is the output of the following program?

#include <iostream>
using namespace std;

void test(int = 2, int = 4, int = 6);

NOTE: Only variables may be passed by reference. If you attempt to pass a nonvariable
argument, such as a literal, a constant, or an expression, into a reference parameter, an
error will result. Using the doubleNum function as an example, the following statements
will generate an error.

doubleNum(5); // Error
doubleNum(userNum + 10); // Error

WARNING! Don’t get carried away with using reference variables as function
parameters. Any time you allow a function to alter a variable that’s outside the function,
you are creating potential debugging problems. Reference variables should only be used as
parameters when the situation requires them.

6.13 Using Reference Variables as Parameters 351

int main()
{
 test();
 test(6);
 test(3, 9);
 test(1, 5, 7);
 return 0;
}

void test (int first, int second, int third)
{
 first += 3;
 second += 6;
 third += 9;
 cout << first << " " << second << " " << third << endl;
}

6.23 The following program asks the user to enter two numbers. What is the output of
the program if the user enters 12 and 14?

#include <iostream>
using namespace std;

void func1(int &, int &);
void func2(int &, int &, int &);
void func3(int, int, int);

int main()
{
 int x = 0, y = 0, z = 0;

 cout << x << " " << y << " " << z << endl;
 func1(x, y);
 cout << x << " " << y << " " << z << endl;
 func2(x, y, z);
 cout << x << " " << y << " " << z << endl;
 func3(x, y, z);
 cout << x << " " << y << " " << z << endl;
 return 0;
}

void func1(int &a, int &b)
{
 cout << "Enter two numbers: ";
 cin >> a >> b;
}
void func2(int &a, int &b, int &c)
{
 b++;
 c--;
 a = b + c;
}

void func3(int a, int b, int c)
{
 a = b - c;
}

352 Chapter 6 Functions

6.14 Overloading Functions

CONCEPT: Two or more functions may have the same name, as long as their
parameter lists are different.

Sometimes you will create two or more functions that perform the same operation, but
use a different set of parameters or parameters of different data types. For instance, in
Program 6-13 there is a square function that uses a double parameter. But, suppose you
also wanted a square function that works exclusively with integers, accepting an int as
its argument. Both functions would do the same thing: return the square of their argu-
ment. The only difference is the data type involved in the operation. If you were to use
both these functions in the same program, you could assign a unique name to each func-
tion. For example, the function that squares an int might be named squareInt, and the
one that squares a double might be named squareDouble. C++, however, allows you to
overload function names. That means you may assign the same name to multiple func-
tions, as long as their parameter lists are different. Program 6-27 uses two overloaded
square functions.

Program 6-27

 1 // This program uses overloaded functions.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 // Function prototypes
 7 int square(int);
 8 double square(double);
 9
10 int main()
11 {
12 int userInt;
13 double userFloat;
14
15 // Get an int and a double.
16 cout << fixed << showpoint << setprecision(2);
17 cout << "Enter an integer and a floating-point value: ";
18 cin >> userInt >> userFloat;
19
20 // Display their squares.
21 cout << "Here are their squares: ";
22 cout << square(userInt) << " and " << square(userFloat);
23 return 0;
24 }
25
26 //**
27 // Definition of overloaded function square. *
28 // This function uses an int parameter, number. It returns the *
29 // square of number as an int. *
30 //**

6.14 Overloading Functions 353

Here are the headers for the square functions used in Program 6-27:

int square(int number)

double square(double number)

In C++, each function has a signature. The function signature is the name of the function
and the data types of the function’s parameters in the proper order. The square functions
in Program 6-27 would have the following signatures:

square(int)

square(double)

When an overloaded function is called, C++ uses the function signature to distinguish it from
other functions with the same name. In Program 6-27, when an int argument is passed to
square, the version of the function that has an int parameter is called. Likewise, when a
double argument is passed to square, the version with a double parameter is called.

Note that the function’s return value is not part of the signature. The following functions
could not be used in the same program because their parameter lists aren’t different.

int square(int number)
{
 return number * number
}

double square(int number) // Wrong! Parameter lists must differ
{
 return number * number
}

31
32 int square(int number)
33 {
34 return number * number;
35 }
36
37 //***
38 // Definition of overloaded function square. *
39 // This function uses a double parameter, number. It returns *
40 // the square of number as a double. *
41 //***
42
43 double square(double number)
44 {
45 return number * number;
46 }

Program Output with Example Input Shown in Bold
Enter an integer and a floating-point value: 12 4.2 [Enter]
Here are their squares: 144 and 17.64

354 Chapter 6 Functions

Overloading is also convenient when there are similar functions that use a different num-
ber of parameters. For example, consider a program with functions that return the sum of
integers. One returns the sum of two integers, another returns the sum of three integers,
and yet another returns the sum of four integers. Here are their function headers:

int sum(int num1, int num2)

int sum(int num1, int num2, int num3)

int sum(int num1, int num2, int num3, int num4)

Because the number of parameters is different in each, they all may be used in the same pro-
gram. Program 6-28 is an example that uses two functions, each named calcWeeklyPay, to
determine an employee’s gross weekly pay. One version of the function uses an int and a
double parameter, while the other version only uses a double parameter.

Program 6-28

 1 // This program demonstrates overloaded functions to calculate
 2 // the gross weekly pay of hourly paid or salaried employees.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 // Function prototypes
 8 void getChoice(char &);
 9 double calcWeeklyPay(int, double);
10 double calcWeeklyPay(double);
11
12 int main()
13 {
14 char selection; // Menu selection
15 int worked; // Hours worked
16 double rate; // Hourly pay rate
17 double yearly; // Yearly salary
18
19 // Set numeric output formatting.
20 cout << fixed << showpoint << setprecision(2);
21
22 // Display the menu and get a selection.
23 cout << "Do you want to calculate the weekly pay of\n";
24 cout << "(H) an hourly paid employee, or \n";
25 cout << "(S) a salaried employee?\n";
26 getChoice(selection);
27
28 // Process the menu selection.
29 switch (selection)
30 {
31 // Hourly paid employee
32 case 'H' :
33 case 'h' : cout << "How many hours were worked? ";

6.14 Overloading Functions 355

34 cin >> worked;
35 cout << "What is the hourly pay rate? ";
36 cin >> rate;
37 cout << "The gross weekly pay is $";
38 cout << calcWeeklyPay(worked, rate) << endl;
39 break;
40
41 // Salaried employee
42 case 'S' :
43 case 's' : cout << "What is the annual salary? ";
44 cin >> yearly;
45 cout << "The gross weekly pay is $";
46 cout << calcWeeklyPay(yearly) << endl;
47 break;
48 }
49 return 0;
50 }
51
52 //***
53 // Definition of function getChoice. *
54 // The parameter letter is a reference to a char. *
55 // This function asks the user for an H or an S and returns *
56 // the validated input. *
57 //***
58
59 void getChoice(char &letter)
60 {
61 // Get the user's selection.
62 cout << "Enter your choice (H or S): ";
63 cin >> letter;
64
65 // Validate the selection.
66 while (letter != 'H' && letter != 'h' &&
67 letter != 'S' && letter != 's')
68 {
69 cout << "Please enter H or S: ";
70 cin >> letter;
71 }
72 }
73
74 //***
75 // Definition of overloaded function calcWeeklyPay. *
76 // This function calculates the gross weekly pay of *
77 // an hourly paid employee. The parameter hours holds the *
78 // number of hours worked. The parameter payRate holds the *
79 // hourly pay rate. The function returns the weekly salary. *
80 //***

(program continues)

356 Chapter 6 Functions

6.15 The exit() Function

CONCEPT: The exit() function causes a program to terminate, regardless of which
function or control mechanism is executing.

A C++ program stops executing when the return statement in function main is encoun-
tered. When other functions end, however, the program does not stop. Control of the
program goes back to the place immediately following the function call. Sometimes it’s
convenient or even necessary to terminate a program in a function other than main. To
accomplish this, the exit function is used.

When the exit function is called, it causes the program to stop, regardless of which func-
tion contains the call. Program 6-29 demonstrates its use.

Program 6-28 (continued)

81
82 double calcWeeklyPay(int hours, double payRate)
83 {
84 return hours * payRate;
85 }
86
87 //***
88 // Definition of overloaded function calcWeeklyPay. *
89 // This function calculates the gross weekly pay of *
90 // a salaried employee. The parameter holds the employee's *
91 // annual salary. The function returns the weekly salary. *
92 //***
93
94 double calcWeeklyPay(double annSalary)
95 {
96 return annSalary / 52;
97 }

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly paid employee, or
(S) a salaried employee?
Enter your choice (H or S): H [Enter]
How many hours were worked? 40 [Enter]
What is the hourly pay rate? 18.50 [Enter]
The gross weekly pay is $740.00

Program Output with Example Input Shown in Bold
Do you want to calculate the weekly pay of
(H) an hourly paid employee, or
(S) a salaried employee?
Enter your choice (H or S): S [Enter]
What is the annual salary? 68000.00 [Enter]
The gross weekly pay is $1307.69

6.15 The exit() Function 357

To use the exit function, be sure to include the cstdlib header file. Notice the function
takes an integer argument. This argument is the exit code you wish the program to pass
back to the computer’s operating system. This code is sometimes used outside of the pro-
gram to indicate whether the program ended successfully or as the result of a failure. In
Program 6-29, the exit code zero is passed, which commonly indicates a successful exit. If
you are unsure which code to use with the exit function, there are two named constants,
EXIT_FAILURE and EXIT_SUCCESS, defined in cstdlib for you to use. The constant
EXIT_FAILURE is defined as the termination code that commonly represents an unsuccess-
ful exit under the current operating system. Here is an example of its use:

exit(EXIT_FAILURE);

The constant EXIT_SUCCESS is defined as the termination code that commonly represents
a successful exit under the current operating system. Here is an example:

exit(EXIT_SUCCESS);

Program 6-29

 1 // This program shows how the exit function causes a program
 2 // to stop executing.
 3 #include <iostream>
 4 #include <cstdlib> // For exit
 5 using namespace std;
 6
 7 void function(); // Function prototype
 8
 9 int main()
10 {
11 function();
12 return 0;
13 }
14
15 //***
16 // This function simply demonstrates that exit can be used *
17 // to terminate a program from a function other than main. *
18 //***
19
20 void function()
21 {
22 cout << "This program terminates with the exit function.\n";
23 cout << "Bye!\n";
24 exit(0);
25 cout << "This message will never be displayed\n";
26 cout << "because the program has already terminated.\n";
27 }

Program Output
This program terminates with the exit function.
Bye!

NOTE: Generally, the exit code is important only if you know it will be tested outside the
program. If it is not used, just pass zero, or EXIT_SUCCESS.

358 Chapter 6 Functions

Checkpoint
6.24 What is the output of the following program?

#include <iostream>
#include <cstdlib>
using namespace std;

void showVals(double, double);

int main()
{

 double x = 1.2, y = 4.5;

 showVals(x, y);
 return 0;
}

void showVals(double p1, double p2)
{
 cout << p1 << endl;
 exit(0);
 cout << p2 << endl;
}

6.25 What is the output of the following program?

#include <iostream>
using namespace std;

int manip(int);
int manip(int, int);
int manip(int, double);

int main()
{
 int x = 2, y= 4, z;
 double a = 3.1;

 z = manip(x) + manip(x, y) + manip(y, a);
 cout << z << endl;
 return 0;
}
int manip(int val)
{
 return val + val * 2;
}

int manip(int val1, int val2)
{
 return (val1 + val2) * 2;
}

int manip(int val1, double val2)
{
 return val1 * static_cast<int>(val2);
}

6.16 Stubs and Drivers 359

6.16 Stubs and Drivers

Stubs and drivers are very helpful tools for testing and debugging programs that use func-
tions. They allow you to test the individual functions in a program, in isolation from the
parts of the program that call the functions.

A stub is a dummy function that is called instead of the actual function it represents. It
usually displays a test message acknowledging that it was called, and nothing more. For
example, if a stub were used for the showFees function in Program 6-10 (the modular
health club membership program), it might look like this:

void showFees(double memberRate, int months)
{
 cout << "The showFees function was called with "
 << "the following arguments:\n"
 << "memberRate: " << memberRate << endl
 << "months: " << months << endl;
}

The following is an example output of the program if it were run with the stub instead of
the actual showFees function. (A version of the health club program using this stub func-
tion is on the Student CD. The program is named HealthClubWithStub.cpp.)

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 1 [Enter]
For how many months? 4 [Enter]
The showFees function was called with the following arguments:
memberRate: 40.00
months: 4

 Health Club Membership Menu

1. Standard Adult Membership
2. Child Membership
3. Senior Citizen Membership
4. Quit the Program

Enter your choice: 4 [Enter]

As you can see, by replacing an actual function with a stub, you can concentrate your test-
ing efforts on the parts of the program that call the function. Primarily, the stub allows
you to determine whether your program is calling a function when you expect it to, and to
confirm that valid values are being passed to the function. If the stub represents a function
that returns a value, then the stub should return a test value. This helps you confirm that
the return value is being handled properly. When the parts of the program that call a func-
tion are debugged to your satisfaction, you can move on to testing and debugging the
actual functions themselves. This is where drivers become useful.

360 Chapter 6 Functions

A driver is a program that tests a function by simply calling it. If the function accepts
arguments, the driver passes test data. If the function returns a value, the driver displays
the return value on the screen. This allows you to see how the function performs in isola-
tion from the rest of the program it will eventually be part of. Program 6-30 shows a
driver for testing the showFees function in the health club membership program.

Program 6-30

 1 // This program is a driver for testing the showFees function.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Prototype
 6 void showFees(double, int);
 7
 8 int main()
 9 {
10 // Constants for membership rates
11 const double ADULT = 40.0;
12 const double SENIOR = 30.0;
13 const double CHILD = 20.0;
14
15 // Perform a test for adult membership.
16 cout << "Testing an adult membership...\n"
17 << "Calling the showFees function with arguments "
18 << ADULT << " and 10.\n";
19 showFees(ADULT, 10);
20
21 // Perform a test for senior citizen membership.
22 cout << "\nTesting a senior citizen membership...\n"
23 << "Calling the showFees function with arguments "
24 << SENIOR << " and 10.\n";
25 showFees(SENIOR, 10);
26
27 // Perform a test for child membership.
28 cout << "\nTesting a child membership...\n"
29 << "\nCalling the showFees function with arguments "
30 << CHILD << " and 10.\n";
31 showFees(CHILD, 10);
32 return 0;
33 }
34
35 //***
36 // Definition of function showFees. The memberRate parameter holds*
37 // the monthly membership rate and the months parameter holds the *
38 // number of months. The function displays the total charges. *
39 //***
40
41 void showFees(double memberRate, int months)
42 {
43 cout << "The total charges are $"
44 << (memberRate * months) << endl;
45 }

Review Questions and Exercises 361

As shown in Program 6-30, a driver can be used to thoroughly test a function. It can
repeatedly call the function with different test values as arguments. When the function
performs as desired, it can be placed into the actual program it will be part of.

Case Study on CD: See High Adventure Travel Agency Part 1 Case Study on the Student CD.

Review Questions and Exercises

Short Answer
1. Why do local variables lose their values between calls to the function in which they

are defined?

2. What is the difference between an argument and a parameter variable?

3. Where do you define parameter variables?

4. If you are writing a function that accepts an argument and you want to make sure the
function cannot change the value of the argument, what do you do?

5. When a function accepts multiple arguments, does it matter in what order the argu-
ments are passed in?

6. How do you return a value from a function?

7. What is the advantage of breaking your application’s code into several small proce-
dures?

8. How would a static local variable be useful?

9. Give an example where passing an argument by reference would be useful.

Fill-in-the-Blank

10. The _________ is the part of a function definition that shows the function name,
return type, and parameter list.

11. If a function doesn’t return a value, the word _________ will appear as its return type.

12. Either a function’s _________ or its _________ must precede all calls to the function.

13. Values that are sent into a function are called _________.

Program Output
Testing an adult membership...
Calling the showFees function with arguments 40 and 10.
The total charges are $400

Testing a senior citizen membership...
Calling the showFees function with arguments 30 and 10.
The total charges are $300

Testing a child membership...

Calling the showFees function with arguments 20 and 10.
The total charges are $200

362 Chapter 6 Functions

14. Special variables that hold copies of function arguments are called _________.

15. When only a copy of an argument is passed to a function, it is said to be passed by
_________.

16. A(n) _________ eliminates the need to place a function definition before all calls to the
function.

17. A(n) _________ variable is defined inside a function and is not accessible outside the
function.

18. _________ variables are defined outside all functions and are accessible to any func-
tion within their scope.

19. _________ variables provide an easy way to share large amounts of data among all
the functions in a program.

20. Unless you explicitly initialize global variables, they are automatically initialized to
_________.

21. If a function has a local variable with the same name as a global variable, only the
_________ variable can be seen by the function.

22. _________ local variables retain their value between function calls.

23. The _________ statement causes a function to end immediately.

24. _________ arguments are passed to parameters automatically if no argument is pro-
vided in the function call.

25. When a function uses a mixture of parameters with and without default arguments,
the parameters with default arguments must be defined _________.

26. The value of a default argument must be a(n) _________.

27. When used as parameters, _________ variables allow a function to access the parame-
ter’s original argument.

28. Reference variables are defined like regular variables, except there is a(n) _________ in
front of the name.

29. Reference variables allow arguments to be passed by ____________.

30. The _________ function causes a program to terminate.

31. Two or more functions may have the same name, as long as their _________ are dif-
ferent.

Algorithm Workbench

32. Examine the following function header, then write an example call to the function.

void showValue(int quantity)

33. The following statement calls a function named half. The half function returns a
value that is half that of the argument. Write the function.

result = half(number);

Review Questions and Exercises 363

34. A program contains the following function.

int cube(int num)
{
 return num * num * num;
}

Write a statement that passes the value 4 to this function and assigns its return value
to the variable result.

35. Write a function named timesTen that accepts an argument. When the function is
called, it should display the product of its argument multiplied times 10.

36. A program contains the following function.

void display(int arg1, double arg2, char arg3)
{
 cout << "Here are the values: "
 << arg1 << " " << arg2 << " "
 << arg3 << endl;
}

Write a statement that calls the procedure and passes the following variables to it:

int age;
double income;
char initial;

37. Write a function named getNumber that uses a reference parameter variable to accept
an integer argument. The function should prompt the user to enter a number in the
range of 1 through 100. The input should be validated and stored in the parameter
variable.

True or False
38. T F Functions should be given names that reflect their purpose.

39. T F Function headers are terminated with a semicolon.

40. T F Function prototypes are terminated with a semicolon.

41. T F If other functions are defined before main, the program still starts executing
at function main.

42. T F When a function terminates, it always branches back to main, regardless of
where it was called from.

43. T F Arguments are passed to the function parameters in the order they appear in
the function call.

44. T F The scope of a parameter is limited to the function which uses it.

45. T F Changes to a function parameter always affect the original argument as well.

46. T F In a function prototype, the names of the parameter variables may be left out.

47. T F Many functions may have local variables with the same name.

48. T F Overuse of global variables can lead to problems.

49. T F Static local variables are not destroyed when a function returns.

50. T F All static local variables are initialized to –1 by default.

364 Chapter 6 Functions

51. T F Initialization of static local variables only happens once, regardless of how
many times the function in which they are defined is called.

52. T F When a function with default arguments is called and an argument is left out,
all arguments that come after it must be left out as well.

53. T F It is not possible for a function to have some parameters with default argu-
ments and some without.

54. T F The exit function can only be called from main.

55. T F A stub is a dummy function that is called instead of the actual function it rep-
resents.

Find the Errors

Each of the following functions has errors. Locate as many errors as you can.

56. void total(int value1, value2, value3)

{
 return value1 + value2 + value3;
}

57. double average(int value1, int value2, int value3)

{
 double average;

 average = value1 + value2 + value3 / 3;
}

58. void area(int length = 30, int width)

{
 return length * width;
}

59. void getValue(int value&)

{
 cout << "Enter a value: ";
 cin >> value&;
}

60. (Overloaded functions)

int getValue()
{
 int inputValue;
 cout << "Enter an integer: ";
 cin >> inputValue;
 return inputValue;
}
double getValue()
{
 double inputValue;
 cout << "Enter a floating-point number: ";
 cin >> inputValue;
 return inputValue;
}

Review Questions and Exercises 365

Programming Challenges
1. Markup

Write a program that asks the user to enter an item’s wholesale cost and its markup
percentage. It should then display the item’s retail price. For example:

• If an item’s wholesale cost is 5.00 and its markup percentage is 100%, then the
item’s retail price is 10.00.

• If an item’s wholesale cost is 5.00 and its markup percentage is 50%, then the
item’s retail price is 7.50.

The program should have a function named calculateRetail that receives the
wholesale cost and the markup percentage as arguments, and returns the retail price
of the item.

Input Validation: Do not accept negative values for either the wholesale cost of the
item or the markup percentage.

2. Rectangle Area—Complete the Program

The Student CD contains a partially written program named AreaRectangle.cpp.
Your job is to complete the program. When it is complete, the program will ask the
user to enter the width and length of a rectangle, and then display the rectangle’s area.
The program calls the following functions, which have not been written:

• getLength – This function should ask the user to enter the rectangle's length, and
then return that value as a double.

• getWidth - This function should ask the user to enter the rectangle's width, and
then return that value as a double.

• getArea – This function should accept the rectangle's length and width as argu-
ments, and return the rectangle's area. The area is calculated by multiplying the
length by the width.

• displayData – This function should accept the rectangle's length, width, and
area as arguments, and display them in an appropriate message on the screen.

3. Winning Division

Write a program that determines which of a company’s four divisions (Northeast,
Southeast, Northwest, and Southwest) had the greatest sales for a quarter. It should
include the following two functions, which are called by main.

• double getSales() is passed the name of a division. It asks the user for a divi-
sion’s quarterly sales figure, validates the input, then returns it. It should be called
once for each division.

• void findHighest() is passed the four sales totals. It determines which is the
largest and prints the name of the high grossing division, along with its sales figure.

Input Validation: Do not accept dollar amounts less than $0.00.

Solving the
Markup
Problem

366 Chapter 6 Functions

4. Safest Driving Area

Write a program that determines which of five geographic regions within a major city
(north, south, east, west, and central) had the fewest reported automobile accidents
last year. It should have the following two functions, which are called by main.

• int getNumAccidents() is passed the name of a region. It asks the user for the
number of automobile accidents reported in that region during the last year, vali-
dates the input, then returns it. It should be called once for each city region.

• void findLowest() is passed the five accident totals. It determines which is the
smallest and prints the name of the region, along with its accident figure.

Input Validation: Do not accept an accident number that is less than 0.

5. Falling Distance

When an object is falling because of gravity, the following formula can be used to
determine the distance the object falls in a specific time period:

d = 1⁄2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t
is the amount of time, in seconds, that the object has been falling.

Write a function named fallingDistance that accepts an object’s falling time (in
seconds) as an argument. The function should return the distance, in meters, that the
object has fallen during that time interval. Write a program that demonstrates the
function by calling it in a loop that passes the values 1 through 10 as arguments, and
displays the return value.

6. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy. The following for-
mula can be used to determine a moving object’s kinetic energy:

KE = 1⁄2 mv2

The variables in the formula are as follows: KE is the kinetic energy, m is the object’s
mass in kilograms, and v is the object’s velocity, in meters per second.

Write a function named kineticEnergy that accepts an object’s mass (in kilograms)
and velocity (in meters per second) as arguments. The function should return the
amount of kinetic energy that the object has. Demonstrate the function by calling it in
a program that asks the user to enter values for mass and velocity.

7. Celsius Temperature Table

The formula for converting a temperature from Fahrenheit to Celsius is

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a func-
tion named celsius that accepts a Fahrenheit temperature as an argument. The func-
tion should return the temperature, converted to Celsius. Demonstrate the function by
calling it in a loop that displays a table of the Fahrenheit temperatures 0 through 20
and their Celsius equivalents.

C 5
9
--- F 32–()=

Review Questions and Exercises 367

8. Coin Toss

Write a function named coinToss that simulates the tossing of a coin. When you call
the function, it should generate a random number in the range of 1 through 2. If the
random number is 1, the function should display “heads.” If the random number is 2,
the function should display “tails.” Demonstrate the function in a program that asks
the user how many times the coin should be tossed, and then simulates the tossing of
the coin that number of times.

9. Present Value

Suppose you want to deposit a certain amount of money into a savings account, and
then leave it alone to draw interest for the next 10 years. At the end of 10 years you
would like to have $10,000 in the account. How much do you need to deposit today
to make that happen? You can use the following formula, which is known as the
present value formula, to find out:

The terms in the formula are as follows:

• P is the present value, or the amount that you need to deposit today.
• F is the future value that you want in the account. (In this case, F is $10,000.)
• r is the annual interest rate.
• n is the number of years that you plan to let the money sit in the account.

Write a program that has a function named presentValue that performs this calcula-
tion. The function should accept the future value, annual interest rate, and number of
years as arguments. It should return the present value, which is the amount that you
need to deposit today. Demonstrate the function in a program that lets the user exper-
iment with different values for the formula's terms.

10. Lowest Score Drop

Write a program that calculates the average of a group of test scores, where the lowest
score in the group is dropped. It should use the following functions:

• void getScore() should ask the user for a test score, store it in a reference
parameter variable, and validate it. This function should be called by main once
for each of the five scores to be entered.

• void calcAverage() should calculate and display the average of the four high-
est scores. This function should be called just once by main, and should be passed
the five scores.

• int findLowest() should find and return the lowest of the five scores passed to
it. It should be called by calcAverage, which uses the function to determine which
of the five scores to drop.

Input Validation: Do not accept test scores lower than 0 or higher than 100.

P
F

1 r+()n
=

368 Chapter 6 Functions

11. Star Search

A particular talent competition has five judges, each of whom awards a score between
0 and 10 to each performer. Fractional scores, such as 8.3, are allowed. A performer’s
final score is determined by dropping the highest and lowest score received, then aver-
aging the three remaining scores. Write a program that uses this method to calculate a
contestant’s score. It should include the following functions:

• void getJudgeData() should ask the user for a judge’s score, store it in a refer-
ence parameter variable, and validate it. This function should be called by main
once for each of the five judges.

• void calcScore() should calculate and display the average of the three scores that
remain after dropping the highest and lowest scores the performer received. This
function should be called just once by main, and should be passed the five scores.

The last two functions, described below, should be called by calcScore, which uses
the returned information to determine which of the scores to drop.
• int findLowest() should find and return the lowest of the five scores passed to it.
• int findHighest() should find and return the highest of the five scores passed to it.

Input Validation: Do not accept judge scores lower than 0 or higher than 10.

12. Days Out

Write a program that calculates the average number of days a company’s employees
are absent. The program should have the following functions:

• A function called by main that asks the user for the number of employees in the
company. This value should be returned as an int. (The function accepts no
arguments.)

• A function called by main that accepts one argument: the number of employees in
the company. The function should ask the user to enter the number of days each
employee missed during the past year. The total of these days should be returned
as an int.

• A function called by main that takes two arguments: the number of employees in
the company and the total number of days absent for all employees during the
year. The function should return, as a double, the average number of days
absent. (This function does not perform screen output and does not ask the user
for input.)

Input Validation: Do not accept a number less than 1 for the number of employees.
Do not accept a negative number for the days any employee missed.

13. Order Status

The Middletown Wholesale Copper Wire Company sells spools of copper wiring for
$100 each. Write a program that displays the status of an order. The program should
have a function that asks for the following data:

• The number of spools ordered.
• The number of spools in stock.
• Whether there are special shipping and handling charges.

(Shipping and handling is normally $10 per spool.) If there are special charges, the
program should ask for the special charges per spool.

Review Questions and Exercises 369

The gathered data should be passed as arguments to another function that displays

• The number of spools ready to ship from current stock.
• The number of spools on backorder (if the number ordered is greater than what is

in stock).
• Subtotal of the portion ready to ship (the number of spools ready to ship times $100).
• Total shipping and handling charges on the portion ready to ship.
• Total of the order ready to ship.

The shipping and handling parameter in the second function should have the default
argument 10.00.

Input Validation: Do not accept numbers less than 1 for spools ordered. Do not
accept a number less than 0 for spools in stock or shipping and handling charges.

14. Overloaded Hospital

Write a program that computes and displays the charges for a patient’s hospital stay.
First, the program should ask if the patient was admitted as an in-patient or an out-
patient. If the patient was an in-patient, the following data should be entered:

• The number of days spent in the hospital
• The daily rate
• Hospital medication charges
• Charges for hospital services (lab tests, etc.)

The program should ask for the following data if the patient was an out-patient:

• Charges for hospital services (lab tests, etc.)
• Hospital medication charges

The program should use two overloaded functions to calculate the total charges. One
of the functions should accept arguments for the in-patient data, while the other func-
tion accepts arguments for out-patient information. Both functions should return the
total charges.

Input Validation: Do not accept negative numbers for any data.

15. Population

In a population, the birth rate is the percentage increase of the population due to
births and the death rate is the percentage decrease of the population due to deaths.
Write a program that displays the size of a population for any number of years. The
program should ask for the following data:

• The starting size of a population
• The annual birth rate
• The annual death rate
• The number of years to display

Write a function that calculates the size of the population for a year. The formula is

N = P + BP - DP

where N is the new population size, P is the previous population size, B is the birth
rate, and D is the death rate.

370 Chapter 6 Functions

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate or death rate. Do not accept numbers less than
1 for the number of years.

16. Transient Population

Modify Programming Challenge 13 to also consider the effect on population caused
by people moving into or out of a geographic area. Given as input a starting popula-
tion size, the annual birth rate, the annual death rate, the number of individuals who
typically move into the area each year, and the number of individuals who typically
leave the area each year, the program should project what the population will be num-
Years from now. You can either prompt the user to input a value for numYears, or
you can set it within the program.

Input Validation: Do not accept numbers less than 2 for the starting size. Do not
accept negative numbers for birth rate, death rate, arrivals, or departures.

17. Paint Job Estimator

A painting company has determined that for every 115 square feet of wall space, one
gallon of paint and eight hours of labor will be required. The company charges
$18.00 per hour for labor. Write a modular program that allows the user to enter the
number of rooms that are to be painted and the price of the paint per gallon. It should
also ask for the square feet of wall space in each room. It should then display the fol-
lowing data:

• The number of gallons of paint required
• The hours of labor required
• The cost of the paint
• The labor charges
• The total cost of the paint job

Input validation: Do not accept a value less than 1 for the number of rooms. Do not
accept a value less than $10.00 for the price of paint. Do not accept a negative value
for square footage of wall space.

18. Using Files—Hospital Report

Modify Programming Challenge 14, Overloaded Hospital, to write the report it cre-
ates to a file. Print the contents of the file to hand in to your instructor.

19. Stock Profit

The profit from the sale of a stock can be calculated as follows:

Profit = ((NS × SP) – SC) – ((NS × PP) + PC)

where NS is the number of shares, SP is the sale price per share, SC is the sale commis-
sion paid, PP is the purchase price per share, and PC is the purchase commission paid.
If the calculation yields a positive value, then the sale of the stock resulted in a profit.
If the calculation yields a negative number, then the sale resulted in a loss.

Write a function that accepts as arguments the number of shares, the purchase price
per share, the purchase commission paid, the sale price per share, and the sale com-
mission paid. The function should return the profit (or loss) from the sale of stock.

Review Questions and Exercises 371

Demonstrate the function in a program that asks the user to enter the necessary data
and displays the amount of the profit or loss.

20. Multiple Stock Sales

Use the function that you wrote for Programming Challenge 19 (Stock Profit) in a
program that calculates the total profit or loss from the sale of multiple stocks. The
program should ask the user for the number of stock sales, and the necessary data for
each stock sale. It should accumulate the profit or loss for each stock sale and then
display the total.

21. isPrime Function

A prime number is a number that is only evenly divisible by itself and 1. For example,
the number 5 is prime because it can only be evenly divided by 1 and 5. The number
6, however, is not prime because it can be divided evenly by 1, 2, 3, and 6.

Write a function name isPrime, which takes an integer as an argument and returns
true if the argument is a prime number, or false otherwise. Demonstrate the function
in a complete program.

22. Prime Number List

Use the isPrime function that you wrote in Programming Challenge 21 in a program
that stores a list of all the prime numbers from 1 through 100 in a file.

23. Rock, Paper, Scissors Game

Write a program that lets the user play the game of Rock, Paper, Scissors against the
computer. The program should work as follows.

1. When the program begins, a random number in the range of 1 through 3 is gener-
ated. If the number is 1, then the computer has chosen rock. If the number is 2,
then the computer has chosen paper. If the number is 3, then the computer has
chosen scissors. (Don’t display the computer’s choice yet.)

2. The user enters his or her choice of “rock”, “paper”, or “scissors” at the key-
board. (You can use a menu if you prefer.)

3. The computer’s choice is displayed.

4. A winner is selected according to the following rules:

• If one player chooses rock and the other player chooses scissors, then rock
wins. (The rock smashes the scissors.)

• If one player chooses scissors and the other player chooses paper, then scis-
sors wins. (Scissors cuts paper.)

• If one player chooses paper and the other player chooses rock, then paper
wins. (Paper wraps rock.)

• If both players make the same choice, the game must be played again to
determine the winner.

Be sure to divide the program into functions that perform each major task.

TIP: Recall that the % operator divides one number by another, and returns the
remainder of the division. In an expression such as num1 % num2, the % operator will
return 0 if num1 is evenly divisible by num2.

372 Chapter 6 Functions

Group Project

24. Travel Expenses

This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call the other functions in
the program. The remainder of the functions will be designed by other members
of the team.

• The requirements of the program should be analyzed so each student is given
about the same work load.

• The parameters and return types of each function should be decided in advance.
• Stubs and drivers should be used to test and debug the program.
• The program can be implemented as a multifile program, or all the functions can

be cut and pasted into the main file.

Here is the assignment: Write a program that calculates and displays the total travel
expenses of a businessperson on a trip. The program should have functions that ask
for and return the following:

• The total number of days spent on the trip
• The time of departure on the first day of the trip, and the time of arrival back

home on the last day of the trip
• The amount of any round-trip airfare
• The amount of any car rentals
• Miles driven, if a private vehicle was used. Calculate the vehicle expense as $0.27

per mile driven
• Parking fees (The company allows up to $6 per day. Anything in excess of this

must be paid by the employee.)
• Taxi fees, if a taxi was used anytime during the trip (The company allows up to

$10 per day, for each day a taxi was used. Anything in excess of this must be paid
by the employee.)

• Conference or seminar registration fees
• Hotel expenses (The company allows up to $90 per night for lodging. Anything in

excess of this must be paid by the employee.)
• The amount of each meal eaten. On the first day of the trip, breakfast is allowed as an

expense if the time of departure is before 7 a.m. Lunch is allowed if the time of depar-
ture is before 12 noon. Dinner is allowed on the first day if the time of departure is
before 6 p.m. On the last day of the trip, breakfast is allowed if the time of arrival is
after 8 a.m. Lunch is allowed if the time of arrival is after 1 p.m. Dinner is allowed on
the last day if the time of arrival is after 7 p.m. The program should only ask for the
amounts of allowable meals. (The company allows up to $9 for breakfast, $12 for
lunch, and $16 for dinner. Anything in excess of this must be paid by the employee.)

The program should calculate and display the total expenses incurred by the busi-
nessperson, the total allowable expenses for the trip, the excess that must be reim-
bursed by the businessperson, if any, and the amount saved by the businessperson if
the expenses were under the total allowed.

Input Validation: Do not accept negative numbers for any dollar amount or for miles
driven in a private vehicle. Do not accept numbers less than 1 for the number of days.
Only accept valid times for the time of departure and the time of arrival.

373

C
H

A
P

T
E

R

7 Arrays

7.1 Arrays Hold Multiple Values

CONCEPT: An array allows you to store and work with multiple values of the same
data type.

The variables you have worked with so far are designed to hold only one value at a time.
Each of the variable definitions in Figure 7-1 causes only enough memory to be reserved to
hold one value of the specified data type.

An array works like a variable that can store a group of values, all of the same type. The
values are stored together in consecutive memory locations. Here is a definition of an
array of integers:

int days[6];

TOPICS

7.1 Arrays Hold Multiple Values
7.2 Accessing Array Elements
7.3 No Bounds Checking in C++
7.4 Array Initialization
7.5 Processing Array Contents
7.6 Focus on Software Engineering:

Using Parallel Arrays
7.7 Arrays as Function Arguments
7.8 Two-Dimensional Arrays

7.9 Arrays of Strings
7.10 Arrays with Three or More

Dimensions
7.11 Focus on Problem Solving and

Program Design: A Case Study
7.12 If You Plan to Continue in

Computer Science: Introduction
to the STL vector

374 Chapter 7 Arrays

The name of this array is days. The number inside the brackets is the array’s size declarator.
It indicates the number of elements, or values, the array can hold. The days array can store
six elements, each one an integer. This is depicted in Figure 7-2.

An array’s size declarator must be a constant integer expression with a value greater
than zero. It can be either a literal, as in the previous example, or a named constant, as
shown in the following:

const int NUM_DAYS = 6;
int days[NUM_DAYS];

Arrays of any data type can be defined. The following are all valid array definitions:

float temperatures[100]; // Array of 100 floats
char name[41]; // Array of 41 characters
long units[50]; // Array of 50 long integers
double sizes[1200]; // Array of 1200 doubles

Memory Requirements of Arrays
The amount of memory used by an array depends on the array’s data type and the number
of elements. The hours array, defined here, is an array of six shorts.

short hours[6];

On a typical PC, a short uses two bytes of memory, so the hours array would occupy 12
bytes. This is shown in Figure 7-3.

Figure 7-1

Figure 7-2

int count; Enough memory for 1 int
 12314

float price; Enough memory for 1 float
 56.981

char letter; Enough memory for 1 char
 A

days array: enough memory for six int values

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

7.2 Accessing Array Elements 375

The size of an array can be calculated by multiplying the size of an individual element by
the number of elements in the array. Table 7-1 shows the typical sizes of various arrays.

7.2 Accessing Array Elements

CONCEPT: The individual elements of an array are assigned unique subscripts. These
subscripts are used to access the elements.

Even though an entire array has only one name, the elements may be accessed and used as
individual variables. This is possible because each element is assigned a number known as
a subscript. A subscript is used as an index to pinpoint a specific element within an array.
The first element is assigned the subscript 0, the second element is assigned 1, and so
forth. The six elements in the array hours would have the subscripts 0 through 5. This is
shown in Figure 7-4.

Figure 7-3

Table 7-1

Array Definition Number of Elements Size of Each Element Size of the Array
char letters[25]; 25 1 byte 25 bytes
short rings[100]; 100 2 bytes 200 bytes
int miles[84]; 84 4 bytes 336 bytes
float temp[12]; 12 4 bytes 48 bytes
double distance[1000]; 1000 8 bytes 8000 bytes

Figure 7-4

hours array: Each element uses two bytes

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

0

Subscripts

54321

376 Chapter 7 Arrays

Each element in the hours array, when accessed by its subscript, can be used as a short
variable. Here is an example of a statement that stores the number 20 in the first element
of the array:

hours[0] = 20;

Figure 7-5 shows the contents of the array hours after the statement assigns 20 to hours[0].

The following statement stores the integer 30 in hours[3].

 hours[3] = 30;

Figure 7-6 shows the contents of the array after the previous statement executes:

NOTE: Subscript numbering in C++ always starts at zero. The subscript of the last
element in an array is one less than the total number of elements in the array. This means
that in the array shown in Figure 7-4, the element hours[6] does not exist. hours[5] is
the last element in the array.

NOTE: The expression hours[0] is pronounced “hours sub zero.” You would read this
assignment statement as “hours sub zero is assigned twenty.”

Figure 7-5

NOTE: Because values have not been assigned to the other elements of the array,
question marks will be used to indicate that the contents of those elements are unknown.
If an array is defined globally, all of its elements are initialized to zero by default. Local
arrays, however, have no default initialization value.

Figure 7-6

NOTE: Understand the difference between the array size declarator and a subscript. The
number inside the brackets of an array definition is the size declarator. The number inside
the brackets of an assignment statement or any statement that works with the contents of
an array is a subscript.

hours[0] hours[5] hours[4]hours[3]hours[2]hours[1]

20 ? ? ???

hours[0] hours[5] hours[4]hours[3]hours[2]hours[1]

20 ? ? ?30?

7.2 Accessing Array Elements 377

Inputting and Outputting Array Contents
Array elements may be used with the cin and cout objects like any other variable.
Program 7-1 shows the array hours being used to store and display values entered by
the user.

Figure 7-7 shows the contents of the array hours with the values entered by the user in the
example output above.

Program 7-1

 1 // This program asks for the number of hours worked
 2 // by six employees. It stores the values in an array.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int NUM_EMPLOYEES = 6;
 9 int hours[NUM_EMPLOYEES];
10
11 // Get the hours worked by each employee.
12 cout << "Enter the hours worked by "
13 << NUM_EMPLOYEES << " employees: ";
14 cin >> hours[0];
15 cin >> hours[1];
16 cin >> hours[2];
17 cin >> hours[3];
18 cin >> hours[4];
19 cin >> hours[5];
20
21 // Display the values in the array.
22 cout << "The hours you entered are:";
23 cout << " " << hours[0];
24 cout << " " << hours[1];
25 cout << " " << hours[2];
26 cout << " " << hours[3];
27 cout << " " << hours[4];
28 cout << " " << hours[5] << endl;
29 return 0;
30 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 6 employees: 20 12 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

Figure 7-7

hours[0] hours[5] hours[4]hours[3]hours[2]hours[1]

20 12 15 303040

378 Chapter 7 Arrays

Even though the size declarator of an array definition must be a constant or a literal, sub-
script numbers can be stored in variables. This makes it possible to use a loop to “cycle
through” an entire array, performing the same operation on each element. For example,
look at the following code:

const int ARRAY_SIZE = 5;
int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)
 numbers[count] = 99;

This code first defines a constant int named ARRAY_SIZE and initializes it with the value
5. Then it defines an int array named numbers, using ARRAY_SIZE as the size declarator.
As a result, the numbers array will have five elements. The for loop uses a counter vari-
able named count. This loop will iterate five times, and during the loop iterations the
count variable will take on the values 0 through 4.

Notice that the statement inside the loop uses the count variable as a subscript. It assigns
99 to numbers[count]. During the first iteration, 99 is assigned to numbers[0]. During
the next iteration, 99 is assigned to numbers[1]. This continues until 99 has been
assigned to all of the array’s elements. Figure 7-8 illustrates that the loop’s initialization,
test, and update expressions have been written so the loop starts and ends the counter
variable with valid subscript values (0 through 4). This ensures that only valid subscripts
are used in the body of the loop.

Program 7-1 could be simplified by using two for loops: one for inputting the values into
the array and another for displaying the contents of the array. This is shown in Program 7-2.

Figure 7-8

Program 7-2

1 // This program asks for the number of hours worked
 2 // by six employees. It stores the values in an array.
 3 #include <iostream>
 4 using namespace std;
 5

Accessing
Array

Elements
with a Loop

for (count = 0; count < ARRAY_SIZE; count++)
 numbers[count] = 99;

The variable count starts at 0,
which is the first valid subscript value.

The loop ends when the
variable count reaches 5, which
is the first invalid subscript value.

The variable count is
incremented after

each iteration.

7.2 Accessing Array Elements 379

The first for loop, in lines 13 through 18, prompts the user for each employee’s hours.
Take a closer look at lines 15 through 17:

cout << "Enter the hours worked by employee "
 << (count + 1) << ": ";
cin >> hours[count];

Notice that the cout statement uses the expression count + 1 to display the employee
number, but the cin statement uses count as the array subscript. This is because the hours
for employee number 1 are stored in hours[0], the hours for employee number 2 are
stored in hours[1], and so forth.

The loop in lines 22 through 23 also uses the count variable to step through the array, dis-
playing each element.

 6 int main()
 7 {
 8 const int NUM_EMPLOYEES = 6; // Number of employees
 9 int hours[NUM_EMPLOYEES]; // Each employee's hours
10 int count; // Loop counter
11
12 // Input the hours worked.
13 for (count = 0; count < NUM_EMPLOYEES; count++)
14 {
15 cout << "Enter the hours worked by employee "
16 << (count + 1) << ": ";
17 cin >> hours[count];
18 }
19
20 // Display the contents of the array.
21 cout << "The hours you entered are:";
22 for (count = 0; count < NUM_EMPLOYEES; count++)
23 cout << " " << hours[count];
24 cout << endl;
25 return 0;
26 }

Program Output with Example Input Shown in Bold
Enter the hours worked by employee 1: 20 [Enter]
Enter the hours worked by employee 2: 12 [Enter]
Enter the hours worked by employee 3: 40 [Enter]
Enter the hours worked by employee 4: 30 [Enter]
Enter the hours worked by employee 5: 30 [Enter]
Enter the hours worked by employee 6: 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

380 Chapter 7 Arrays

Inputting data into an array must normally be done one element at a time. For example,
the following cin statement will not input data into the hours array:

cin >> hours; // Wrong! This will NOT work.

Instead, you must use multiple cin statements to read data into each array element, or use
a loop to step through the array, reading data into its elements. Also, outputting an array’s
contents must normally be done one element at a time. For example, the following cout
statement will not display the contents of the hours array:

cout << hours; // Wrong! This will NOT work.

Instead, you must output each element of the array separately.

Reading Data from a File into an Array
In many circumstances you will need to read data from a file and store it in an array. The
process is straightforward, and in most cases is best done with a loop. Each iteration of
the loop reads an item from the file and stores it in an array element. Program 7-3 demon-
strates by opening a file that has 10 numbers stored in it and then reading the file’s con-
tents into an array.

NOTE: You can use any integer expression as an array subscript. For example, the first
loop in Program 7-2 could have been written like this:

 for (count = 1; count <= NUM_EMPLOYEES; count++)
 {
 cout << "Enter the hours worked by employee "
 << count << ": ";
 cin >> hours[count - 1];
 }

In this code the cin statement uses the expression count - 1 as a subscript.

Program 7-3

 1 // This program reads data from a file into an array.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int ARRAY_SIZE = 10; // Array size
 9 int numbers[ARRAY_SIZE]; // Array with 10 elements
10 int count; // Loop counter variable
11 ifstream inputFile; // Input file stream object
12
13 inputFile.open("TenNumbers.txt"); // Open the file.
14

7.2 Accessing Array Elements 381

Writing the Contents of an Array to a File
Writing the contents of an array to a file is also a straightforward matter. Use a loop to step
through each element of the array, writing its contents to a file. Program 7-4 demonstrates.

15 // Read the 10 numbers from the file into the array.
16 for (count = 0; count < ARRAY_SIZE; count++)
17 inputFile >> numbers[count];
18
19 // Close the file.
20 inputFile.close();
21
22 // Display the numbers read:
23 cout << "The numbers are: ";
24 for (count = 0; count < ARRAY_SIZE; count++)
25 cout << numbers[count] << " ";
26 cout << endl;
27 return 0;
28 }

Program Output
The numbers are: 101 102 103 104 105 106 107 108 109 110

Program 7-4

 1 // This program writes the contents of an array to a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int ARRAY_SIZE = 10; // Array size
 9 int numbers[ARRAY_SIZE]; // Array with 10 elements
10 int count; // Loop counter variable
11 ofstream outputFile; // Output file stream object
12
13 // Store values in the array.
14 for (count = 0; count < ARRAY_SIZE; count++)
15 numbers[count] = count;
16
17 // Open a file for output.
18 outputFile.open("SavedNumbers.txt");
19
20 // Write the array contents to the file.
21 for (count = 0; count < ARRAY_SIZE; count++)
22 outputFile << numbers[count] << endl;
23

(program continues)

382 Chapter 7 Arrays

Contents of the File SavedNumbers.txt

0
1
2
3
4
5
6
7
8
9

7.3 No Bounds Checking in C++

CONCEPT: C++ gives you the freedom to store data past an array’s boundaries.

Historically, one of the reasons for C++’s popularity has been the freedom it gives program-
mers to work with the computer’s memory. Many of the safeguards provided by other lan-
guages to prevent programs from unsafely accessing memory are absent in C++. For
example, C++ does not perform array bounds checking. This means you can write programs
with subscripts that go beyond the boundaries of a particular array. Program 7-5 demon-
strates this capability.

24 // Close the file.
25 outputFile.close();
26
27 // That's it!
28 cout << "The numbers were saved to the file.\n ";
29 return 0;
30 }

Program Output
The numbers were saved to the file.

WARNING! Think twice before you compile and run Program 7-5. The program will
attempt to write to an area of memory outside the array. This is an invalid operation, and
will most likely cause the program to crash.

Program 7-5

1 // This program unsafely accesses an area of memory by writing
2 // values beyond an array's boundary.
3 // WARNING: If you compile and run this program, it could crash.

Program 7-4 (continued)

7.3 No Bounds Checking in C++ 383

The values array has three integer elements, with the subscripts 0, 1, and 2. The loop,
however, stores the number 100 in elements 0, 1, 2, 3, and 4. The elements with subscripts
3 and 4 do not exist, but C++ allows the program to write beyond the boundary of the
array, as if those elements were there. Figure 7-9 depicts the way the array is set up in
memory when the program first starts to execute, and what happens when the loop writes
data beyond the boundary of the array.

4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {
9 const int SIZE = 3; // Constant for the array size
10 int values[SIZE]; // An array of 3 integers
11 int count; // Loop counter variable
12
13 // Attempt to store five numbers in the three-element array.
14 cout << "I will store 5 numbers in a 3-element array!\n";
15 for (count = 0; count < 5; count++)
16 values[count] = 100;
17
18 // If the program is still running, display the numbers.
19 cout << "If you see this message, it means the program\n";
20 cout << "has not crashed! Here are the numbers:\n";
21 for (count = 0; count < 5; count++)
22 cout << values[count] << endl;
23 return 0;
24 }

Figure 7-9

The way the values array is set up in memory.
The outlined area represents the array.

values[0] values[1] values[2]

Memory outside the array
(Each block = 4 bytes)

Memory outside the array
(Each block = 4 bytes)

How the numbers assigned to the array overflow the array's boundaries.
The shaded area is the section of memory illegally written to.

values[3] values[4]

(Does not exist) (Does not exist)

Anything previously stored
here is overwritten.

values[0] values[1] values[2]

100 100 100 100 100

384 Chapter 7 Arrays

Although C++ provides the programmer a great deal of power and freedom, the absence
of safeguards such as array bounds checking usually proves to be a bad thing. It’s easy for
C++ programmers to make careless mistakes that allow programs to access areas of mem-
ory that are supposed to be off-limits. You must always make sure that any time you
assign values to array elements, the values are written within the array’s boundaries.

Watch for Off-by-One Errors
In working with arrays, a common type of mistake is the off-by-one error. This is an easy
mistake to make because array subscripts start at 0 rather than 1. For example, look at the
following code:

// This code has an off-by-one error.
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)
 numbers[count] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the
value 0 in each element. However, this code has an off-by-one error. The loop uses its
counter variable, count, as a subscript with the numbers array. During the loop’s execu-
tion, the variable count takes on the values 1 through 100, when it should take on the
values 0 through 99. As a result, the first element, which is at subscript 0, is skipped. In
addition, the loop attempts to use 100 as a subscript during the last iteration. Because 100
is an invalid subscript, the program will write data beyond the array’s boundaries.

Checkpoint
7.1 Define the following arrays:

A) empNums, a 100-element array of ints
B) payRates, a 25-element array of floats
C) miles, a 14-element array of longs
D) cityName, a 26-element array of chars
E) lightYears, a 1,000-element array of doubles

7.2 What’s wrong with the following array definitions?

int readings[-1];
float measurements[4.5];
int size;
char name[size];

7.3 What would the valid subscript values be in a four-element array of doubles?

7.4 What is the difference between an array’s size declarator and a subscript?

7.5 What is “array bounds checking”? Does C++ perform it?

7.6 What is the output of the following code?

int values[5], count;
for (count = 0; count < 5; count++)
 values[count] = count + 1;
for (count = 0; count < 5; count++)
 cout << values[count] << endl;

7.4 Array Initialization 385

7.7 The following program skeleton contains a 20-element array of ints called fish.
When completed, the program should ask how many fish were caught by fisher-
men 1 through 20, and store this data in the array. Complete the program.

#include <iostream>
using namespace std;

int main()
{
 const int NUM_FISH = 20;
 int fish[NUM_FISH];
 // You must finish this program. It should ask how
 // many fish were caught by fishermen 1-20, and
 // store this data in the array fish.
 return 0;
}

7.4 Array Initialization

CONCEPT: Arrays may be initialized when they are defined.

Like regular variables, C++ allows you to initialize an array’s elements when you create
the array. Here is an example:

const int MONTHS = 12;
int days[MONTHS] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

The series of values inside the braces and separated with commas is called an initialization
list. These values are stored in the array elements in the order they appear in the list. (The
first value, 31, is stored in days[0], the second value, 28, is stored in days[1], and so
forth.) Figure 7-10 shows the contents of the array after the initialization.

Program 7-6 demonstrates how an array may be initialized.

Figure 7-10

Program 7-6

 1 // This program displays the number of days in each month.
 2 #include <iostream>
 3 using namespace std;
 4

(program continues)

31

0

28

1

31

2

30

3

31

4

30

5

31

6

31

7

30

8

31

9

30

10

31

11

Subscripts

386 Chapter 7 Arrays

Program 7-7 shows a character array being initialized with the first ten letters of the
alphabet. The array is then used to display those characters’ ASCII codes.

 5 int main()
 6 {
 7 const int MONTHS = 12;
 8 int days[MONTHS] = { 31, 28, 31, 30,
 9 31, 30, 31, 31,
10 30, 31, 30, 31};
11
12 for (int count = 0; count < MONTHS; count++)
13 {
14 cout << "Month " << (count + 1) << " has ";
15 cout << days[count] << " days.\n";
16 }
17 return 0;
18 }

Program Output
Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

NOTE: Notice that C++ allows you to spread the initialization list across multiple lines.
Both of the following array definitions are equivalent:

 double coins[5] = {0.05, 0.1, 0.25, 0.5, 1.0};
 double coins[5] = {0.05,
 0.1,
 0.25,
 0.5,
 1.0};

Program 7-7

 1 // This program uses an array of ten characters to store the
 2 // first ten letters of the alphabet. The ASCII codes of the
 3 // characters are displayed.
 4 #include <iostream>
 5 using namespace std;
 6

Program 7-6 (continued)

7.4 Array Initialization 387

Partial Array Initialization
When an array is being initialized, C++ does not require a value for every element. It’s pos-
sible to only initialize part of an array, such as:

int numbers[7] = {1, 2, 4, 8};

This definition initializes only the first four elements of a seven-element array, as illus-
trated in Figure 7-11.

 7 int main()
 8 {
 9 const int NUM_LETTERS = 10;
10 char letters[NUM_LETTERS] = {'A', 'B', 'C', 'D', 'E',
11 'F', 'G', 'H', 'I', 'J'};
12
13 cout << "Character" << "\t" << "ASCII Code\n";
14 cout << "---------" << "\t" << "----------\n";
15 for (int count = 0; count < NUM_LETTERS; count++)
16 {
17 cout << letters[count] << "\t\t";
18 cout << static_cast<int>(letters[count]) << endl;
19 }
20 return 0;
21 }

Program Output
Character ASCII Code
--------- ----------
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74

NOTE: An array’s initialization list cannot have more values than the array has elements.

Figure 7-11

1

numbers
[0]

2

numbers
[1]

4

numbers
[2]

8

numbers
[3]

0

numbers
[4]

0

numbers
[5]

0

numbers
[6]

int numbers[7] = {1, 2, 4, 8};

Uninitialized Elements

388 Chapter 7 Arrays

It’s important to note that if an array is partially initialized, the uninitialized elements will
be set to zero. This is true even if the array is defined locally. (If a local array is completely
uninitialized, its elements will contain “garbage,” like all other local variables.)
Program 7-8 shows the contents of the array numbers after it is partially initialized.

If you leave an element uninitialized, you must leave all the elements that follow it unini-
tialized as well. C++ does not provide a way to skip elements in the initialization list. For
example, the following is not legal:

int array[6] = {2, 4, , 8, , 12}; // NOT Legal!

Implicit Array Sizing
It’s possible to define an array without specifying its size, as long as you provide an initial-
ization list. C++ automatically makes the array large enough to hold all the initialization
values. For example, the following definition creates an array with five elements:

double ratings[] = {1.0, 1.5, 2.0, 2.5, 3.0};

Because the size declarator is omitted, C++ counts the number of items in the initialization
list and gives the array that many elements.

Program 7-8

 1 // This program has a partially initialized array.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 const int SIZE = 7;
 8 int numbers[SIZE] = {1, 2, 4, 8}; // Initialize first 4 elements
 9
10 cout << "Here are the contents of the array:\n";
11 for (int index = 0; index < SIZE; index++)
12 cout << numbers[index] << " ";
13
14 cout << endl;
15 return 0;
16 }

Program Output
Here are the contents of the array:
1 2 4 8 0 0 0

NOTE: You must specify an initialization list if you leave out the size declarator.
Otherwise, C++ doesn’t know how large to make the array.

7.4 Array Initialization 389

Initializing with Strings
When initializing a character array with a string, simply enclose the string in quotation
marks, as shown here:

char name[7] = "Warren";

Although there are six characters in the string “Warren,” the array must have enough ele-
ments to also accommodate the null terminator at the end of the string. It’s important to
note that anytime a string literal is used in C++, the null terminator is automatically
included. That’s why name is defined above with seven elements. Figure 7-12 shows the
contents of name after the initialization:

The null terminator is not automatically included when an array is initialized with individ-
ual characters. It must be included in the initialization list, as shown below:

char name[7] = {'W', 'a', 'r', 'r', 'e', 'n', '\0'};

Program 7-9 shows two character arrays initialized with strings. The first is initialized
with a string literal and the second is initialized with individual characters.

Figure 7-12

NOTE: Recall from Chapter 2 that ‘\0’ represents the null terminator. ‘\0’ is an escape
sequence that is stored in memory as a single character. Its ASCII code is 0.

Program 7-9

 1 // This program displays the contents of two char arrays.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char name1[] = "Holly";
 8 char name2[] = {'W', 'a', 'r', 'r', 'e', 'n', '\0'};
 9
10 cout << name1 << endl;
11 cout << name2 << endl;
12 return 0;
13 }

Program Output
Holly
Warren

'W'

name
[0]

'a'

name
[1]

'r'

name
[2]

'r'

name
[3]

'e'

name
[4]

'n'

name
[5]

'\0'

name
[6]

char name[7] = “Warren”; Null Terminator

390 Chapter 7 Arrays

In Program 7-9, notice that the size declarators for each array are left out. The compiler
will size the arrays just large enough to hold the values they are initialized with. name1 will
have six elements because the string “Holly” has five characters, plus the null terminator.
name2 will have seven elements because there are seven characters in the initialization list.

In Chapter 2 you were shown that to display a string stored in a character array, you sim-
ply use the stream insertion operator to send the name of the array (without the brackets)
to the cout object. It’s important to point out that character arrays containing null-
terminated strings are the only type of array this technique works with. You cannot dis-
play the contents of numeric arrays in this fashion. Displaying the contents of a numeric
array must be done element-by-element.

7.5 Processing Array Contents

CONCEPT: Individual array elements are processed like any other type of variable.

Processing array elements is no different than processing other variables. For example, the
following statement multiplies hours[3] by the variable rate:

pay = hours[3] * rate;

And the following are examples of pre-increment and post-increment operations on array
elements:

int score[5] = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation on the value in score[2]
score[4]++; // Post-increment operation on the value in score[4]

Program 7-10 demonstrates the use of array elements in a simple mathematical statement.
A loop steps through each element of the array, using the elements to calculate the gross
pay of five employees.

NOTE: When using increment and decrement operators, be careful not to confuse the
subscript with the array element. For example, the following statement decrements the
variable count, but does nothing to the value in amount[count]:

 amount[count--];

To decrement the value stored in amount[count], use the following statement:

 amount[count]--;

7.5 Processing Array Contents 391

Program 7-10

 1 // This program stores, in an array, the hours worked by
 2 // employees who all make the same hourly wage.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int NUM_EMPLOYEES = 5;
10 int hours[NUM_EMPLOYEES];
11 double payrate;
12
13 // Input the hours worked.
14 cout << "Enter the hours worked by ";
15 cout << NUM_EMPLOYEES << " employees who all\n";
16 cout << "earn the same hourly rate.\n";
17 for (int index = 0; index < NUM_EMPLOYEES; index++)
18 {
19 cout << "Employee #" << (index + 1) << ": ";
20 cin >> hours[index];
21 }
22
23 // Input the hourly rate for all employees.
24 cout << "Enter the hourly pay rate for all the employees: ";
25 cin >> payrate;
26
27 // Display each employee's gross pay.
28 cout << "Here is the gross pay for each employee:\n";
29 cout << fixed << showpoint << setprecision(2);
30 for (int index = 0; index < NUM_EMPLOYEES; index++)
31 {
32 double grossPay = hours[index] * payrate;
33 cout << "Employee #" << (index + 1);
34 cout << ": $" << grossPay << endl;
35 }
36 return 0;
37 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 5 employees who all
earn the same hourly rate.
Employee #1: 5 [Enter]
Employee #2: 10 [Enter]
Employee #3: 15 [Enter]
Employee #4: 20 [Enter]
Employee #5: 40 [Enter]
Enter the hourly pay rate for all the employees: 12.75 [Enter]
Here is the gross pay for each employee:
Employee #1: $63.75
Employee #2: $127.50
Employee #3: $191.25
Employee #4: $255.00
Employee #5: $510.00

392 Chapter 7 Arrays

The following statement in line 32 defines the variable grossPay and initializes it with the
value of hours[index] times payRate:

double grossPay = hours[index] * payRate;

Array elements may also be used in relational expressions. For example, the following if
statement tests cost[20] to determine whether it is less than cost[0]:

if (cost[20] < cost[0])

And the following statement sets up a while loop to iterate as long as value[place]
does not equal 0:

while (value[place] != 0)

Thou Shall Not Assign
The following code defines two integer arrays: newValues and oldValues. newValues is
uninitialized and oldValues is initialized with 10, 100, 200, and 300:

const int SIZE = 4;
int oldValues[SIZE] = {10, 100, 200, 300};
int newValues[SIZE];

At first glance, it might appear that the following statement assigns the contents of the
array oldValues to newValues:

newValues = oldValues; // Wrong!

Unfortunately, this statement will not work. The only way to assign one array to another
is to assign the individual elements in the arrays. Usually, this is best done with a loop,
such as:

for (int count = 0; count < SIZE; count++)
 newValues[count] = oldValues[count];

The reason the assignment operator will not work with an entire array at once is complex,
but important to understand. Anytime the name of an array is used without brackets and
a subscript, it is seen as the array’s beginning memory address. To illustrate this, consider
the definition of the arrays newValues and oldValues above. Figure 7-13 depicts the two
arrays in memory.

Figure 7-13

Memory Address 8012 newValues Array

Memory Address 8024
oldValues Array

? ? ? ?

10 100 200 300

7.5 Processing Array Contents 393

In the figure, newValues is shown starting at memory address 8012 and oldValues is
shown starting at 8024. (Of course, these are just arbitrary addresses, picked for illustra-
tion purposes. In reality the addresses would probably be different.) Table 7-2 shows vari-
ous expressions that use the names of these arrays, and their values.

Because the name of an array without the brackets and subscript stands for the array’s
starting memory address, the following statement

newValues = oldValues;

is interpreted by C++ as

8012 = 8024;

The statement will not work because you cannot change the starting memory address of
an array.

Printing the Contents of an Array
Suppose we have the following array definition:

const int SIZE = 5;
int array[SIZE] = {10, 20, 30, 40, 50};

You now know that an array’s name is seen as the array’s beginning memory address. This
explains why the following statement cannot be used to display the contents of array:

cout << array << endl; //Wrong!

When this statement executes, cout will display the array’s memory address, not the
array’s contents. You must use a loop to display the contents of each of the array’s ele-
ments, as follows.

for (int count = 0; count < SIZE; count++)
 cout << array[count] << endl;

The only exception to this rule is when you are displaying the contents of a char array
that contains a C-string. For example, assume a program has the following code segment:

char name[] = "Ruth";
cout << name << endl;

This cout statement displays the string “Ruth” instead of the array’s address. This is
because the stream insertion operator is designed to behave differently when it receives the

Table 7-2

Expression Value
oldValues[0] 10 (Contents of Element 0 of oldValues)
oldValues[1] 100 (Contents of Element 1 of oldValues)
oldValues[2] 200 (Contents of Element 2 of oldValues)
oldValues[3] 300 (Contents of Element 3 of oldValues)
newValues 8012 (Memory Address of newValues)
oldValues 8024 (Memory Address of oldValues)

394 Chapter 7 Arrays

address of a char array. When the stream insertion operator receives the address of a
char array, it assumes a C-string is stored at that address, and sends the C-string to cout.

Summing the Values in a Numeric Array
To sum the values in an array, you must use a loop with an accumulator variable. The
loop adds the value in each array element to the accumulator. For example, assume that
the following statements appear in a program and that values have been stored in the
units array.

const int NUM_UNITS = 24;
int units[NUM_UNITS];

The following loop adds the values of each element in the array to the total variable.
When the code is finished, total will contain the sum of the units array’s elements.

int total = 0; // Initialize accumulator
for (int count = 0; count < NUM_UNITS; count++)
 total += units[count];

Getting the Average of the Values in a Numeric Array
The first step in calculating the average of all the values in an array is to sum the values.
The second step is to divide the sum by the number of elements in the array. Assume that
the following statements appear in a program and that values have been stored in the
scores array.

const int NUM_SCORES = 10;
double scores[NUM_SCORES];

The following code calculates the average of the values in the scores array. When the
code completes, the average will be stored in the average variable.

double total = 0; // Initialize accumulator
double average; // Will hold the average
for (int count = 0; count < NUM_SCORES; count++)
 total += scores[count];
average = total / NUM_SCORES;

Notice that the last statement, which divides total by numScores, is not inside the loop.
This statement should only execute once, after the loop has finished its iterations.

WARNING! Do not pass the name of a char array to cout if the char array does not
contain a null-terminated C-string. If you do, cout will display all the characters in
memory, starting at the array’s address, until it encounters a null terminator.

NOTE: The first statement in the code segment sets total to 0. Recall from Chapter 5
that an accumulator variable must be set to 0 before it is used to keep a running total or
the sum will not be correct.

7.5 Processing Array Contents 395

Finding the Highest and Lowest Values in a Numeric Array
The algorithms for finding the highest and lowest values in an array are very similar. First,
let’s look at code for finding the highest value in an array. Assume that the following code
exists in a program, and that values have been stored in the array.

const int SIZE = 50;
int numbers[SIZE];

The code to find the highest value in the array is as follows.

int count;
int highest;

highest = numbers[0];
for (count = 1; count < SIZE; count++)
{
 if (numbers[count] > highest)
 highest = numbers[count];
}

First we copy the value in the first array element to the variable highest. Then the loop
compares all of the remaining array elements, beginning at subscript 1, to the value in
highest. Each time it finds a value in the array that is greater than highest, it copies that
value to highest. When the loop has finished, highest will contain the highest value in
the array.

The following code finds the lowest value in the array. As you can see, it is nearly identical
to the code for finding the highest value.

int count;
int lowest;

lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{
 if (numbers[count] < lowest)
 lowest = numbers[count];
}

When the loop has finished, lowest will contain the lowest value in the array.

Partially Filled Arrays
Sometimes you need to store a series of items in an array, but you do not know the num-
ber of items that there are. As a result, you do not know the exact number of elements
needed for the array. One solution is to make the array large enough to hold the largest
possible number of items. This can lead to another problem, however. If the actual num-
ber of items stored in the array is less than the number of elements, the array will be only
partially filled. When you process a partially filled array, you must only process the ele-
ments that contain valid data items.

396 Chapter 7 Arrays

A partially filled array is normally used with an accompanying integer variable that holds
the number of items stored in the array. For example, suppose a program uses the follow-
ing code to create an array with 100 elements, and an int variable named count that will
hold the number of items stored in the array:

const int SIZE = 100;
int array[SIZE];
int count = 0;

Each time we add an item to the array, we must increment count. The following code
demonstrates.

int number;
cout << "Enter a number or -1 to quit: ";
cin >> number;
while (number != -1 && count < SIZE)
{
 count++;
 array[count - 1] = number;
 cout << "Enter a number or -1 to quit: ";
 cin >> number;
}

Each iteration of this sentinel-controlled loop allows the user to enter a number to be
stored in the array, or -1 to quit. The count variable is incremented, and then used to cal-
culate the subscript of the next available element in the array. When the user enters -1, or
count exceeds 99, the loop stops. The following code displays all of the valid items in the
array.

for (int index = 0; index < count; index++)
{
 cout << array[index] << endl;
}

Notice that this code uses count to determine the maximum array subscript to use.

Program 7-11 shows how this technique can be used to read an unknown number of items
from a file into an array. The program reads values from the file numbers.txt, which is
located on the Student CD.

Program 7-11

 1 // This program reads data from a file into an array.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int ARRAY_SIZE = 100; // Array size
 9 int numbers[ARRAY_SIZE]; // Array with 100 elements
10 int count = 0; // Loop counter variable
11 ifstream inputFile; // Input file stream object
12

7.5 Processing Array Contents 397

Look closer at the while loop that begins in line 18. It repeats as long as count is less
than ARRAY_SIZE and the end of the file has not been encountered. The first part of the
while loop’s test expression, count < ARRAY_SIZE, prevents the loop from writing out-
side the array boundaries. Recall from Chapter 4 that the && operator performs short-
circuit evaluation, so the second part of the while loop’s test expression, inputFile >>
values[count], will be executed only if count is less than ARRAY_SIZE.

Comparing Arrays
We have already noted that you cannot simply assign one array to another array. You
must assign each element of the first array to an element of the second array. In addition,
you cannot use the == operator with the names of two arrays to determine whether the
arrays are equal. For example, the following code appears to compare two arrays, but in
reality does not.

int firstArray[] = { 5, 10, 15, 20, 25 };
int secondArray[] = { 5, 10, 15, 20, 25 };
if (firstArray == secondArray) // This is a mistake.
 cout << "The arrays are the same.\n";
else
 cout << "The arrays are not the same.\n";

When you use the == operator with array names, the operator compares the beginning
memory addresses of the arrays, not the contents of the arrays. The two array names in
this code will obviously have different memory addresses. Therefore, the result of the
expression firstArray == secondArray is false and the code reports that the arrays are
not the same.

13 inputFile.open("numbers.txt"); // Open the file.
14
15 // Read the numbers from the file into the array.
16 // After this loop executes, the count variable will hold
17 // the number of values that were stored in the array.
18 while (count < ARRAY_SIZE && inputFile >> numbers[count])
19 count++;
20
21 // Close the file.
22 inputFile.close();
23
24 // Display the numbers read.
25 cout << "The numbers are: ";
26 for (int index = 0; index < count; index++)
27 cout << numbers[index] << " ";
28 cout << endl;
29 return 0;
30 }

Program Output
The numbers are: 47 89 65 36 12 25 17 8 62 10 87 62

398 Chapter 7 Arrays

To compare the contents of two arrays, you must compare the elements of the two arrays.
For example, look at the following code.

const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable

// Determine whether the elements contain the same data.
while (arraysEqual && count < SIZE)
{
 if (firstArray[count] != secondArray[count])
 arraysEqual = false;
 count++;
}

if (arraysEqual)
 cout << "The arrays are equal.\n";
else
 cout << "The arrays are not equal.\n";

This code determines whether firstArray and secondArray contain the same values. A
bool variable, arraysEqual, which is initialized to true, is used to signal whether the
arrays are equal. Another variable, count, which is initialized to 0, is used as a loop
counter variable.

Then a while loop begins. The loop executes as long as arraysEqual is true and the
counter variable count is less than SIZE. During each iteration, it compares a different set
of corresponding elements in the arrays. When it finds two corresponding elements that
have different values, the arraysEqual variable is set to false. After the loop finishes, an
if statement examines the arraysEqual variable. If the variable is true, then the arrays
are equal and a message indicating so is displayed. Otherwise, they are not equal, so a dif-
ferent message is displayed. This code can be found in the program ArrayCompare.cpp
on the Student CD.

7.6 Focus on Software Engineering:
Using Parallel Arrays

CONCEPT: By using the same subscript, you can build relationships between data stored
in two or more arrays.

Sometimes it’s useful to store related data in two or more arrays. It’s especially useful
when the related data is of unlike types. For example, Program 7-12 is another variation
of the payroll program. It uses two arrays: one to store the hours worked by each
employee (as ints), and another to store each employee’s hourly pay rate (as doubles).

7.6 Focus on Software Engineering: Using Parallel Arrays 399

Program 7-12

 1 // This program uses two parallel arrays: one for hours
 2 // worked and one for pay rate.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int NUM_EMPLOYEES = 5; // Number of employees
10 int hours[NUM_EMPLOYEES]; // Holds hours worked
11 double payRate[NUM_EMPLOYEES]; // Holds pay rates
12
13 // Input the hours worked and the hourly pay rate.
14 cout << "Enter the hours worked by " << NUM_EMPLOYEES
15 << " employees and their\n"
16 << "hourly pay rates.\n";
17 for (int index = 0; index < NUM_EMPLOYEES; index++)
18 {
19 cout << "Hours worked by employee #" << (index+1) << ": ";
20 cin >> hours[index];
21 cout << "Hourly pay rate for employee #" << (index+1) << ": ";
22 cin >> payRate[index];
23 }
24
25 // Display each employee's gross pay.
26 cout << "Here is the gross pay for each employee:\n";
27 cout << fixed << showpoint << setprecision(2);
28 for (int index = 0; index < NUM_EMPLOYEES; index++)
29 {
30 double grossPay = hours[index] * payRate[index];
31 cout << "Employee #" << (index + 1);
32 cout << ": $" << grossPay << endl;
33 }
34 return 0;
35 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 5 employees and their
hourly pay rates.
Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]

(program output continues)

400 Chapter 7 Arrays

Notice in the loops that the same subscript is used to access both arrays. That’s because
the data for one employee is stored in the same relative position in each array. For exam-
ple, the hours worked by employee #1 are stored in hours[0], and the same employee’s
pay rate is stored in payRate[0]. The subscript relates the data in both arrays.

This concept is illustrated in Figure 7-14.

Checkpoint
7.8 Define the following arrays:

A) ages, a 10-element array of ints initialized with the values 5, 7, 9, 14, 15,
17, 18, 19, 21, and 23.

B) temps, a 7-element array of floats initialized with the values 14.7, 16.3,
18.43, 21.09, 17.9, 18.76, and 26.7.

C) alpha, an 8-element array of chars initialized with the values ‘J’, ‘B’, ‘L’, ‘A’,
‘*’, ‘$’, ‘H’, and ‘M’.

7.9 Is each of the following a valid or invalid array definition? (If a definition is
invalid, explain why.)

int numbers[10] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};
int matrix[5] = {1, 2, 3, 4, 5, 6, 7};
double radii[10] = {3.2, 4.7};
int table[7] = {2, , , 27, , 45, 39};
char codes[] = {'A', 'X', '1', '2', 's'};
int blanks[];
char name[6] = "Joanne";

Here is the gross pay for each employee:
Employee #1: $97.50
Employee #2: $129.30
Employee #3: $210.00
Employee #4: $750.00
Employee #5: $626.00

Figure 7-14

Program 7-12 (continued)

10

hours[0]

Employee
#1

15

hours[1]

20

hours[2]

40

hours[3]

40

hours[4]

9.75

payRate[0]

8.62

payRate[1]

10.50

payRate[2]

18.75

payRate[3]

15.65

payRate[4]

Employee
#2

Employee
#3

Employee
#4

Employee
#5

7.7 Arrays as Function Arguments 401

7.10 Given the following array definition:

int values[] = {2, 6, 10, 14};

What does each of the following display?
A) cout << values[2];

B) cout << ++values[0];

C) cout << values[1]++;

D) x = 2;
cout << values[++x];

7.11 Given the following array definition:

int nums[5] = {1, 2, 3};

What will the following statement display?

cout << nums[3];

7.12 What is the output of the following code? (You may need to use a calculator.)

double balance[5] = {100.0, 250.0, 325.0, 500.0, 1100.0};
const double INTRATE = 0.1;

cout << fixed << showpoint << setprecision(2);
for (int count = 0; count < 5; count++)
 cout << (balance[count] * INTRATE) << endl;

7.13 What is the output of the following code? (You may need to use a calculator.)

const int SIZE = 5;
int time[SIZE] = {1, 2, 3, 4, 5},
 speed[SIZE] = {18, 4, 27, 52, 100},
 dist[SIZE];

for (int count = 0; count < SIZE; count++)
 dist[count] = time[count] * speed[count];
for (int count = 0; count < SIZE; count++)
{
 cout << time[count] << " ";
 cout << speed[count] << " ";
 cout << dist[count] << endl;
}

7.7 Arrays as Function Arguments

CONCEPT: To pass an array as an argument to a function, pass the name of the array.

Quite often you’ll want to write functions that process the data in arrays. For example,
functions could be written to put values in an array, display an array’s contents on the
screen, total all of an array’s elements, or calculate their average. Usually, such functions
accept an array as an argument.Passing an

Array to a
Function

402 Chapter 7 Arrays

When a single element of an array is passed to a function, it is handled like any other vari-
able. For example, Program 7-13 shows a loop that passes one element of the array
numbers to the function showValue each time the loop iterates.

Each time showValue is called in line 14, a copy of an array element is passed into the
parameter variable num. The showValue function simply displays the contents of num, and
doesn’t work directly with the array element itself. (In other words, the array element is
passed by value.)

If the function were written to accept the entire array as an argument, however, the
parameter would be set up differently. In the following function definition, the parameter
nums is followed by an empty set of brackets. This indicates that the argument will be an
array, not a single value.

void showValues(int nums[], int size)
{
 for (int index = 0; index < size; index++)
 cout << nums[index] << " ";
 cout << endl;
}

Program 7-13

 1 // This program demonstrates that an array element is passed
 2 // to a function like any other variable.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void showValue(int); // Function prototype
 7
 8 int main()
 9 {
10 const int SIZE = 8;
11 int numbers[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
12
13 for (int index = 0; index < SIZE; index++)
14 showValue(numbers[index]);
15 return 0;
16 }
17
18 //**
19 // Definition of function showValue. *
20 // This function accepts an integer argument. *
21 // The value of the argument is displayed. *
22 //**
23
24 void showValue(int num)
25 {
26 cout << num << " ";
27 }

Program Output
5 10 15 20 25 30 35 40

7.7 Arrays as Function Arguments 403

The reason there is no size declarator inside the brackets of nums is because nums is not
actually an array. It’s a special variable that can accept the address of an array. When an
entire array is passed to a function, it is not passed by value, but passed by reference.
Imagine the CPU time and memory that would be necessary if a copy of a 10,000-element
array were created each time it was passed to a function! Instead, only the starting mem-
ory address of the array is passed. Program 7-14 shows the function showValues in use.

In Program 7-14, the function showValues is called in the following statement which
appears in line 12:

showValues(numbers, ARRAY_SIZE);

The first argument is the name of the array. Remember, in C++ the name of an array with-
out brackets and a subscript is actually the beginning address of the array. In this function

NOTE: Notice that in the function prototype, empty brackets appear after the data
type of the array parameter. This indicates that showValues accepts the address of an
array of integers.

Program 7-14

 1 // This program demonstrates an array being passed to a function.
 2 #include <iostream>
 3 using namespace std;
 4
 5 void showValues(int [], int); // Function prototype
 6
 7 int main()
 8 {
 9 const int ARRAY_SIZE = 8;
10 int numbers[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
11
12 showValues(numbers, ARRAY_SIZE);
13 return 0;
14 }
15
16 //**
17 // Definition of function showValue. *
18 // This function accepts an array of integers and *
19 // the array's size as its arguments. The contents *
20 // of the array are displayed. *
21 //**
22
23 void showValues(int nums[], int size)
24 {
25 for (int index = 0; index < size; index++)
26 cout << nums[index] << " ";
27 cout << endl;
28 }

Program Output
5 10 15 20 25 30 35 40

404 Chapter 7 Arrays

call, the address of the numbers array is being passed as the first argument to the function.
The second argument is the size of the array.

In the showValues function, the beginning address of the numbers array is copied into the
nums parameter variable. The nums variable is then used to reference the numbers array.
Figure 7-15 illustrates the relationship between the numbers array and the nums parame-
ter variable. When the contents of nums[0] is displayed, it is actually the contents of
numbers[0] that appears on the screen.

The nums parameter variable in the showValues function can accept the address of any
integer array and can be used to reference that array. So, we can use the showValues
function to display the contents of any integer array by passing the name of the array
and its size as arguments. Program 7-15 uses the function to display the contents of two
different arrays.

Figure 7-15

NOTE: Although nums is not a reference variable, it works like one.

Program 7-15

 1 // This program demonstrates the showValues function being
 2 // used to display the contents of two arrays.
 3 #include <iostream>
 4 using namespace std;
 5
 6 void showValues(int [], int); // Function prototype
 7
 8 int main()
 9 {
10 const int SIZE1 = 8; // Size of set1 array
11 const int SIZE2 = 5; // Size of set2 array
12 int set1[SIZE1] = {5, 10, 15, 20, 25, 30, 35, 40};
13 int set2[SIZE2] = {2, 4, 6, 8, 10};
14
15 // Pass set1 to showValues.
16 showValues(set1, SIZE1);
17

numbers Array of eight integers

nums[0]
references
numbers[0]

nums[1]
references
numbers[1]

nums[2]
references
numbers[2]

... and so forth

5 10 15 20 25 30 35 40

7.7 Arrays as Function Arguments 405

Recall from Chapter 6 that when a reference variable is used as a parameter, it gives the
function access to the original argument. Any changes made to the reference variable are
actually performed on the argument referenced by the variable. Array parameters work
very much like reference variables. They give the function direct access to the original
array. Any changes made with the array parameter are actually made on the original array
used as the argument. The function doubleArray in Program 7-16 uses this capability to
double the contents of each element in the array.

18 // Pass set2 to showValues.
19 showValues(set2, SIZE2);
20 return 0;
21 }
22
23 //**
24 // Definition of function showValues. *
25 // This function accepts an array of integers and *
26 // the array's size as its arguments. The contents *
27 // of the array are displayed. *
28 //**
29
30 void showValues(int nums[], int size)
31 {
32 for (int index = 0; index < size; index++)
33 cout << nums[index] << " ";
34 cout << endl;
35 }

Program Output
5 10 15 20 25 30 35 40
2 4 6 8 10

Program 7-16

 1 // This program uses a function to double the value of
 2 // each element of an array.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototypes
 7 void doubleArray(int [], int);
 8 void showValues(int [], int);
 9
10 int main()
11 {
12 const int ARRAY_SIZE = 7;
13 int set[ARRAY_SIZE] = {1, 2, 3, 4, 5, 6, 7};
14

(program continues)

406 Chapter 7 Arrays

15 // Display the initial values.
16 cout << "The array’s values are:\n";
17 showValues(set, ARRAY_SIZE);
18
19 // Double the values in the array.
20 doubleArray(set, ARRAY_SIZE);
21
22 // Display the resulting values.
23 cout << "After calling doubleArray the values are:\n";
24 showValues(set, ARRAY_SIZE);
25
26 return 0;
27 }
28
29 //***
30 // Definition of function doubleArray *
31 // This function doubles the value of each element *
32 // in the array passed into nums. The value passed *
33 // into size is the number of elements in the array. *
34 //***
35
36 void doubleArray(int nums[], int size)
37 {
38 for (int index = 0; index < size; index++)
39 nums[index] *= 2;
40 }
41
42 //**
43 // Definition of function showValues. *
44 // This function accepts an array of integers and *
45 // the array's size as its arguments. The contents *
46 // of the array are displayed. *
47 //**
48
49 void showValues(int nums[], int size)
50 {
51 for (int index = 0; index < size; index++)
52 cout << nums[index] << " ";
53 cout << endl;
54 }

Program Output
The array’s values are:
1 2 3 4 5 6 7
After calling doubleArray the values are:
2 4 6 8 10 12 14

WARNING! Like reference variables, array parameters require responsibility. It’s
important to realize that when an array is passed as an argument, the function has the
capability of modifying the original data in the array.

Program 7-16 (continued)

7.7 Arrays as Function Arguments 407

Some Useful Array Functions
Section 7.5 introduced you to algorithms such as summing an array and finding the high-
est and lowest values in an array. Now that you know how to pass an array as an argu-
ment to a function, you can write general purpose functions that perform those
operations. The following In the Spotlight section shows an example.

In the Spotlight:
Processing an Array
Dr. LaClaire gives four exams during the semester in her chemistry class. At the end of the
semester she drops each student’s lowest test score before averaging the scores. She has
asked you to write a program that will read a student’s four test scores as input, and calcu-
late the average with the lowest score dropped. Here is the pseudocode algorithm that you
developed:

Read the student’s four test scores.
Calculate the total of the scores.
Find the lowest score.
Subtract the lowest score from the total. This gives the adjusted total.
Divide the adjusted total by 3. This is the average.
Display the average.

Program 7-17 shows the program, which is modularized. Rather than presenting the
entire program at once, let’s first examine the main function, and then each additional
function separately. Here is the first part of the program, including the main function:

Program 7-17 (main function)

 1 // This program gets a series of test scores and
 2 // calculates the average of the scores with the
 3 // lowest score dropped.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 // Function prototypes
 9 void getTestScores(double[], int);
10 double getTotal(double[], int);
11 double getLowest(double[], int);
12
13 int main()
14 {
 15 const int SIZE = 4; // Array size
16 double testScores[SIZE], // Array of test scores
17 total, // Total of the scores
18 lowestScore, // Lowest test score
19 average; // Average test score
20

(program continues)

408 Chapter 7 Arrays

Lines 15 through 19 define the following items:

• SIZE, an int constant that is used as an array size declarator
• testScores, a double array to hold the test scores
• total, a double variable that will hold the test score totals
• lowestScore, a double variable that will hold the lowest test score
• average, a double variable that will hold the average of the test scores

Line 25 calls the getTestScores function, passing the testScores array and the value of
the SIZE constant as arguments. The function gets the test scores from the user and stores
them in the array.

Line 28 calls the getTotal function, passing the testScores array and the value of the
SIZE constant as arguments. The function returns the total of the values in the array. This
value is assigned to the total variable.

Line 31 calls the getLowest function, passing the testScores array and the value of the
SIZE constant as arguments. The function returns the lowest value in the array. This value
is assigned to the lowestScore variable.

Line 34 subtracts the lowest test score from the total variable. Then, line 38 calculates
the average by dividing total by SIZE – 1. (The program divides by SIZE – 1 because
the lowest test score was dropped.) Lines 41 and 42 display the average.

The getTestScores function appears next, as shown here:

Program 7-17 (continued)

21 // Set up numeric output formatting.
22 cout << fixed << showpoint << setprecision(1);
23
24 // Get the test scores from the user.
 25 getTestScores(testScores, SIZE);
 26
27 // Get the total of the test scores.
28 total = getTotal(testScores, SIZE);
29
30 // Get the lowest test score.
31 lowestScore = getLowest(testScores, SIZE);
32
33 // Subtract the lowest score from the total.
34 total -= lowestScore;
35
36 // Calculate the average. Divide by 3 because
37 // the lowest test score was dropped.
38 average = total / (SIZE - 1);
39
40 // Display the average.
 41 cout << "The average with the lowest score "
42 << "dropped is " << average << ".\n";
43
44 return 0;
45 }
46

7.7 Arrays as Function Arguments 409

The getTestScores function has two parameters:

• scores[]—A double array
• size—An int specifying the size of the array that is passed into the scores[]

parameter

The purpose of this function is to get a student’s test scores from the user and store them
in the array that is passed as an argument into the scores[] parameter.

The getTotal function appears next, as shown here:

Program 7-17 (getTestScores function)

 47 //***
48 // The getTestScores function accepts an array and its size *
49 // as arguments. It prompts the user to enter test scores, *
50 // which are stored in the array. *
51 //***
52
53 void getTestScores(double scores[], int size)
54 {
55 // Loop counter
56 int index;
57
58 // Get each test score.
59 for(index = 0; index <= size - 1; index++)
60 {
61 cout << "Enter test score number "
62 << (index + 1) << ": ";
63 cin >> scores[index];
64 }
65 }
66

Program 7-17 (getTotal function)

 67 //**
 68 // The getTotal function accepts a double array *
 69 // and its size as arguments. The sum of the array's *
 70 // elements is returned as a double. *
 71 //**
 72
 73 double getTotal(double array[], int size)
 74 {
 75 double total = 0; // Accumulator
 76
 77 // Add each element to total.
 78 for (int count = 0; count < size; count++)
 79 total += array[count];
 80
 81 // Return the total.
 82 return total;
 83 }

 84

410 Chapter 7 Arrays

The getTotal function has two parameters:

• array[]—A double array
• size—An int specifying the size of the array that is passed into the array[]

parameter

This function returns the total of the values in the array that is passed as an argument into
the array[] parameter.

The getLowest function appears next, as shown here:

The getLowest function has two parameters:

• array[]—A double array
• size—An int specifying the size of the array that is passed into the array[]

parameter

This function returns the lowest value in the array that is passed as an argument into the
array[] parameter. Here is an example of the program’s output:

Program 7-17 (getLowest function)

 85 //**
 86 // The getLowest function accepts a double array and *
 87 // its size as arguments. The lowest value in the *
 88 // array is returned as a double. *
 89 //**
 90
 91 double getLowest(double array[], int size)
 92 {
 93 double lowest; // To hold the lowest value
 94
 95 // Get the first array's first element.
 96 lowest = array[0];
 97
 98 // Step through the rest of the array. When a
 99 // value less than lowest is found, assign it
100 // to lowest.
101 for (int count = 1; count < size; count++)
102 {
103 if (array[count] < lowest)
104 lowest = array[count];
105 }
106
107 // Return the lowest value.
108 return lowest;
109 }

Program 7-17

Program Output with Example Input Shown in Bold
Enter test score number 1: 92 [Enter]
Enter test score number 2: 67 [Enter]
Enter test score number 3: 75 [Enter]
Enter test score number 4: 88 [Enter]
The average with the lowest score dropped is 85.0.

7.7 Arrays as Function Arguments 411

Checkpoint
7.14 Given the following array definitions

double array1[4] = {1.2, 3.2, 4.2, 5.2};
double array2[4];

will the following statement work? If not, why?

array2 = array1;

7.15 When an array name is passed to a function, what is actually being passed?

7.16 When used as function arguments, are arrays passed by value?

7.17 What is the output of the following program? (You may need to consult the
ASCII table in Appendix A.)

#include <iostream>
using namespace std;

// Function prototypes
void fillArray(char [], int);
void showArray(char [], int);

int main ()
{
 const int SIZE = 8;
 char prodCode[SIZE] = {'0', '0', '0', '0', '0', '0', '0', '0'};

 fillArray(prodCode, SIZE);
 showArray(prodCode, SIZE);
 return 0;
}

// Definition of function fillArray.
// (Hint: 65 is the ASCII code for 'A')

void fillArray(char arr[], int size)
{

char code = 65;

for (int k = 0; k < size; code++, k++)
arr[k] = code;

}

// Definition of function showArray.

void showArray(char codes[], int size)
{

for (int k = 0; k < size; k++)
cout << codes[k];

cout << endl;
}

7.18 The following program skeleton, when completed, will ask the user to enter 10
integers, which are stored in an array. The function avgArray, which you must
write, is to calculate and return the average of the numbers entered.

#include <iostream>
using namespace std;

412 Chapter 7 Arrays

// Write your function prototype here

int main()
{
 const int SIZE = 10;
 int userNums[SIZE];

 cout << "Enter 10 numbers: ";
 for (int count = 0; count < SIZE; count++)
 {
 cout << "#" << (count + 1) << " ";
 cin >> userNums[count];
 }
 cout << "The average of those numbers is ";
 cout << avgArray(userNums, SIZE) << endl;
 return 0;
}

//
// Write the function avgArray here.
//

7.8 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It is
useful for storing multiple sets of data.

An array is useful for storing and working with a set of data. Sometimes, though, it’s nec-
essary to work with multiple sets of data. For example, in a grade-averaging program a
teacher might record all of one student’s test scores in an array of doubles. If the teacher
has 30 students, that means she’ll need 30 arrays of doubles to record the scores for the
entire class. Instead of defining 30 individual arrays, however, it would be better to define
a two-dimensional array.

The arrays that you have studied so far are one-dimensional arrays. They are called one-
dimensional because they can only hold one set of data. Two-dimensional arrays, which
are sometimes called 2D arrays, can hold multiple sets of data. It’s best to think of a two-
dimensional array as having rows and columns of elements, as shown in Figure 7-16. This
figure shows an array of test scores, having three rows and four columns.

The array depicted in Figure 7-16 has three rows (numbered 0 through 2), and four col-
umns (numbered 0 through 3). There are a total of 12 elements in the array.

Figure 7-16

Column 0

Row 0

Row 1

Row 2

Column 1

scores[0] [0]

scores[1] [0]

scores[2] [0]

scores[0] [1]

scores[1] [1]

scores[2] [1]

Column 2

scores[0] [2]

scores[1] [2]

scores[2] [2]

Column 3

scores[0] [3]

scores[1] [3]

scores[2] [3]

7.8 Two-Dimensional Arrays 413

To define a two-dimensional array, two size declarators are required. The first one is for
the number of rows and the second one is for the number of columns. Here is an example
definition of a two-dimensional array with three rows and four columns:

The first size declarator specifies the number of rows, and the second size declarator speci-
fies the number of columns. Notice that each number is enclosed in its own set of brackets.

When processing the data in a two-dimensional array, each element has two subscripts:
one for its row and another for its column. In the scores array defined above, the ele-
ments in row 0 are referenced as

scores[0][0]
scores[0][1]
scores[0][2]
scores[0][3]

The elements in row 1 are

scores[1][0]
scores[1][1]
scores[1][2]
scores[1][3]

And the elements in row 2 are

scores[2][0]
scores[2][1]
scores[2][2]
scores[2][3]

The subscripted references are used in a program just like the references to elements in a single-
dimensional array, except now you use two subscripts. The first subscript represents the row
position, and the second subscript represents the column position. For example, the following
statement assigns the value 92.25 to the element at row 2, column 1 of the scores array:

scores[2][1] = 92.25;

And the following statement displays the element at row 0, column 2:

cout << scores[0][2];

Programs that cycle through each element of a two-dimensional array usually do so with
nested loops. Program 7-18 is an example.

Program 7-18

 1 // This program demonstrates a two-dimensional array.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
5

(program continues)

Rows Columns

double scores[3][4];

414 Chapter 7 Arrays

 6 int main()
 7 {
8 const int NUM_DIVS = 3; // Number of divisions
9 const int NUM_QTRS = 4; // Number of quarters
10 double sales[NUM_DIVS][NUM_QTRS]; // Array with 3 rows and 4 columns.
11 double totalSales = 0; // To hold the total sales.
12 int div, qtr; // Loop counters.
13
14 cout << "This program will calculate the total sales of\n";
15 cout << "all the company's divisions.\n";
16 cout << "Enter the following sales information:\n\n";
17
18 // Nested loops to fill the array with quarterly
19 // sales figures for each division.
20 for (div = 0; div < NUM_DIVS; div++)
21 {
22 for (qtr = 0; qtr < NUM_QTRS; qtr++)
23 {
24 cout << "Division " << (div + 1);
25 cout << ", Quarter " << (qtr + 1) << ": $";
26 cin >> sales[div][qtr];
27 }
28 cout << endl; // Print blank line.
29 }
30
31 // Nested loops used to add all the elements.
32 for (div = 0; div < NUM_DIVS; div++)
33 {
34 for (qtr = 0; qtr < NUM_QTRS; qtr++)
35 totalSales += sales[div][qtr];
36 }
37
38 cout << fixed << showpoint << setprecision(2);
39 cout << "The total sales for the company are: $";
40 cout << totalSales << endl;
41 return 0;
42 }

Program Output with Example Input Shown in Bold
This program will calculate the total sales of
all the company's divisions.
Enter the following sales data:

Division 1, Quarter 1: $31569.45 [Enter]
Division 1, Quarter 2: $29654.23 [Enter]
Division 1, Quarter 3: $32982.54 [Enter]
Division 1, Quarter 4: $39651.21 [Enter]

Division 2, Quarter 1: $56321.02 [Enter]
Division 2, Quarter 2: $54128.63 [Enter]
Division 2, Quarter 3: $41235.85 [Enter]
Division 2, Quarter 4: $54652.33 [Enter]

Program 7-18 (continued)

7.8 Two-Dimensional Arrays 415

When initializing a two-dimensional array, it helps to enclose each row’s initialization list
in a set of braces. Here is an example:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};

The same definition could also be written as:

int hours[3][2] = {{8, 5},
 {7, 9},
 {6, 3}};

In either case, the values are assigned to hours in the following manner:

hours[0][0] is set to 8
hours[0][1] is set to 5
hours[1][0] is set to 7
hours[1][1] is set to 9
hours[2][0] is set to 6
hours[2][1] is set to 3

Figure 7-17 illustrates the initialization.

The extra braces that enclose each row’s initialization list are optional. Both of the follow-
ing statements perform the same initialization:

int hours[3][2] = {{8, 5}, {7, 9}, {6, 3}};
int hours[3][2] = {8, 5, 7, 9, 6, 3};

Because the extra braces visually separate each row, however, it’s a good idea to use them.
In addition, the braces give you the ability to leave out initializers within a row without
omitting the initializers for the rows that follow it. For instance, look at the following
array definition:

int table[3][2] = {{1}, {3, 4}, {5}};

table[0][0] is initialized to 1, table[1][0] is initialized to 3, table[1][1] is initial-
ized to 4, and table[2][0] is initialized to 5. table[0][1] and table[2][1] are not
initialized. Because some of the array elements are initialized, these two initialized ele-
ments are automatically set to zero.

Division 3, Quarter 1: $29654.35 [Enter]
Division 3, Quarter 2: $28963.32 [Enter]
Division 3, Quarter 3: $25353.55 [Enter]
Division 3, Quarter 4: $32615.88 [Enter]

The total sales for the company are: $456782.34

Figure 7-17

Column 0

Row 0

Row 1

Row 2

Column 1

8

7

6

5

9

3

416 Chapter 7 Arrays

Passing Two-Dimensional Arrays to Functions
Program 7-19 demonstrates passing a two-dimensional array to a function. When a two-
dimensional array is passed to a function, the parameter type must contain a size declarator for
the number of columns. Here is the header for the function showArray, from Program 7-19:

void showArray(int array[][COLS], int rows)

COLS is a global named constant which is set to 4. The function can accept any two-
dimensional integer array, as long as it consists of four columns. In the program, the con-
tents of two separate arrays are displayed by the function.

Program 7-19

 1 // This program demonstrates accepting a 2D array argument.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 // Global constants
 7 const int COLS = 4; // Number of columns in each array
 8 const int TBL1_ROWS = 3; // Number of rows in table1
 9 const int TBL2_ROWS = 4; // Number of rows in table2
10
11 void showArray(int [][COLS], int); // Function prototype
12
13 int main()
14 {
15 int table1[TBL1_ROWS][COLS] = {{1, 2, 3, 4},
16 {5, 6, 7, 8},
17 {9, 10, 11, 12}};
18 int table2[TBL2_ROWS][COLS] = {{10, 20, 30, 40},
19 {50, 60, 70, 80},
20 {90, 100, 110, 120},
21 {130, 140, 150, 160}};
22
23 cout << "The contents of table1 are:\n";
24 showArray(table1, TBL1_ROWS);
25 cout << "The contents of table2 are:\n";
26 showArray(table2, TBL2_ROWS);
27 return 0;
28 }
29
30 //***
31 // Function Definition for showArray *
32 // The first argument is a two-dimensional int array with COLS *
33 // columns. The second argument, rows, specifies the number of *
34 // rows in the array. The function displays the array's contents. *
35 //***
36
37 void showArray(int array[][COLS], int rows)
38 {
39 for (int x = 0; x < rows; x++)
40 {

7.8 Two-Dimensional Arrays 417

C++ requires the columns to be specified in the function prototype and header because of
the way two-dimensional arrays are stored in memory. One row follows another, as
shown in Figure 7-18.

When the compiler generates code for accessing the elements of a two-dimensional array,
it needs to know how many bytes separate the rows in memory. The number of columns is
a critical factor in this calculation.

Summing All the Elements of a Two-Dimensional Array
To sum all the elements of a two-dimensional array, you can use a pair of nested loops to
add the contents of each element to an accumulator. The following code is an example.

const int NUM_ROWS = 5; // Number of rows
const int NUM_COLS = 5; // Number of columns
int total = 0; // Accumulator
int numbers[NUM_ROWS][NUM_COLS] = {{2, 7, 9, 6, 4},
 {6, 1, 8, 9, 4},
 {4, 3, 7, 2, 9},
 {9, 9, 0, 3, 1},
 {6, 2, 7, 4, 1}};

// Sum the array elements.
for (int row = 0; row < NUM_ROWS; row++)
{

41 for (int y = 0; y < COLS; y++)
42 {
43 cout << setw(4) << array[x][y] << " ";
44 }
45 cout << endl;
46 }
47 }

Program Output
The contents of table1 are:
 1 2 3 4
 5 6 7 8
 9 10 11 12
The contents of table2 are:
 10 20 30 40
 50 60 70 80
 90 100 110 120
130 140 150 160

Figure 7-18

418 Chapter 7 Arrays

 for (int col = 0; col < NUM_COLS; col++)
 total += numbers[row][col];
}

// Display the sum.
cout << "The total is " << total << endl;

Summing the Rows of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each row in a two-dimensional array. For
example, suppose a two-dimensional array is used to hold a set of test scores for a set of
students. Each row in the array is a set of test scores for one student. To get the sum of a
student’s test scores (perhaps so an average may be calculated), you use a loop to add all
the elements in one row. The following code shows an example.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator is set in the loops
double average; // To hold each student's average
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},
 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

// Get each student's average score.
for (int row = 0; row < NUM_STUDENTS; row++)
{
 // Set the accumulator.
 total = 0;

 // Sum a row.
 for (int col = 0; col < NUM_SCORES; col++)
 total += scores[row][col];

 // Get the average.
 average = total / NUM_SCORES;

 // Display the average.
 cout << "Score average for student "
 << (row + 1) << " is " << average <<endl;
}

Notice that the total variable, which is used as an accumulator, is set to zero just before
the inner loop executes. This is because the inner loop sums the elements of a row and
stores the sum in total. Therefore, the total variable must be set to zero before each
iteration of the inner loop.

Summing the Columns of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each column in a two-dimensional array.
In the previous example a two-dimensional array is used to hold a set of test scores for a
set of students. Suppose you wish to calculate the class average for each of the test scores.
To do this, you calculate the average of each column in the array. This is accomplished
with a set of nested loops. The outer loop controls the column subscript and the inner

7.9 Arrays of Strings 419

loop controls the row subscript. The inner loop calculates the sum of a column, which is
stored in an accumulator. The following code demonstrates.

const int NUM_STUDENTS = 3; // Number of students
const int NUM_SCORES = 5; // Number of test scores
double total; // Accumulator is set in the loops
double average; // To hold each score's class average
double scores[NUM_STUDENTS][NUM_SCORES] = {{88, 97, 79, 86, 94},
 {86, 91, 78, 79, 84},
 {82, 73, 77, 82, 89}};

// Get the class average for each score.
for (int col = 0; col < NUM_SCORES; col++)
{

// Reset the accumulator.
total = 0;

// Sum a column.
for (int row = 0; row < NUM_STUDENTS; row++)

total += scores[row][col];

// Get the average.
average = total / NUM_STUDENTS;

// Display the class average.
cout << "Class average for test " << (col + 1)
 << " is " << average << endl;

}

7.9 Arrays of Strings

CONCEPT: A two-dimensional array of characters can be used as an array of strings.

Because strings are stored in single-dimensional character arrays, an array of strings
would be a two-dimensional character array. Figure 7-19 depicts such an array.

Figure 7-19

G a l i l e o \0

K e p l e r \0

N e w t o n \0

E i n s t e i n \0

char scientists[4][9] = {"Galileo",
 "Kepler",
 "Newton",
 "Einstein" };

420 Chapter 7 Arrays

The longest string in the array shown above is nine characters (including the null termina-
tor), so the array must have nine columns. The rows with strings of less than nine charac-
ters will have unused elements.

Just as the name of an array represents the array’s address, a two-dimensional array with
only the row subscript represents the address of that row. For instance, in the array
defined above, scientists[0] represents the address of row 0, scientists[1] repre-
sents the address of row 1, and so forth. The following cout statement will display the
string “Einstein” on the screen:

cout << scientists[3];

Likewise, the following loop will display all the names in the array:

for (int count = 0; count < 4; count++)
 cout << scientists[count] << endl;

Program 7-20 uses a two-dimensional character array to hold the names of the months
and a one-dimensional integer array to hold the number of days in each month.

Program 7-20

 1 // This program displays the number of days in each month.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 const int NUM_MONTHS = 12; // The number of months
 8 const int STRING_SIZE = 10; // Maximum size of each string
 9
10 // Array with the names of the months
11 char months[NUM_MONTHS][STRING_SIZE] =
12 { "January", "February", "March",
13 "April", "May", "June",
14 "July", "August", "September",
15 "October", "November", "December" };
16
17 // Array with the number of days in each month
18 int days[NUM_MONTHS] = {31, 28, 31, 30,
19 31, 30, 31, 31,
20 30, 31, 30, 31};
21
22 // Display the months and their numbers of days.
23 for (int count = 0; count < NUM_MONTHS; count++)
24 {
25 cout << months[count] << " has ";
26 cout << days[count] << " days.\n";
27 }
28 return 0;
29 }

7.10 Arrays with Three or More Dimensions 421

7.10 Arrays with Three or More Dimensions

CONCEPT: C++ does not limit the number of dimensions that an array may have. It is
possible to create arrays with multiple dimensions, to model data that occur
in multiple sets.

C++ allows you to create arrays with virtually any number of dimensions. Here is an
example of a three-dimensional array definition:

double seats[3][5][8];

This array can be thought of as three sets of five rows, with each row containing eight ele-
ments. The array might be used to store the prices of seats in an auditorium, where there
are eight seats in a row, five rows in a section, and a total of three sections.

Figure 7-20 illustrates the concept of a three-dimensional array as “pages” of two-
dimensional arrays.

Program Output
January has 31 days.
February has 28 days.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days.
December has 31 days.

Figure 7-20

0
1
2
3
4

0 1 2 3 4 5 6 7

0

1

2

422 Chapter 7 Arrays

Arrays with more than three dimensions are difficult to visualize, but can be useful in
some programming problems. For example, in a factory warehouse where cases of wid-
gets are stacked on pallets, an array with four dimensions could be used to store a part
number for each widget. The four subscripts of each element could represent the pallet
number, case number, row number, and column number of each widget. Similarly, an
array with five dimensions could be used if there were multiple warehouses.

Checkpoint
7.19 Define a two-dimensional array of ints named grades. It should have 30 rows

and 10 columns.

7.20 How many elements are in the following array?

double sales[6][4];

7.21 Write a statement that assigns the value 56893.12 to the first column of the first
row of the array defined in Question 7.20.

7.22 Write a statement that displays the contents of the last column of the last row of
the array defined in Question 7.20.

7.23 Define a two-dimensional array named settings large enough to hold the table
of data below. Initialize the array with the values in the table.

7.24 Fill in the table below so it shows the contents of the following array:

int table[3][4] = {{2, 3}, {7, 9, 2}, {1}};

7.25 Write a function called displayArray7. The function should accept a two-
dimensional array as an argument and display its contents on the screen. The
function should work with any of the following arrays:

int hours[5][7];
int stamps[8][7];
int autos[12][7];
int cats[50][7];

NOTE: When writing functions that accept multi-dimensional arrays as arguments, all
but the first dimension must be explicitly stated in the parameter list.

12 24 32 21 42

14 67 87 65 90

19 1 24 12 8

7.11 Focus on Problem Solving and Program Design: A Case Study 423

7.26 A video rental store keeps DVDs on 50 racks with 10 shelves each. Each shelf
holds 25 DVDs. Define a three-dimensional array large enough to represent the
store’s storage system.

7.11
Focus on Problem Solving and Program Design:
A Case Study

The National Commerce Bank has hired you as a contract programmer. Your first assign-
ment is to write a function that will be used by the bank’s automated teller machines
(ATMs) to validate a customer’s personal identification number (PIN).

Your function will be incorporated into a larger program that asks the customer to input
his or her PIN on the ATM’s numeric keypad. (PINs are seven-digit numbers. The pro-
gram stores each digit in an element of an integer array.) The program also retrieves a
copy of the customer’s actual PIN from a database. (The PINs are also stored in the data-
base as seven-element arrays.) If these two numbers match, then the customer’s identity is
validated. Your function is to compare the two arrays and determine whether they contain
the same numbers.

Here are the specifications your function must meet:

Parameters The function is to accept as arguments two integer arrays of seven ele-
ments each. The first argument will contain the number entered by the
customer. The second argument will contain the number retrieved from
the bank’s database.

Return value The function should return a Boolean true value if the two arrays are
identical. Otherwise, it should return false.

Here is the pseudocode for the function:

For each element in the first array
Compare the element with the element in the second array
that is in the corresponding position.
If the two elements contain different values

Return false.
End If.

End For.
Return true.

The C++ code is shown below.

bool testPIN(int custPIN[], int databasePIN[], int size)
{

for (int index = 0; index < size; index++)
{

if (custPIN[index] != databasePIN[index])
 return false; // We've found two different values.

}
return true; // If we make it this far, the values are the same.

}

424 Chapter 7 Arrays

Because you have only been asked to write a function that performs the comparison
between the customer’s input and the PIN that was retrieved from the database, you will
also need to design a driver. Program 7-21 shows the complete program.

Program 7-21

 1 // This program is a driver that tests a function comparing the
 2 // contents of two int arrays.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function Prototype
 7 bool testPIN(int [], int [], int);
 8
 9 int main ()
10 {
11 const int NUM_DIGITS = 7; // Number of digits in a PIN
12 int pin1[NUM_DIGITS] = {2, 4, 1, 8, 7, 9, 0}; // Base set of values.
13 int pin2[NUM_DIGITS] = {2, 4, 6, 8, 7, 9, 0}; // Only 1 element is
14 // different from pin1.
15 int pin3[NUM_DIGITS] = {1, 2, 3, 4, 5, 6, 7}; // All elements are
16 // different from pin1.
17 if (testPIN(pin1, pin2, NUM_DIGITS))
18 cout << "ERROR: pin1 and pin2 report to be the same.\n";
19 else
20 cout << "SUCCESS: pin1 and pin2 are different.\n";
21
22 if (testPIN(pin1, pin3, NUM_DIGITS))
23 cout << "ERROR: pin1 and pin3 report to be the same.\n";
24 else
25 cout << "SUCCESS: pin1 and pin3 are different.\n";
26
27 if (testPIN(pin1, pin1, NUM_DIGITS))
28 cout << "SUCCESS: pin1 and pin1 report to be the same.\n";
29 else
30 cout << "ERROR: pin1 and pin1 report to be different.\n";
31 return 0;
32 }
33
34 //**
35 // The following function accepts two int arrays. The arrays are *
36 // compared. If they contain the same values, true is returned. *
37 // If they contain different values, false is returned. *
38 //**
39
40 bool testPIN(int custPIN[], int databasePIN[], int size)
41 {
42 for (int index = 0; index < size; index++)
43 {
44 if (custPIN[index] != databasePIN[index])
45 return false; // We've found two different values.
46 }
47 return true; // If we make it this far, the values are the same.
48 }

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 425

Case Study on CD: See the Intersection of Sets Case Study on the Student CD.

7.12 If You Plan to Continue in Computer Science:
Introduction to the STL vector

CONCEPT: The Standard Template Library offers a vector data type, which in many
ways, is superior to standard arrays.

The Standard Template Library (STL) is a collection of data types and algorithms that you
may use in your programs. These data types and algorithms are programmer-defined.
They are not part of the C++ language, but were created in addition to the built-in data
types. If you plan to continue your studies in the field of computer science, you should
become familiar with the STL. This section introduces one of the STL data types.

The data types that are defined in the STL are commonly called containers. They are
called containers because they store and organize data. There are two types of containers
in the STL: sequence containers and associative containers. A sequence container orga-
nizes data in a sequential fashion, similar to an array. Associative containers organize data
with keys, which allow rapid, random access to elements stored in the container.

In this section you will learn to use the vector data type, which is a sequence container. A
vector is like an array in the following ways:

• A vector holds a sequence of values, or elements.
• A vector stores its elements in contiguous memory locations.
• You can use the array subscript operator [] to read the individual elements in the

vector.

However, a vector offers several advantages over arrays. Here are just a few:

• You do not have to declare the number of elements that the vector will have.
• If you add a value to a vector that is already full, the vector will automatically

increase its size to accommodate the new value.
• vectors can report the number of elements they contain.

Program Output
SUCCESS: pin1 and pin2 are different.
SUCCESS: pin1 and pin3 are different.
SUCCESS: pin1 and pin1 report to be the same.

NOTE: Many older compilers do not support the STL.

426 Chapter 7 Arrays

Defining a vector
To use vectors in your program, you must include the vector header file with the follow-
ing statement:

#include <vector>

Now you are ready to define an actual vector object. The syntax for defining a vector is
somewhat different from the syntax used in defining a regular variable or array. Here is an
example:

vector<int> numbers;

This statement defines numbers as a vector of ints. Notice that the data type is enclosed
in angled brackets, immediately after the word vector. Because the vector expands in
size as you add values to it, there is no need to declare a size. You can define a starting
size, if you prefer. Here is an example:

vector<int> numbers(10);

This statement defines numbers as a vector of 10 ints. This is only a starting size, how-
ever. Although the vector has 10 elements, its size will expand if you add more than 10
values to it.

When you specify a starting size for a vector, you may also specify an initialization value.
The initialization value is copied to each element. Here is an example:

vector<int> numbers(10, 2);

In this statement, numbers is defined as a vector of 10 ints. Each element in numbers is
initialized to the value 2.

You may also initialize a vector with the values in another vector. For example, look at
the following statement. Assume that set1 is a vector of ints that already has values
stored in it.

vector<int> set2(set1);

After this statement executes, set2 will be a copy of set1.

Table 7-3 summarizes the vector definition procedures we have discussed.

NOTE: To use the vector data type, you must have the using namespace std;
statement in your program.

NOTE: If you specify a starting size for a vector, the size declarator is enclosed in
parentheses, not square brackets.

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 427

Storing and Retrieving Values in a vector
To store a value in an element that already exists in a vector, you may use the array sub-
script operator []. For example, look at Program 7-22.

Table 7-3

Definition Format Description
vector<float> amounts; Defines amounts as an empty vector of floats.
vector<int> scores(15); Defines scores as a vector of 15 ints.
vector<char> letters(25, 'A'); Defines letters as a vector of 25 characters. Each

element is initialized with 'A'.
vector<double>
values2(values1);

Defines values2 as a vector of doubles. All the
elements of values1, which is also a vector of
doubles, are copied to value2.

Program 7-22

 1 // This program stores, in two vectors, the hours worked by 5
 2 // employees, and their hourly pay rates.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <vector> // Needed to define vectors
 6 using namespace std;
 7
 8 int main()
 9 {
10 const int NUM_EMPLOYEES = 5; // Number of employees
11 vector<int> hours(NUM_EMPLOYEES); // A vector of integers
12 vector<double> payRate(NUM_EMPLOYEES); // A vector of doubles
13 int index; // Loop counter
14
15 // Input the data.
16 cout << "Enter the hours worked by " << NUM_EMPLOYEES;
17 cout << " employees and their hourly rates.\n";
18 for (index = 0; index < NUM_EMPLOYEES; index++)
19 {
20 cout << "Hours worked by employee #" << (index + 1);
21 cout << ": ";
22 cin >> hours[index];
23 cout << "Hourly pay rate for employee #";
24 cout << (index + 1) << ": ";
25 cin >> payRate[index];
26 }
27
28 // Display each employee's gross pay.
29 cout << "\nHere is the gross pay for each employee:\n";
30 cout << fixed << showpoint << setprecision(2);

(program continues)

428 Chapter 7 Arrays

Notice that Program 7-22 uses the following statements in lines 11 and 12 to define two
vectors.

vector<int> hours(NUM_EMPLOYEES); // A vector of integers
vector<double> payRate(NUM_EMPLOYEES); // A vector of doubles

Both of the vectors are defined with the starting size 5, which is the value of the named
constant NUM_EMPLOYEES. The program uses the following loop in lines 18 through 26 to
store a value in each element of both vectors:

for (index = 0; index < NUM_EMPLOYEES; index++)
{
 cout << "Hours worked by employee #" << (index + 1);
 cout << ": ";
 cin >> hours[index];
 cout << "Hourly pay rate for employee #";
 cout << (index + 1) << ": ";
 cin >> payRate[index];
}

31 for (index = 0; index < NUM_EMPLOYEES; index++)
32 {
33 double grossPay = hours[index] * payRate[index];
34 cout << "Employee #" << (index + 1);
35 cout << ": $" << grossPay << endl;
36 }
37 return 0;
38 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 5 employees and their hourly rates.
Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]

Here is the gross pay for each employee:
Employee #1: $97.50
Employee #2: $129.30
Employee #3: $210.00
Employee #4: $750.00
Employee #5: $626.00

Program 7-22 (continued)

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 429

Because the values entered by the user are being stored in vector elements that already
exist, the program uses the array subscript operator [], as shown in the following state-
ments, which appear in lines 22 and 25:

cin >> hours[index];

cin >> payRate[index];

Using the push_back Member Function

You cannot use the [] operator to access a vector element that does not exist. To store a
value in a vector that does not have a starting size, or that is already full, use the
push_back member function. The push_back member function accepts a value as an
argument, and stores that value after the last element in the vector. (It pushes the value
onto the back of the vector.) Here is an example:

numbers.push_back(25);

Assuming numbers is a vector of ints, this statement stores 25 as the last element. If
numbers is full, the statement creates a new last element, and stores 25 in it. If there are
no elements in numbers, this statement creates an element and stores 25 in it.

Program 7-23 is a modification of Program 7-22. This version, however, allows the user to
specify the number of employees. The two vectors, hours and payRate, are defined
without starting sizes. Because these vectors have no starting elements, the push_back
member function is used to store values in the vectors.

Program 7-23

 1 // This program stores, in two arrays, the hours worked by 5
 2 // employees, and their hourly pay rates.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <vector> // Needed to define vectors
 6 using namespace std;
 7
 8 int main()
 9 {
10 vector<int> hours; // hours is an empty vector
11 vector<double> payRate; // payRate is an empty vector
12 int numEmployees; // The number of employees
13 int index; // Loop counter
14
15 // Get the number of employees.
16 cout << "How many employees do you have? ";
17 cin >> numEmployees;
18
19 // Input the payroll data.
20 cout << "Enter the hours worked by " << numEmployees;
21 cout << " employees and their hourly rates.\n";

(program continues)

430 Chapter 7 Arrays

Notice that in lines 40 through 45 the second loop, which calculates and displays each
employee’s gross pay, uses the [] operator to access the elements of the hours and
payRate vectors:

for (index = 0; index < numEmployees; index++)
{
 double grossPay = hours[index] * payRate[index];
 cout << "Employee #" << (index + 1);
 cout << ": $" << grossPay << endl;
}

22 for (index = 0; index < numEmployees; index++)
23 {
24 int tempHours; // To hold the number of hours entered
25 double tempRate; // To hold the payrate entered
26
27 cout << "Hours worked by employee #" << (index + 1);
28 cout << ": ";
29 cin >> tempHours;
30 hours.push_back(tempHours); // Add an element to hours
31 cout << "Hourly pay rate for employee #";
32 cout << (index + 1) << ": ";
33 cin >> tempRate;
34 payRate.push_back(tempRate); // Add an element to payRate
35 }
36
37 // Display each employee's gross pay.
38 cout << "Here is the gross pay for each employee:\n";
39 cout << fixed << showpoint << setprecision(2);
40 for (index = 0; index < numEmployees; index++)
41 {
42 double grossPay = hours[index] * payRate[index];
43 cout << "Employee #" << (index + 1);
44 cout << ": $" << grossPay << endl;
45 }
46 return 0;
47 }

Program Output with Example Input Shown in Bold
How many employees do you have? 3 [Enter]
Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 40 [Enter]
Hourly pay rate for employee #1: 12.63 [Enter]
Hours worked by employee #2: 25 [Enter]
Hourly pay rate for employee #2: 10.35 [Enter]
Hours worked by employee #3: 45 [Enter]
Hourly pay rate for employee #3: 22.65 [Enter]

Here is the gross pay for each employee:
Employee #1: $505.20
Employee #2: $258.75
Employee #3: $1019.2

Program 7-23 (continued)

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 431

This is possible because the first loop in lines 22 through 35 uses the push_back member
function to create the elements in the two vectors.

Determining the Size of a vector
Unlike arrays, vectors can report the number of elements they contain. This is accom-
plished with the size member function. Here is an example of a statement that uses the
size member function:

numValues = set.size();

In this statement, assume that numValues is an int and set is a vector. After the state-
ment executes, numValues will contain the number of elements in set.

The size member function is especially useful when you are writing functions that accept
vectors as arguments. For example, look at the following code for the showValues function:

void showValues(vector<int> vect)
{
 for (int count = 0; count < vect.size(); count++)
 cout << vect[count] << endl;
}

Because the vector can report its size, this function does not need to accept a second
argument indicating the number of elements in the vector. Program 7-24 demonstrates
this function.

Program 7-24

 1 // This program demonstrates the vector size
 2 // member function.
 3 #include <iostream>
 4 #include <vector>
 5 using namespace std;
 6
 7 // Function prototype
 8 void showValues(vector<int>);
 9
10 int main()
11 {
12 vector<int> values;
13
14 // Put a series of numbers in the vector.
15 for (int count = 0; count < 7; count++)
16 values.push_back(count * 2);
17
18 // Display the numbers.
19 showValues(values);
20 return 0;
21 }
22

(program continues)

432 Chapter 7 Arrays

Removing Elements from a vector
Use the pop_back member function to remove the last element from a vector. In the fol-
lowing statement, assume that collection is the name of a vector.

collection.pop_back();

This statement removes the last element from the collection vector. Program 7-25 dem-
onstrates the function.

23 //**
24 // Definition of function showValues. *
25 // This function accepts an int vector as its *
26 // argument. The value of each of the vector's *
27 // elements is displayed. *
28 //**
29
30 void showValues(vector<int> vect)
31 {
32 for (int count = 0; count < vect.size(); count++)
33 cout << vect[count] << endl;
34 }

Program Output
0
2
4
6
8
10
12

Program 7-25

 1 // This program demonstrates the vector pop_back member function.
 2 #include <iostream>
 3 #include <vector>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 vector<int> values;
 9
10 // Store values in the vector.
11 values.push_back(1);
12 values.push_back(2);
13 values.push_back(3);
14 cout << "The size of values is " << values.size() << endl;
15

Program 7-24 (continued)

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 433

Clearing a vector
To completely clear the contents of a vector, use the clear member function, as shown
in the following statement:

numbers.clear();

After this statement executes, numbers will be cleared of all its elements. Program 7-26
demonstrates the function.

16 // Remove a value from the vector.
17 cout << "Popping a value from the vector...\n";
18 values.pop_back();
19 cout << "The size of values is now " << values.size() << endl;
20
21 // Now remove another value from the vector.
22 cout << "Popping a value from the vector...\n";
23 values.pop_back();
24 cout << "The size of values is now " << values.size() << endl;
25
26 // Remove the last value from the vector.
27 cout << "Popping a value from the vector...\n";
28 values.pop_back();
29 cout << "The size of values is now " << values.size() << endl;
30 return 0;
31 }

Program Output
The size of values is 3
Popping a value from the vector...
The size of values is now 2
Popping a value from the vector...
The size of values is now 1
Popping a value from the vector...
The size of values is now 0

Program 7-26

 1 // This program demonstrates the vector clear member function.
 2 #include <iostream>
 3 #include <vector>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 vector<int> values(100);
 9
10 cout << "The values vector has "
11 << values.size() << " elements.\n";
12 cout << "I will call the clear member function...\n";
13 values.clear();

(program continues)

434 Chapter 7 Arrays

Detecting an Empty vector
To determine if a vector is empty, use the empty member function. The function returns
true if the vector is empty, and false if the vector has elements stored in it. Assuming
set is a vector, here is an example of its use:

if (set.empty())
 cout << "No values in set.\n";

Program 7-27 uses a function named avgVector, which demonstrates the empty member
function.

14 cout << "Now, the values vector has "
15 << values.size() << " elements.\n";
16 return 0;
17 }

Program Output
The values vector has 100 elements.
I will call the clear member function...
Now, the values vector has 0 elements.

Program 7-27

 1 // This program demonstrates the vector's empty member function.
 2 #include <iostream>
 3 #include <vector>
 4 using namespace std;
 5
 6 // Function prototype
 7 double avgVector(vector<int>);
 8
 9 int main()
10 {
11 vector<int> values; // A vector to hold values
12 int numValues; // The number of values
13 double average; // To hold the average
14
15 // Get the number of values to average.
16 cout << "How many values do you wish to average? ";
17 cin >> numValues;
18
19 // Get the values and store them in the vector.
20 for (int count = 0; count < numValues; count++)
21 {
22 int tempValue;
23 cout << "Enter a value: ";
24 cin >> tempValue;
25 values.push_back(tempValue);
26 }
27

Program 7-26 (continued)

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 435

28 // Get the average of the values and display it.
29 average = avgVector(values);
30 cout << "Average: " << average << endl;
31 return 0;
32 }
33
34 //***
35 // Definition of function avgVector. *
36 // This function accepts an int vector as its argument. If *
37 // the vector contains values, the function returns the *
38 // average of those values. Otherwise, an error message is *
39 // displayed and the function returns 0.0. *
40 //***
41
42 double avgVector(vector<int> vect)
43 {
44 int total = 0; // accumulator
45 double avg; // average
46
47 if (vect.empty()) // Determine if the vector is empty
48 {
49 cout << "No values to average.\n";
50 avg = 0.0;
51 }
52 else
53 {
54 for (int count = 0; count < vect.size(); count++)
55 total += vect[count];
56 avg = total / vect.size();
57 }
58 return avg;
59 }

Program Output with Example Input Shown in Bold
How many values do you wish to average? 5 [Enter]
Enter a value: 12
Enter a value: 18
Enter a value: 3
Enter a value: 7
Enter a value: 9
Average: 9

Program Output with Different Example Input Shown in Bold
How many values do you wish to average? 0 [Enter]
No values to average.
Average: 0

436 Chapter 7 Arrays

Summary of vector Member Functions
Table 7-4 provides a summary of the vector member function we have discussed, as well
as some additional ones.

Table 7-4

Member Function Description
at(element) Returns the value of the element located at element in the vector.

Example:

 x = vect.at(5);

This statement assigns the value of the fifth element of vect to x.
capacity() Returns the maximum number of elements that may be stored in the

vector without additional memory being allocated. (This is not the
same value as returned by the size member function).
Example:

 x = vect.capacity();

This statement assigns the capacity of vect to x.
clear() Clears a vector of all its elements.

Example:

 vect.clear();

This statement removes all the elements from vect.
empty() Returns true if the vector is empty. Otherwise, it returns false.

Example:

 if (vect.empty())
 cout << "The vector is empty.";

This statement displays the message if vect is empty.
pop_back() Removes the last element from the vector.

Example:

 vect.pop_back();

This statement removes the last element of vect, thus reducing its size
by 1.

push_back(value) Stores a value in the last element of the vector. If the vector is full
or empty, a new element is created.
Example:

 vect.push_back(7);

This statement stores 7 in the last element of vect.

(table continues)

7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector 437

Checkpoint
7.27 What header file must you #include in order to define vector objects?

7.28 Write a definition statement for a vector named frogs. frogs should be an
empty vector of ints.

7.29 Write a definition statement for a vector named lizards. lizards should be a
vector of 20 floats.

7.30 Write a definition statement for a vector named toads. toads should be a vector
of 100 chars, with each element initialized to 'Z'.

7.31 gators is an empty vector of ints. Write a statement that stores the value 27 in
gators.

7.32 snakes is a vector of doubles, with 10 elements. Write a statement that stores
the value 12.897 in element 4 of the snakes vector.

reverse() Reverses the order of the elements in the vector. (The last element
becomes the first element, and the first element becomes the last
element.)
Example:

 vect.reverse();

This statement reverses the order of the element in vect.
resize(elements, value) Resizes a vector by elements elements. Each of the new elements is

initialized with the value in value.
Example:

 vect.resize(5, 1);

This statement increases the size of vect by five elements. The five
new elements are initialized to the value 1.

swap(vector2) Swaps the contents of the vector with the contents of vector2.
Example:

 vect1.swap(vect2);

This statement swaps the contents of vect1 and vect2

Table 7-4 (continued)

Member Function Description

438 Chapter 7 Arrays

Review Questions and Exercises

Short Answer
1. What is the difference between a size declarator and a subscript?

2. Look at the following array definition.

int values[10];

How many elements does the array have?

What is the subscript of the first element in the array?

What is the subscript of the last element in the array?

Assuming that an int uses four bytes of memory, how much memory does the array use?

3. Why should a function that accepts an array as an argument, and processes that
array, also accept an argument specifying the array’s size?

4. Consider the following array definition:

int values[5] = { 4, 7, 6, 8, 2 };

What does each of the following statements display?

cout << values[4] << endl; __________

cout << (values[2] + values[3]) << endl; __________

cout << ++values[1] << endl; __________

5. How do you define an array without providing a size declarator?

6. Look at the following array definition.

int numbers[5] = { 1, 2, 3 };

What value is stored in numbers[2]?

What value is stored in numbers[4]?

7. Assuming that array1 and array2 are both arrays, why is it not possible to assign
the contents of array2 to array1 with the following statement?

array1 = array2;

8. Assuming that numbers is an array of doubles, will the following statement display
the contents of the array?

cout << numbers << endl;

9. Is an array passed to a function by value or by reference?

10. When you pass an array name as an argument to a function, what is actually being
passed?

11. How do you establish a parallel relationship between two or more arrays?

12. Look at the following array definition.

char day[] = "Tuesday";

How many elements are in the day array?

Is the string stored in the day array terminated by a null character?

Review Questions and Exercises 439

13. Look at the following array definition.

double sales[8][10];

How many rows does the array have?

How many columns does the array have?

How many elements does the array have?

Write a statement that stores a number in the last column of the last row in the array.

14. When writing a function that accepts a two-dimensional array as an argument, which
size declarator must you provide in the parameter for the array?

15. What advantages does a vector offer over an array?

Fill-in-the-Blank

16. The _________ indicates the number of elements, or values, an array can hold.

17. The size declarator must be a(n) _________ with a value greater than _________.

18. Each element of an array is accessed and indexed by a number known as a(n)
_________.

19. Subscript numbering in C++ always starts at _________.

20. The number inside the brackets of an array definition is the _________, but the num-
ber inside an array’s brackets in an assignment statement, or any other statement that
works with the contents of the array, is the _________.

21. C++ has no array _________ checking, which means you can inadvertently store data
past the end of an array.

22. Starting values for an array may be specified with a(n) _________ list.

23. If an array is partially initialized, the uninitialized elements will be set to _________.

24. If the size declarator of an array definition is omitted, C++ counts the number of items
in the _________ to determine how large the array should be.

25. When a character array is initialized with a string literal, the _________ is automati-
cally included at the end.

26. By using the same _________ for multiple arrays, you can build relationships between
the data stored in the arrays.

27. You cannot use the _________ operator to copy data from one array to another in a
single statement.

28. Any time the name of an array is used without brackets and a subscript, it is seen as
_________.

29. To pass an array to a function, pass the _________ of the array.

30. A(n) _________ array is like several arrays of the same type put together.

31. It’s best to think of a two-dimensional array as having _________ and _________.

32. To define a two-dimensional array, _________ size declarators are required.

33. When initializing a two-dimensional array, it helps to enclose each row’s initialization
list in _________.

440 Chapter 7 Arrays

34. When a two-dimensional array is passed to a function the _________ size must
be specified.

35. The ____________________ is a collection of programmer-defined data types and
algorithms that you may use in your programs

36. The two types of containers defined by the STL are ___________ and
______________.

37. The vector data type is a(n) ______________ container.

38. To define a vector in your program, you must #include the ____________ header
file.

39. To store a value in a vector that does not have a starting size, or that is already full,
use the ________________ member function.

40. To determine the number of elements in a vector, use the _____________ member
function.

41. Use the ________________ member function to remove the last element from a vector.

42. To completely clear the contents of a vector, use the ___________ member function.

Algorithm Workbench

43. names is an integer array with 20 elements. Write a for loop that prints each element
of the array.

44. The arrays numberArray1 and numberArray2 have 100 elements. Write code that
copies the values in numberArray1 to numberArray2.

45. In a program you need to store the identification numbers of 10 employees (as ints)
and their weekly gross pay (as doubles).
A) Define two arrays that may be used in parallel to store the 10 employee identifica-

tion numbers and gross pay amounts.
B) Write a loop that uses these arrays to print each employee’s identification number

and weekly gross pay.

46. Define a two-dimensional array of integers named grades. It should have 30 rows
and 10 columns.

47. In a program you need to store the populations of 12 countries.
A) Define two arrays that may be used in parallel to store the names of the countries

and their populations.
B) Write a loop that uses these arrays to print each country’s name and its population.

48. The following code totals the values in two arrays: numberArray1 and
numberArray2. Both arrays have 25 elements. Will the code print the correct sum of
values for both arrays? Why or why not?

int total = 0; // Accumulator
int count; // Loop counter
// Calculate and display the total of the first array.
for (count = 0; count < 24; count++)
 total += numberArray1[count];
cout << "The total for numberArray1 is " << total << endl;
// Calculate and display the total of the second array.
for (count = 0; count < 24; count++)

Review Questions and Exercises 441

 total += numberArray2[count];
cout << "The total for numberArray2 is " << total << endl;

49. Write a statement that defines a two-dimensional array to hold three strings. Initialize
the array with your first, middle, and last names.

50. Look at the following array definition.

int numberArray[9][11];

Write a statement that assigns 145 to the first column of the first row of this array.

Write a statement that assigns 18 to the last column of the last row of this array.

51. values is a two-dimensional array of floats with 10 rows and 20 columns. Write
code that sums all the elements in the array and stores the sum in the variable total.

52. An application uses a two-dimensional array defined as follows.

int days[29][5];

Write code that sums each row in the array and displays the results.

Write code that sums each column in the array and displays the results.

True or False
53. T F An array’s size declarator can be either a literal, a named constant, or a variable.

54. T F To calculate the amount of memory used by an array, multiply the number of
elements by the number of bytes each element uses.

55. T F The individual elements of an array are accessed and indexed by unique
numbers.

56. T F The first element in an array is accessed by the subscript 1.

57. T F The subscript of the last element in a single-dimensional array is one less than
the total number of elements in the array.

58. T F The contents of an array element cannot be displayed with cout.

59. T F Subscript numbers may be stored in variables.

60. T F You can write programs that use invalid subscripts for an array.

61. T F Arrays cannot be initialized when they are defined. A loop or other means must
be used.

62. T F The values in an initialization list are stored in the array in the order they
appear in the list.

63. T F C++ allows you to partially initialize an array.

64. T F If an array is partially initialized, the uninitialized elements will contain
“garbage.”

65. T F If you leave an element uninitialized, you do not have to leave all the ones that
follow it uninitialized.

66. T F If you leave out the size declarator of an array definition, you do not have to
include an initialization list.

67. T F In initializing an array with a string, the null terminator is automatically
included.

442 Chapter 7 Arrays

68. T F In initializing an array with individual characters, the null terminator is auto-
matically included.

69. T F You cannot use the assignment operator to copy one array’s contents to
another in a single statement.

70. T F When an array name is used without brackets and a subscript, it is seen as the
value of the first element in the array.

71. T F To pass an array to a function, pass the name of the array.

72. T F When defining a parameter variable to hold a single-dimensional array argu-
ment, you do not have to include the size declarator.

73. T F When an array is passed to a function, the function has access to the original
array.

74. T F A two-dimensional array is like several identical arrays put together.

75. T F It’s best to think of two-dimensional arrays as having rows and columns.

76. T F The first size declarator (in the declaration of a two-dimensional array) repre-
sents the number of columns. The second size defintion represents the number
of rows.

77. T F Two-dimensional arrays may be passed to functions, but the row size must be
specified in the definition of the parameter variable.

78. T F C++ allows you to create arrays with three or more dimensions.

79. T F A vector is an associative container.

80. T F To use a vector, you must include the vector header file.

81. T F vectors can report the number of elements they contain.

82. T F You can use the [] operator to insert a value into a vector that has no elements.

83. T F If you add a value to a vector that is already full, the vector will automati-
cally increase its size to accommodate the new value.

Find the Error

Each of the following definitions and program segments has errors. Locate as many as you can.

84. int size;
double values[size];

85. int collection[-20];

86. int table[10];
for (int x = 0; x < 20; x++)
{
 cout << "Enter the next value: ";
 cin >> table[x];
}

87. int hours[3] = 8, 12, 16;

88. char name[17] = "George Washington";

89. int numbers[8] = {1, 2, , 4, , 5};

90. float ratings[];

91. char greeting[] = {'H', 'e', 'l', 'l', 'o'};
cout << greeting;

Review Questions and Exercises 443

92. int array1[4], array2[4] = {3, 6, 9, 12};
array1 = array2;

93. void showValues(int nums)
{
 for (int count = 0; count < 8; count++)
 cout << nums[count];
}

94. void showValues(int nums[4][])
{
 for (rows = 0; rows < 4; rows++)
 for (cols = 0; cols < 5; cols++)
 cout << nums[rows][cols];
}

Programming Challenges
1. Largest/Smallest Array Values

Write a program that lets the user enter 10 values into an array. The program should
then display the largest and smallest values stored in the array.

2. Rainfall Statistics

Write a program that lets the user enter the total rainfall for each of 12 months into an
array of doubles. The program should calculate and display the total rainfall for the
year, the average monthly rainfall, and the months with the highest and lowest amounts.

Input Validation: Do not accept negative numbers for monthly rainfall figures.

3. Chips and Salsa

Write a program that lets a maker of chips and salsa keep track of sales for five differ-
ent types of salsa: mild, medium, sweet, hot, and zesty. The program should use two
parallel 5-element arrays: an array of strings that holds the five salsa names and an
array of integers that holds the number of jars sold during the past month for each
salsa type. The salsa names should be stored using an initialization list at the time the
name array is created. The program should prompt the user to enter the number of
jars sold for each type. Once this sales data has been entered, the program should pro-
duce a report that displays sales for each salsa type, total sales, and the names of the
highest selling and lowest selling products.

Input Validation: Do not accept negative values for number of jars sold.

4. Monkey Business

A local zoo wants to keep track of how many pounds of food each of its three mon-
keys eats each day during a typical week. Write a program that stores this information
in a two-dimensional 3 × 7 array, where each row represents a different monkey and
each column represents a different day of the week. The program should first have the
user input the data for each monkey. Then it should create a report that includes the
following information:

• Average amount of food eaten per day by the whole family of monkeys.
• The least amount of food eaten during the week by any one monkey.
• The greatest amount of food eaten during the week by any one monkey.

Input Validation: Do not accept negative numbers for pounds of food eaten.

Solving the
Chips and

Salsa Problem

444 Chapter 7 Arrays

5. Rain or Shine

An amateur meteorologist wants to keep track of weather conditions during the past
year’s three-month summer season and has designated each day as either rainy (‘R’),
cloudy (‘C’), or sunny (‘S’). Write a program that stores this information in a 3 × 30
array of characters, where the row indicates the month (0 = June, 1 = July, 2 = August)
and the column indicates the day of the month. Note that data are not being collected
for the 31st of any month. The program should begin by reading the weather data in
from a file. Then it should create a report that displays, for each month and for the
whole three-month period, how many days were rainy, how many were cloudy, and
how many were sunny. It should also report which of the three months had the largest
number of rainy days. Data for the program can be found in the RainOrShine.dat file.

6. Number Analysis Program

Write a program that asks the user for a file name. Assume the file contains a series of
numbers, each written on a separate line. The program should read the contents of the
file into an array and then display the following data:

• The lowest number in the array
• The highest number in the array
• The total of the numbers in the array
• The average of the numbers in the array

The Student CD contains a text file named numbers.txt. that you can use to test the
program.

7. Lowercase to Uppercase Converter

Write a program that lets the user enter a string into a character array. The program
should then convert all the lowercase letters to uppercase. (If a character is already
uppercase, or is not a letter, it should be left alone.) Hint: Consult the ASCII chart in
Appendix A. Notice that the lowercase letters are represented by the ASCII codes 97
through 122. If you subtract 32 from any lowercase character’s ASCII code, it will
yield the ASCII code of the uppercase equivalent.

8. Proper Words

Write a function that uses an array parameter to accept a string as its argument. It
should convert the first letter of each word in the string to uppercase. If any of the let-
ters are already uppercase, they should be left alone. (See the hint in Problem 7 for
help on converting lowercase characters to uppercase.) Demonstrate the function in a
simple program that asks the user to input a string, passes it to the function, and then
displays the string after it has been modified.

9. Quarterly Sales Statistics

Write a program that lets the user enter four quarterly sales figures for six divisions of
a company. The figures should be stored in a two-dimensional array. Once the figures
are entered, the program should display the following data for each quarter:

• A list of the sales figures by division
• Each division’s increase or decrease from the previous quarter (This will not be

displayed for the first quarter.)
• The total sales for the quarter

Review Questions and Exercises 445

• The company’s increase or decrease from the previous quarter (This will not be
displayed for the first quarter.)

• The average sales for all divisions that quarter
• The division with the highest sales for that quarter

The program should be modular, with functions that calculate the statistics above.

Input Validation: Do not accept negative numbers for sales figures.

10. Payroll

Write a program that uses the following arrays:

• empId: an array of seven long integers to hold employee identification numbers.
The array should be initialized with the following numbers:

5658845 4520125 7895122 8777541
8451277 1302850 7580489

• hours: an array of seven integers to hold the number of hours worked by each
employee

• payRate: an array of seven doubles to hold each employee’s hourly pay rate
• wages: an array of seven doubles to hold each employee’s gross wages

The program should relate the data in each array through the subscripts. For exam-
ple, the number in element 0 of the hours array should be the number of hours
worked by the employee whose identification number is stored in element 0 of the
empId array. That same employee’s pay rate should be stored in element 0 of the
payRate array.

The program should display each employee number and ask the user to enter that
employee’s hours and pay rate. It should then calculate the gross wages for that
employee (hours times pay rate) and store them in the wages array. After the data has
been entered for all the employees, the program should display each employee’s iden-
tification number and gross wages.

Input Validation: Do not accept negative values for hours or numbers less than 6.00
for pay rate.

11. Driver’s License Exam

The local Driver’s License Office has asked you to write a program that grades the
written portion of the driver’s license exam. The exam has 20 multiple choice ques-
tions. Here are the correct answers:

1. B 6. A 11. B 16. C
2. D 7. B 12. C 17. C
3. A 8. A 13. D 18. B
4. A 9. C 14. A 19. D
5. C 10. D 15. D 20. A

Your program should store the correct answers shown above in an array. It should ask
the user to enter the student’s answers for each of the 20 questions, and the answers
should be stored in another array. After the student’s answers have been entered, the
program should display a message indicating whether the student passed or failed the
exam. (A student must correctly answer 15 of the 20 questions to pass the exam.)

446 Chapter 7 Arrays

It should then display the total number of correctly answered questions, the total
number of incorrectly answered questions, and a list showing the question numbers of
the incorrectly answered questions.

Input Validation: Only accept the letters A, B, C, or D as answers.

12. Exam Grader

One of your professors has asked you to write a program to grade her final exams,
which consist of only 20 multiple-choice questions. Each question has one of four
possible answers: A, B, C, or D. The file CorrectAnswers.txt, which is on the Stu-
dent CD, contains the correct answers for all of the questions, each answer written on
a separate line. The first line contains the answer to the first question, the second line
contains the answer to the second question, and so forth.

Write a program that reads the contents of the CorrectAnswers.txt file into a
one-dimensional char array, and then reads the contents of another file, contain-
ing a student’s answers, into a second char array. The Student CD has a file
named StudentAnswers.txt that you can use for testing purposes. The program
should determine the number of questions that the student missed, and then dis-
play the following:

• A list of the questions missed by the student, showing the correct answer and the
incorrect answer provided by the student for each missed question

• The total number of questions missed
• The percentage of questions answered correctly. This can be calculated as

Correctly Answered Questions ÷ Total Number of Questions

• If the percentage of correctly answered questions is 70% or greater, the program
should indicate that the student passed the exam. Otherwise, it should indicate
that the student failed the exam.

13. Grade Book

A teacher has five students who have taken four tests. The teacher uses the following
grading scale to assign a letter grade to a student, based on the average of his or her
four test scores.

Write a program that uses a two-dimensional array of characters to hold the five stu-
dent names, a single-dimensional array of five characters to hold the five students’ let-
ter grades, and five single-dimensional arrays of four doubles to hold each student’s
set of test scores.

Test Score Letter Grade

90–100 A

80–89 B

70–79 C

60–69 D

0–59 F

Review Questions and Exercises 447

The program should allow the user to enter each student’s name and his or her four
test scores. It should then calculate and display each student’s average test score and a
letter grade based on the average.

Input Validation: Do not accept test scores less than 0 or greater than 100.

14. Grade Book Modification

Modify the grade book application in Programming Challenge 13 so it drops each
student’s lowest score when determining the test score averages and letter grades.

15. Lottery Application

Write a program that simulates a lottery. The program should have an array of five
integers named lottery, and should generate a random number in the range of 0
through 9 for each element in the array. The user should enter five digits which should
be stored in an integer array named user. The program is to compare the correspond-
ing elements in the two arrays and keep a count of the digits that match. For example,
the following shows the lottery array and the user array with sample numbers
stored in each. There are two matching digits (elements 2 and 4).

lottery array:

user array:

The program should display the random numbers stored in the lottery array and the
number of matching digits. If all of the digits match, display a message proclaiming
the user as a grand prize winner.

16. vector Modification

Modify the National Commerce Bank case study presented in Program 7-21 so pin1,
pin2, and pin3 are vectors instead of arrays. You must also modify the testPIN
function to accept a vector instead of an array.

17. Tic-Tac-Toe Game

Write a program that allows two players to play a game of tic-tac-toe. Use a two-
dimensional char array with three rows and three columns as the game board. Each
element of the array should be initialized with an asterisk (*). The program should run a
loop that

• Displays the contents of the board array
• Allows player 1 to select a location on the board for an X. The program should

ask the user to enter the row and column number.
• Allows player 2 to select a location on the board for an O. The program should

ask the user to enter the row and column number.
• Determines whether a player has won, or a tie has occurred. If a player has won,

the program should declare that player the winner and end. If a tie has occurred,
the program should say so and end.

7 4 9 1 3

4 2 9 7 3

448 Chapter 7 Arrays

Player 1 wins when there are three Xs in a row on the game board. The Xs can appear
in a row, in a column, or diagonally across the board. A tie occurs when all of the
locations on the board are full, but there is no winner.

18. 2D Array Operations

Write a program that creates a two-dimensional array initialized with test data. Use
any data type you wish. The program should have the following functions:

• getTotal. This function should accept a two-dimensional array as its argument
and return the total of all the values in the array.

• getAverage. This function should accept a two-dimensional array as its argu-
ment and return the average of all the values in the array.

• getRowTotal. This function should accept a two-dimensional array as its first
argument and an integer as its second argument. The second argument should be
the subscript of a row in the array. The function should return the total of the val-
ues in the specified row.

• getColumnTotal. This function should accept a two-dimensional array as its first
argument and an integer as its second argument. The second argument should be
the subscript of a column in the array. The function should return the total of the
values in the specified column.

• getHighestInRow. This function should accept a two-dimensional array as its
first argument and an integer as its second argument. The second argument
should be the subscript of a row in the array. The function should return the high-
est value in the specified row of the array.

• getLowestInRow. This function should accept a two-dimensional array as its first
argument and an integer as its second argument. The second argument should be
the subscript of a row in the array. The function should return the lowest value in
the specified row of the array.

Demonstrate each of the functions in this program.

Group Project

19. Theater Seating

This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call the other functions in
the program. The remainder of the functions will be designed by other members
of the team.

• The requirements of the program should be analyzed so each student is given
about the same work load.

• The parameters and return types of each function should be decided in advance.
• The program can be implemented as a multi-file program, or all the functions can

be cut and pasted into the main file.

Here is the assignment: Write a program that can be used by a small theater to sell
tickets for performances. The theater’s auditorium has 15 rows of seats, with 30 seats
in each row. The program should display a screen that shows which seats are avail-
able and which are taken. For example, the following screen shows a chart depicting

Review Questions and Exercises 449

each seat in the theater. Seats that are taken are represented by an * symbol, and seats
that are available are represented by a # symbol:

Seats
123456789012345678901234567890

Row 1 ***###***###*########*****####
Row 2 ####*************####*******##
Row 3 **###**********########****###
Row 4 **######**************##******
Row 5 ********#####*********########
Row 6 ##############************####
Row 7 #######************###########
Row 8 ************##****############
Row 9 #########*****############****
Row 10 #####*************############
Row 11 #**********#################**
Row 12 #############********########*
Row 13 ###***********########**######
Row 14 ##############################
Row 15 ##############################

Here is a list of tasks this program must perform:

• When the program begins, it should ask the user to enter the seat prices for each
row. The prices can be stored in a separate array. (Alternatively, the prices may
be read from a file.)

• Once the prices are entered, the program should display a seating chart similar to
the one shown above. The user may enter the row and seat numbers for tickets
being sold. Every time a ticket or group of tickets is purchased, the program
should display the total ticket prices and update the seating chart.

• The program should keep a total of all ticket sales. The user should be given an
option of viewing this amount.

• The program should also give the user an option to see a list of how many seats
have been sold, how many seats are available in each row, and how many seats
are available in the entire auditorium.

Input Validation: When tickets are being sold, do not accept row or seat numbers that
do not exist. When someone requests a particular seat, the program should make sure
that seat is available before it is sold.

This page intentionally left blank

451

C
H

A
P

T
E

R

8 Searching and Sorting
Arrays

8.1
Focus on Software Engineering:
Introduction to Search Algorithms

CONCEPT: A search algorithm is a method of locating a specific item in a larger collection
of data. This section discusses two algorithms for searching the contents of
an array.

It’s very common for programs not only to store and process data stored in arrays, but to
search arrays for specific items. This section will show you two methods of searching an
array: the linear search and the binary search. Each has its advantages and disadvantages.

The Linear Search
The linear search is a very simple algorithm. Sometimes called a sequential search, it uses
a loop to sequentially step through an array, starting with the first element. It compares
each element with the value being searched for, and stops when either the value is found
or the end of the array is encountered. If the value being searched for is not in the array,
the algorithm will unsuccessfully search to the end of the array.

TOPICS

8.1 Focus on Software Engineering:
Introduction to Search Algorithms

8.2 Focus on Problem Solving
and Program Design: A Case Study

8.3 Focus on Software Engineering:
Introduction to Sorting Algorithms

8.4 Focus on Problem Solving
and Program Design: A Case Study

8.5 If You Plan to Continue in
Computer Science: Sorting
and Searching vectors

452 Chapter 8 Searching and Sorting Arrays

Here is the pseudocode for a function that performs the linear search:

Set found to false.
Set position to -1.
Set index to 0.
While found is false and index < number of elements
 If list[index] is equal to search value
 found = true.
 position = index.
 End If
 Add 1 to index.
End While.
Return position.

The function searchList shown below is an example of C++ code used to perform a lin-
ear search on an integer array. The array list, which has a maximum of numElems ele-
ments, is searched for an occurrence of the number stored in value. If the number is
found, its array subscript is returned. Otherwise, –1 is returned indicating the value did
not appear in the array.

int searchList(int list[], int numElems, int value)
{
 int index = 0; // Used as a subscript to search array
 int position = -1; // To record position of search value
 bool found = false; // Flag to indicate if the value was found

 while (index < numElems && !found)
 {
 if (list[index] == value) // If the value is found
 {
 found = true; // Set the flag
 position = index; // Record the value's subscript
 }
 index++; // Go to the next element
 }
 return position; // Return the position, or -1
}

Program 8-1 is a complete program that uses the searchList function. It searches the
five-element array tests to find a score of 100.

NOTE: The reason –1 is returned when the search value is not found in the array is
because –1 is not a valid subscript.

Program 8-1

 1 // This program demonstrates the searchList function, which
 2 // performs a linear search on an integer array.
 3 #include <iostream>
 4 using namespace std;

 5

8.1 Focus on Software Engineering: Introduction to Search Algorithms 453

 6 // Function prototype
 7 int searchList(int [], int, int);
 8 const int SIZE = 5;
 9
10 int main()
11 {
12 int tests[SIZE] = {87, 75, 98, 100, 82};
13 int results;
14
15 // Search the array for 100.
16 results = searchList(tests, SIZE, 100);
17
18 // If searchList returned -1, then 100 was not found.
19 if (results == -1)
20 cout << "You did not earn 100 points on any test\n";
21 else
22 {
23 // Otherwise results contains the subscript of
24 // the first 100 found in the array.
25 cout << "You earned 100 points on test ";
26 cout << (results + 1) << endl;
27 }
28 return 0;
29 }
30
31 //***
32 // The searchList function performs a linear search on an *
33 // integer array. The array list, which has a maximum of numElems *
34 // elements, is searched for the number stored in value. If the *
35 // number is found, its array subscript is returned. Otherwise, *
36 // -1 is returned indicating the value was not in the array. *
37 //***
38
39 int searchList(int list[], int numElems, int value)
40 {
41 int index = 0; // Used as a subscript to search array
42 int position = -1; // To record position of search value
43 bool found = false; // Flag to indicate if the value was found
44
45 while (index < numElems && !found)
46 {
47 if (list[index] == value) // If the value is found
48 {
49 found = true; // Set the flag
50 position = index; // Record the value's subscript
51 }
52 index++; // Go to the next element
53 }
54 return position; // Return the position, or -1
55 }

Program Output
You earned 100 points on test 4

454 Chapter 8 Searching and Sorting Arrays

Inefficiency of the Linear Search
The advantage of the linear search is its simplicity. It is very easy to understand and imple-
ment. Furthermore, it doesn’t require the data in the array to be stored in any particular
order. Its disadvantage, however, is its inefficiency. If the array being searched contains
20,000 elements, the algorithm will have to look at all 20,000 elements in order to find a
value stored in the last element (so the algorithm actually reads an element of the array
20,000 times).

In an average case, an item is just as likely to be found near the beginning of the array as
near the end. Typically, for an array of N items, the linear search will locate an item in
N/2 attempts. If an array has 50,000 elements, the linear search will make a comparison
with 25,000 of them in a typical case. This is assuming, of course, that the search item is
consistently found in the array. (N/2 is the average number of comparisons. The maxi-
mum number of comparisons is always N.)

When the linear search fails to locate an item, it must make a comparison with every ele-
ment in the array. As the number of failed search attempts increases, so does the average
number of comparisons. Obviously, the linear search should not be used on large arrays if
the speed is important.

The Binary Search
The binary search is a clever algorithm that is much more efficient than the linear search.
Its only requirement is that the values in the array be sorted in order. Instead of testing the
array’s first element, this algorithm starts with the element in the middle. If that element
happens to contain the desired value, then the search is over. Otherwise, the value in the
middle element is either greater than or less than the value being searched for. If it is
greater, then the desired value (if it is in the list) will be found somewhere in the first half
of the array. If it is less, then the desired value (again, if it is in the list) will be found some-
where in the last half of the array. In either case, half of the array’s elements have been
eliminated from further searching.

If the desired value wasn’t found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm immediately tests its middle element. If the desired
value isn’t found there, the search is narrowed to the quarter of the array that resides
before or after that element. This process continues until either the value being searched
for is found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array:

Set first index to 0.
Set last index to the last subscript in the array.
Set found to false.
Set position to -1.
While found is not true and first is less than or equal to last
 Set middle to the subscript halfway between array[first]
 and array[last].
 If array[middle] equals the desired value

The Binary
Search

8.1 Focus on Software Engineering: Introduction to Search Algorithms 455

 Set found to true.
 Set position to middle.
 Else If array[middle] is greater than the desired value
 Set last to middle - 1.
 Else
 Set first to middle + 1.
 End If.
End While.
Return position.

This algorithm uses three index variables: first, last, and middle. The first and last
variables mark the boundaries of the portion of the array currently being searched. They
are initialized with the subscripts of the array’s first and last elements. The subscript of the
element halfway between first and last is calculated and stored in the middle variable.
If the element in the middle of the array does not contain the search value, the first or
last variables are adjusted so that only the top or bottom half of the array is searched
during the next iteration. This cuts the portion of the array being searched in half each
time the loop fails to locate the search value.

The function binarySearch shown in the following example is used to perform a binary
search on an integer array. The first parameter, array, which has a maximum of
numElems elements, is searched for an occurrence of the number stored in value. If the
number is found, its array subscript is returned. Otherwise, –1 is returned indicating the
value did not appear in the array.

int binarySearch(int array[], int numElems, int value)
{
 int first = 0, // First array element
 last = numElems - 1, // Last array element
 middle, // Midpoint of search
 position = -1; // Position of search value
 bool found = false; // Flag

 while (!found && first <= last)
 {
 middle = (first + last) / 2; // Calculate midpoint
 if (array[middle] == value) // If value is found at mid
 {
 found = true;
 position = middle;
 }
 else if (array[middle] > value) // If value is in lower half
 last = middle - 1;
 else
 first = middle + 1; // If value is in upper half
 }
 return position;
}

Program 8-2 is a complete program using the binarySearch function. It searches an
array of employee ID numbers for a specific value.

456 Chapter 8 Searching and Sorting Arrays

Program 8-2

 1 // This program demonstrates the binarySearch function, which
 2 // performs a binary search on an integer array.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototype
 7 int binarySearch(int [], int, int);
 8 const int SIZE = 20;
 9
10 int main()
11 {
12 // Array with employee IDs sorted in ascending order.
13 int idNums[SIZE] = {101, 142, 147, 189, 199, 207, 222,
14 234, 289, 296, 310, 319, 388, 394,
15 417, 429, 447, 521, 536, 600};
16 int results; // To hold the search results
17 int empID; // To hold an employee ID
18
19 // Get an employee ID to search for.
20 cout << "Enter the employee ID you wish to search for: ";
21 cin >> empID;
22
23 // Search for the ID.
24 results = binarySearch(idNums, SIZE, empID);
25
26 // If results contains -1 the ID was not found.
27 if (results == -1)
28 cout << "That number does not exist in the array.\n";
29 else
30 {
31 // Otherwise results contains the subscript of
32 // the specified employee ID in the array.
33 cout << "That ID is found at element " << results;
34 cout << " in the array.\n";
35 }
36 return 0;
37 }
38
39 //***
40 // The binarySearch function performs a binary search on an *
41 // integer array. array, which has a maximum of size elements, *
42 // is searched for the number stored in value. If the number is *
43 // found, its array subscript is returned. Otherwise, -1 is *
44 // returned indicating the value was not in the array. *
45 //***
46

8.1 Focus on Software Engineering: Introduction to Search Algorithms 457

The Efficiency of the Binary Search
Obviously, the binary search is much more efficient than the linear search. Every time it
makes a comparison and fails to find the desired item, it eliminates half of the remaining
portion of the array that must be searched. For example, consider an array with 1,000 ele-
ments. If the binary search fails to find an item on the first attempt, the number of ele-
ments that remains to be searched is 500. If the item is not found on the second attempt,
the number of elements that remains to be searched is 250. This process continues until
the binary search has either located the desired item or determined that it is not in the
array. With 1,000 elements, this takes no more than 10 comparisons. (Compare this to the
linear search, which would make an average of 500 comparisons!)

Powers of 2 are used to calculate the maximum number of comparisons the binary search
will make on an array of any size. (A power of 2 is 2 raised to the power of some number.)
Simply find the smallest power of 2 that is greater than or equal to the number of elements
in the array. For example, a maximum of 16 comparisons will be made on an array of
50,000 elements (216 = 65,536), and a maximum of 20 comparisons will be made on an
array of 1,000,000 elements (220 = 1,048,576).

47 int binarySearch(int array[], int size, int value)
48 {
49 int first = 0, // First array element
50 last = size - 1, // Last array element
51 middle, // Midpoint of search
52 position = -1; // Position of search value
53 bool found = false; // Flag
54
55 while (!found && first <= last)
56 {
57 middle = (first + last) / 2; // Calculate midpoint
58 if (array[middle] == value) // If value is found at mid
59 {
60 found = true;
61 position = middle;
62 }
63 else if (array[middle] > value) // If value is in lower half
64 last = middle - 1;
65 else
66 first = middle + 1; // If value is in upper half
67 }
68 return position;
69 }

Program Output with Example Input Shown in Bold
Enter the employee ID you wish to search for: 199 [Enter]
That ID is found at element 4 in the array.

WARNING! Notice that the array in Program 8-2 is initialized with its values already
sorted in ascending order. The binary search algorithm will not work properly unless the
values in the array are sorted.

458 Chapter 8 Searching and Sorting Arrays

8.2 Focus on Problem Solving and Program Design:
A Case Study

The Demetris Leadership Center (DLC, Inc.) publishes the books, DVDs, and audio CDs
listed in Table 8-1.

The manager of the Telemarketing Group has asked you to write a program that will help
order-entry operators look up product prices. The program should prompt the user to enter
a product number, and will then display the title, description, and price of the product.

Variables
Table 8-2 lists the variables needed:

Table 8-1

Product Title
Product
Description

Product
Number Unit Price

Six Steps to Leadership Book 914 $12.95

Six Steps to Leadership Audio CD 915 $14.95

The Road to Excellence DVD 916 $18.95

Seven Lessons of Quality Book 917 $16.95

Seven Lessons of Quality Audio CD 918 $21.95

Seven Lessons of Quality DVD 919 $31.95

Teams Are Made, Not Born Book 920 $14.95

Leadership for the Future Book 921 $14.95

Leadership for the Future Audio CD 922 $16.95

Table 8-2

Variable Description
NUM_PRODS A constant integer initialized with the number of products the Demetris Leadership

Center sells. This value will be used in the definition of the program’s array.
TITLE_SIZE A constant integer initialized with the maximum size of a product’s title.
DESC_SIZE A constant integer initialized with the maximum size of a product’s description.
MIN_PRODNUM A constant integer initialized with the lowest product number.
MAX_PRODNUM A constant integer initialized with the highest product number.
id Array of integers. Holds each product’s number.
title Array of strings, initialized with the titles of products.
description Array of strings, initialized with the descriptions of each product.
prices Array of doubles. Holds each product’s price.

8.2 Focus on Problem Solving and Program Design: A Case Study 459

Modules
The program will consist of the functions listed in Table 8-3.

Function main
Function main contains the variable definitions and calls the other functions. Here is its
pseudocode:

do
 Call getProdNum.
 Call binarySearch.
 If binarySearch returned -1
 Inform the user that the product number was not found.
 else
 Call displayProd.
 End If.
 Ask the user if the program should repeat.
While the user wants to repeat the program.

Here is its actual C++ code.

do
{
 // Get the desired product number.
 prodNum = getProdNum();

 // Search for the product number.
 index = binarySearch(id, NUM_PRODS, prodNum);

 // Display the results of the search.
 if (index == -1)
 cout << "That product number was not found.\n";
 else
 displayProd(title, description, prices, index);

 // Does the user want to do this again?
 cout << "Would you like to look up another product? (y/n) ";
 cin >> again;
} while (again == 'y' || again == 'Y');

Table 8-3

Function Description
main The program’s main function. It calls the program’s other functions.
getProdNum Prompts the user to enter a product number. The function validates input and

rejects any value outside the range of correct product numbers.
binarySearch A standard binary search routine. Searches an array for a specified value. If the

value is found, its subscript is returned. If the value is not found, –1 is returned.
displayProd Uses a common subscript into the title, description, and prices arrays to

display the title, description, and price of a product.

460 Chapter 8 Searching and Sorting Arrays

The named constants NUM_PRODS, TITLE_SIZE, and DESC_SIZE are defined globally and
initialized to the values 9, 26, and 12 respectively. The arrays id, title, description,
and prices will already be initialized with data.

The getProdNum Function
The getProdNum function prompts the user to enter a product number. It tests the value to
ensure it is in the range of 914–922 (which are the valid product numbers). If an invalid
value is entered, it is rejected and the user is prompted again. When a valid product num-
ber is entered, the function returns it. The pseudocode is shown below.

Display a prompt to enter a product number.
Read prodNum.
While prodNum is invalid
 Display an error message.
 Read prodNum.
End While.
Return prodNum.

Here is the actual C++ code.

int getProdNum()
{
 int prodNum;

 cout << "Enter the item's product number: ";
 cin >> prodNum;
 // Validate input.
 while (prodNum < MIN_PRODNUM || prodNum > MAX_PRODNUM)
 {
 cout << "Enter a number in the range of " << MIN_PRODNUM;
 cout <<" through " << MAX_PRODNUM << ".\n";
 cin >> prodNum;
 }
 return prodNum;
}

The binarySearch Function
The binarySearch function is identical to the function discussed earlier in this chapter.

The displayProd Function
The displayProd function has parameter variables named title, desc, price, and
index. These accept as arguments (respectively) the title, description, and price
arrays, and a subscript value. The function displays the data stored in each array at the
subscript passed into index. Here is the C++ code.

8.2 Focus on Problem Solving and Program Design: A Case Study 461

void displayProd(char title[][TITLE_SIZE], char desc[][DESC_SIZE],
 double price[], int index)
{
 cout << "Title: " << title[index] << endl;
 cout << "Description: " << desc[index] << endl;
 cout << "Price: $" << price[index] << endl;
}

The Entire Program
Program 8-3 shows the entire program’s source code.

Program 8-3

 1 // Demetris Leadership Center (DLC) product lookup program
 2 // This program allows the user to enter a product number
 3 // and then displays the title, description, and price of
 4 // that product.
 5 #include <iostream>
 6 using namespace std;
 7
 8 const int NUM_PRODS = 9; // The number of products produced
 9 const int TITLE_SIZE = 26; // The max size of a title string
 10 const int DESC_SIZE = 12; // The max size of a desc. string
 11 const int MIN_PRODNUM = 914; // The lowest product number
 12 const int MAX_PRODNUM = 922; // The highest product number
 13
 14 // Function prototypes
 15 int getProdNum();
 16 int binarySearch(int [], int, int);
 17 void displayProd(char [][TITLE_SIZE], char [][DESC_SIZE], double [], int);
 18
 19 int main()
 20 {
 21 // Array of product IDs
 22 int id[NUM_PRODS] = {914, 915, 916, 917, 918, 919, 920,
 23 921, 922};
 24
 25 // Array of product titles
 26 char title[NUM_PRODS][TITLE_SIZE] =
 27 { "Six Steps to Leadership",
 28 "Six Steps to Leadership",
 29 "The Road to Excellence",
 30 "Seven Lessons of Quality",
 31 "Seven Lessons of Quality",
 32 "Seven Lessons of Quality",
 33 "Teams Are Made, Not Born",
 34 "Leadership for the Future",
 35 "Leadership for the Future"
 36 };
 37

(program continues)

462 Chapter 8 Searching and Sorting Arrays

 38 // Array of product descriptions
 39 char description[NUM_PRODS][DESC_SIZE] =
 40 { "Book", "Audio CD", "DVD",
 41 "Book", "Audio CD", "DVD",
 42 "Book", "Book", "Audio CD"
 43 };
 44
 45 // Array of product prices
 46 double prices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95, 21.95,
 47 31.95, 14.95, 14.95, 16.95};
 48
 49 int prodNum; // To hold a product number
 50 int index; // To hold search results
 51 char again; // To hold a Y or N answer
 52
 53 do
 54 {
 55 // Get the desired product number.
 56 prodNum = getProdNum();
 57
 58 // Search for the product number.
 59 index = binarySearch(id, NUM_PRODS, prodNum);
 60
 61 // Display the results of the search.
 62 if (index == -1)
 63 cout << "That product number was not found.\n";
 64 else
 65 displayProd(title, description, prices, index);
 66
 67 // Does the user want to do this again?
 68 cout << "Would you like to look up another product? (y/n) ";
 69 cin >> again;
 70 } while (again == 'y' || again == 'Y');
 71 return 0;
 72 }
 73
 74 //***
 75 // Definition of getProdNum function *
 76 // The getProdNum function asks the user to enter a *
 77 // product number. The input is validated, and when *
 78 // a valid number is entered, it is returned. *
 79 //***
 80
 81 int getProdNum()
 82 {
 83 int prodNum; // Product number
 84
 85 cout << "Enter the item's product number: ";
 86 cin >> prodNum;

Program 8-3 (continued)

8.2 Focus on Problem Solving and Program Design: A Case Study 463

 87 // Validate input
 88 while (prodNum < MIN_PRODNUM || prodNum > MAX_PRODNUM)
 89 {
 90 cout << "Enter a number in the range of " << MIN_PRODNUM;
 91 cout <<" through " << MAX_PRODNUM << ".\n";
 92 cin >> prodNum;
 93 }
 94 return prodNum;
 95 }
 96
 97 //***
 98 // Definition of binarySearch function *
 99 // The binarySearch function performs a binary search on an *
100 // integer array. array, which has a maximum of numElems *
101 // elements, is searched for the number stored in value. If the *
102 // number is found, its array subscript is returned. Otherwise, *
103 // -1 is returned indicating the value was not in the array. *
104 //***
105
106 int binarySearch(int array[], int numElems, int value)
107 {
108 int first = 0, // First array element
109 last = numElems - 1, // Last array element
110 middle, // Midpoint of search
111 position = -1; // Position of search value
112 bool found = false; // Flag
113
114 while (!found && first <= last)
115 {
116 middle = (first + last) / 2; // Calculate midpoint
117 if (array[middle] == value) // If value is found at mid
118 {
119 found = true;
120 position = middle;
121 }
122 else if (array[middle] > value) // If value is in lower half
123 last = middle - 1;
124 else
125 first = middle + 1; // If value is in upper half
126 }
127 return position;
128 }
129
130 //**
131 // The displayProd function accepts three arrays and an int. *
132 // The arrays parameters are expected to hold the title, *
133 // description, and prices arrays defined in main. The *
134 // ndx parameter holds a subscript. This function displays *
135 // the information in each array contained at the subscript. *
136 //**
137

(program continues)

464 Chapter 8 Searching and Sorting Arrays

Checkpoint
8.1 Describe the difference between the linear search and the binary search.

8.2 On average, with an array of 20,000 elements, how many comparisons will the
linear search perform? (Assume the items being searched for are consistently
found in the array.)

8.3 With an array of 20,000 elements, what is the maximum number of comparisons
the binary search will perform?

8.4 If a linear search is performed on an array, and it is known that some items are
searched for more frequently than others, how can the contents of the array be
reordered to improve the average performance of the search?

8.3 Focus on Software Engineering:
Introduction to Sorting Algorithms

CONCEPT: Sorting algorithms are used to arrange data into some order.

Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to
lowest. Product codes could be sorted so all the products of the same color are stored

Program 8-3 (continued)

138 void displayProd(char title[][TITLE_SIZE], char desc[][DESC_SIZE],
139 double price[], int index)
140 {
141 cout << "Title: " << title[index] << endl;
142 cout << "Description: " << desc[index] << endl;
143 cout << "Price: $" << price[index] << endl;
144 }

Program Output with Example Input Shown in Bold
Enter the item's product number: 916 [Enter]
Title: The Road to Excellence
Description: DVD
Price: $18.95
Would you like to look up another product? (y/n) y [Enter]
Enter the item's product number: 920 [Enter]
Title: Teams Are Made, Not Born
Description: Book
Price: $14.95
Would you like to look up another product? (y/n) n [Enter]

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 465

together. To sort the data in an array, the programmer must use an appropriate sorting
algorithm. A sorting algorithm is a technique for scanning through an array and rearrang-
ing its contents in some specific order. This section will introduce two simple sorting algo-
rithms: the bubble sort and the selection sort.

The Bubble Sort
The bubble sort is an easy way to arrange data in ascending or descending order. If an
array is sorted in ascending order, it means the values in the array are stored from lowest
to highest. If the values are sorted in descending order, they are stored from highest to
lowest. Let’s see how the bubble sort is used in arranging the following array’s elements in
ascending order:

The bubble sort starts by comparing the first two elements in the array. If element 0 is
greater than element 1, they are exchanged. After the exchange, the array shown above
would appear as:

This method is repeated with elements 1 and 2. If element 1 is greater than element 2, they
are exchanged. The array above would then appear as:

Next, elements 2 and 3 are compared. In this array, these two elements are already in the
proper order (element 2 is less than element 3), so no exchange takes place.

As the cycle continues, elements 3 and 4 are compared. Once again, no exchange is neces-
sary because they are already in the proper order.

When elements 4 and 5 are compared, however, an exchange must take place because
element 4 is greater than element 5. The array now appears as:

At this point, the entire array has been scanned, but its contents aren’t quite in the right
order yet. So, the sort starts over again with elements 0 and 1. Because those two are in the
proper order, no exchange takes place. Elements 1 and 2 are compared next, but once again,
no exchange takes place. This continues until elements 3 and 4 are compared. Because ele-
ment 3 is greater than element 4, they are exchanged. The array now appears as

7 2 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 7 3 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 8 1 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

2 3 7 1 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

466 Chapter 8 Searching and Sorting Arrays

By now you should see how the sort will eventually cause the elements to appear in the
correct order. The sort repeatedly passes through the array until no exchanges are made.
Ultimately, the array will appear as

Here is the bubble sort in pseudocode:

Do
 Set swap flag to false.
 For count is set to each subscript in array from 0 through the
 next-to-last subscript
 If array[count] is greater than array[count + 1]
 Swap the contents of array[count] and array[count + 1].
 Set swap flag to true.
 End If.
 End For.
While any elements have been swapped.

The C++ code below implements the bubble sort as a function. The parameter array is an
integer array to be sorted. size contains the number of elements in array.

void sortArray(int array[], int size)
{
 bool swap;
 int temp;

 do
 {
 swap = false;
 for (int count = 0; count < (size - 1); count++)
 {
 if (array[count] > array[count + 1])
 {
 temp = array[count];
 array[count] = array[count + 1];
 array[count + 1] = temp;
 swap = true;
 }
 }
 } while (swap);
}

Inside the function is a for loop nested inside a do-while loop. The for loop sequences
through the entire array, comparing each element with its neighbor, and swapping them if
necessary. Anytime two elements are exchanged, the flag variable swap is set to true.

The for loop must be executed repeatedly until it can sequence through the entire array
without making any exchanges. This is why it is nested inside a do-while loop. The
do-while loop sets swap to false, and then executes the for loop. If swap is set to true
after the for loop has finished, the do-while loop repeats.

1 2 3 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 467

Here is the starting line of the for loop:

for (int count = 0; count < (size - 1); count++)

The variable count holds the array subscript values. It starts at zero and is incremented as
long as it is less than size - 1. The value of size is the number of elements in the array,
and count stops just short of reaching this value because the following line compares each
element with the one after it:

if (array[count] > array[count + 1])

When array[count] is the next-to-last element, it will be compared to the last element. If
the for loop were allowed to increment count past size - 1, the last element in the array
would be compared to a value outside the array.

Let’s look at the if statement in its entirety:

if (array[count] > array[count + 1])
{
 temp = array[count];
 array[count] = array[count + 1];
 array[count + 1] = temp;
 swap = true;
}

If array[count] is greater than array[count + 1], the two elements must be exchanged.
First, the contents of array[count] are copied into the variable temp. Then the contents of
array[count + 1] is copied into array[count]. The exchange is made complete when the
contents of temp (the previous contents of array[count]) are copied to array[count + 1].
Last, the swap flag variable is set to true. This indicates that an exchange has been made.

Program 8-4 demonstrates the bubble sort function in a complete program.

Program 8-4

 1 // This program uses the bubble sort algorithm to sort an
2 // array in ascending order.
3 #include <iostream>
4 using namespace std;
5
6 // Function prototypes
7 void sortArray(int [], int);
8 void showArray(int [], int);
9
10 int main()
11 {
12 // Array of unsorted values
13 int values[6] = {7, 2, 3, 8, 9, 1};
14
15 // Display the values.
16 cout << "The unsorted values are:\n";
17 showArray(values, 6);
18
19 // Sort the values.
20 sortArray(values, 6);

(program continues)

468 Chapter 8 Searching and Sorting Arrays

21
22 // Display them again.
23 cout << "The sorted values are:\n";
24 showArray(values, 6);
25 return 0;
26 }
27
28 //***
29 // Definition of function sortArray *
30 // This function performs an ascending order bubble sort on *
31 // array. size is the number of elements in the array. *
32 //***
33
34 void sortArray(int array[], int size)
35 {
36 bool swap;
37 int temp;
38
39 do
40 {
41 swap = false;
42 for (int count = 0; count < (size - 1); count++)
43 {
44 if (array[count] > array[count + 1])
45 {
46 temp = array[count];
47 array[count] = array[count + 1];
48 array[count + 1] = temp;
49 swap = true;
50 }
51 }
52 } while (swap);
53 }
54
55 //***
56 // Definition of function showArray. *
57 // This function displays the contents of array. size is the *
58 // number of elements. *
59 //***
60
61 void showArray(int array[], int size)
62 {
63 for (int count = 0; count < size; count++)
64 cout << array[count] << " ";
65 cout << endl;
66 }

Program Output
The unsorted values are:
7 2 3 8 9 1
The sorted values are:
1 2 3 7 8 9

Program 8-4 (continued)

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 469

The Selection Sort
The bubble sort is inefficient for large arrays because items only move by one element at a
time. The selection sort, however, usually performs fewer exchanges because it moves
items immediately to their final position in the array. It works like this: The smallest value
in the array is located and moved to element 0. Then the next smallest value is located and
moved to element 1. This process continues until all of the elements have been placed in
their proper order.

Let’s see how the selection sort works when arranging the elements of the following array:

The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. The contents of this element are then swapped with the contents of element
0. In this example, the 1 stored in element 5 is swapped with the 5 stored in element 0.
After the exchange, the array would appear as

The algorithm then repeats the process, but because element 0 already contains the small-
est value in the array, it can be left out of the procedure. This time, the algorithm begins
the scan at element 1. In this example, the contents of element 2 are exchanged with those
of element 1. The array would then appear as

Once again the process is repeated, but this time the scan begins at element 2. The algo-
rithm will find that element 5 contains the next smallest value. This element’s contents are
exchanged with those of element 2, causing the array to appear as

Next, the scanning begins at element 3. Its contents are exchanged with those of element 5,
causing the array to appear as

At this point there are only two elements left to sort. The algorithm finds that the value in
element 5 is smaller than that of element 4, so the two are swapped. This puts the array in
its final arrangement:

5 7 2 8 9 1

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 7 2 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 7 8 9 5

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 8 9 7

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 7 9 8

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

1 2 5 7 8 9

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5

The Selection
Sort

470 Chapter 8 Searching and Sorting Arrays

Here is the selection sort algorithm in pseudocode:

For startScan is set to each subscript in array from 0 through the
 next-to-last subscript
 Set index variable to startScan.
 Set minIndex variable to startScan.
 Set minValue variable to array[startScan].

 For index is set to each subscript in array from (startScan + 1)
 through the last subscript
 If array[index] is less than minValue
 Set minValue to array[index].
 Set minIndex to index.
 End If.
 End For.
 Set array[minIndex] to array[startScan].
 Set array[startScan] to minValue.
End For.

The following C++ code implements the selection sort in a function. It accepts two argu-
ments: array and size. array is an integer array and size is the number of elements in
the array. The function uses the selection sort to arrange the values in the array in ascend-
ing order.

void selectionSort(int array[], int size)
{
 int startScan, minIndex, minValue;

 for (startScan = 0; startScan < (size - 1); startScan++)
 {
 minIndex = startScan;
 minValue = array[startScan];
 for(int index = startScan + 1; index < size; index++)
 {
 if (array[index] < minValue)
 {
 minValue = array[index];
 minIndex = index;
 }
 }
 array[minIndex] = array[startScan];
 array[startScan] = minValue;
 }
}

Inside the function are two for loops, one nested inside the other. The inner loop
sequences through the array, starting at array[startScan + 1], searching for the ele-
ment with the smallest value. When the element is found, its subscript is stored in the vari-
able minIndex and its value is stored in minValue. The outer loop then exchanges the
contents of this element with array[startScan] and increments startScan. This proce-
dure repeats until the contents of every element have been moved to their proper location.

Program 8-5 demonstrates the selection sort function in a complete program.

8.3 Focus on Software Engineering: Introduction to Sorting Algorithms 471

Program 8-5

1 // This program uses the selection sort algorithm to sort an
 2 // array in ascending order.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototypes
 7 void selectionSort(int [], int);
 8 void showArray(int [], int);
 9
10 int main()
11 {
12 // Define an array with unsorted values
13 const int SIZE = 6;
14 int values[SIZE] = {5, 7, 2, 8, 9, 1};
15
16 // Display the values.
17 cout << "The unsorted values are\n";
18 showArray(values, SIZE);
19
20 // Sort the values.
21 selectionSort(values, SIZE);
22
23 // Display the values again.
24 cout << "The sorted values are\n";
25 showArray(values, SIZE);
26 return 0;
27 }
28
29 //**
30 // Definition of function selectionSort. *
31 // This function performs an ascending order selection sort on *
32 // array. size is the number of elements in the array. *
33 //**
34
35 void selectionSort(int array[], int size)
36 {
37 int startScan, minIndex, minValue;
38
39 for (startScan = 0; startScan < (size - 1); startScan++)
40 {
41 minIndex = startScan;
42 minValue = array[startScan];
43 for(int index = startScan + 1; index < size; index++)
44 {
45 if (array[index] < minValue)
46 {
47 minValue = array[index];
48 minIndex = index;
49 }
50 }

(program continues)

472 Chapter 8 Searching and Sorting Arrays

8.4
Focus on Problem Solving and Program Design:
A Case Study

Like the previous case study, this is a program developed for the Demetris Leadership
Center. Recall that DLC, Inc., publishes books, DVDs, and audio CDs. (See Table 8-1 for
a complete list of products, with title, description, product number, and price.) Table 8-4
shows the number of units of each product sold during the past six months.

51 array[minIndex] = array[startScan];
52 array[startScan] = minValue;
53 }
54 }
55
56 //**
57 // Definition of function showArray. *
58 // This function displays the contents of array. size is the *
59 // number of elements. *
60 //**
61
62 void showArray(int array[], int size)
63 {
64 for (int count = 0; count < size; count++)
65 cout << array[count] << " ";
66 cout << endl;
67 }

Program Output
The unsorted values are
5 7 2 8 9 1
The sorted values are
1 2 5 7 8 9

Table 8-4

Product Number Units Sold

914 842

915 416

916 127

917 514

918 437

919 269

920 97

921 492

922 212

Program 8-5 (continued)

8.4 Focus on Problem Solving and Program Design: A Case Study 473

The vice president of sales has asked you to write a sales reporting program that displays
the following information:

• A list of the products in the order of their sales dollars (NOT units sold), from
highest to lowest

• The total number of all units sold
• The total sales for the six-month period

Variables
Table 8-5 lists the variables needed:

The elements of the four arrays, prodNum, units, prices, and sales will correspond
with each other. For example, the product whose number is stored in prodNum[2] will
have sold the number of units stored in units[2]. The sales amount for the product will
be stored in sales[2].

Modules
The program will consist of the functions listed in Table 8-6.

Table 8-5

Variable Description
NUM_PRODS A constant integer initialized with the number of products that DLC, Inc., sells. This

value will be used in the definition of the program’s array.
prodNum Array of ints. Holds each product’s number.
units Array of ints. Holds each product’s number of units sold.
prices Array of doubles. Holds each product’s price.
sales Array of doubles. Holds the computed sales amounts (in dollars) of each product.

Table 8-6

Function Description
main The program’s main function. It calls the program’s other functions.
calcSales Calculates each product’s sales.
dualSort Sorts the sales array so the elements are ordered from highest to lowest. The

prodNum array is ordered so the product numbers correspond with the correct sales
figures in the sorted sales array.

showOrder Displays a list of the product numbers and sales amounts from the sorted sales
and prodNum arrays.

showTotals Displays the total number of units sold and the total sales amount for the period.

474 Chapter 8 Searching and Sorting Arrays

Function main
Function main is very simple. It contains the variable definitions and calls the other func-
tions. Here is the pseudocode for its executable statements:

Call calcSales.
Call dualSort.
Set display mode to fixed point output with two decimal places of
 precision.
Call showOrder.
Call showTotals.

Here is its actual C++ code:

// Calculate each product's sales.
calcSales(units, prices, sales, NUM_PRODS);

// Sort the elements in the sales array in descending
// order and shuffle the ID numbers in the id array to
// keep them in parallel.
dualSort(id, sales, NUM_PRODS);

// Set the numeric output formatting.
cout << setprecision(2) << fixed << showpoint;

// Display the products and sales amounts.
showOrder(sales, id, NUM_PRODS);

// Display total units sold and total sales.
showTotals(sales, units, NUM_PRODS);

The named constant NUM_PRODS will be defined globally and initialized to the value 9.

The arrays id, units, and prices will already be initialized with data. (It will be left as
an exercise for you to modify this program so the user may enter these values.)

The calcSales Function
The calcSales function multiplies each product’s units sold by its price. The resulting
amount is stored in the sales array. Here is the function’s pseudocode:

For index is set to each subscript in the arrays from 0 through the
 last subscript.
 Set sales[index] to units[index] times prices[index].
End For.

And here is the function’s actual C++ code:

void calcSales(int units[], double prices[], double sales[], int num)
{
 for (int index = 0; index < num; index++)
 sales[index] = units[index] * prices[index];
}

8.4 Focus on Problem Solving and Program Design: A Case Study 475

The dualSort Function
The dualSort function is a modified version of the selection sort algorithm shown in Pro-
gram 8-5. The dualSort function accepts two arrays as arguments: the sales array and
the id array. The function actually performs the selection sort on the sales array. When
the function moves an element in the sales array, however, it also moves the correspond-
ing element in the id array. This is to ensure that the product numbers in the id array still
have subscripts that match their sales figures in the sales array.

The dualSort function is also different in another way: It sorts the array in descending
order.

Here is the pseudocode for the dualSort function:

For startScan variable is set to each subscript in array from 0 through
the next-to-last subscript
 Set index variable to startScan.
 Set maxIndex variable to startScan.
 Set tempId variable to id[startScan].
 Set maxValue variable to sales[startScan].
 For index variable is set to each subscript in array from
 (startScan + 1) through the last subscript
 If sales[index] is greater than maxValue
 Set maxValue to sales[index].
 Set tempId to tempId[index].
 Set maxIndex to index.
 End If.
 End For.
 Set sales[maxIndex] to sales[startScan].
 Set id[maxIndex] = id[startScan].
 Set sales[startScan] to maxValue.
 Set id[startScan] = tempId.
End For.

Here is the actual C++ code for the dualSort function:

void dualSort(int id[], double sales[], int size)
{
 int startScan, maxIndex, tempId;
 double maxValue;

 for (startScan = 0; startScan < (size - 1); startScan++)
 {
 maxIndex = startScan;
 maxValue = sales[startScan];
 tempId = id[startScan];
 for(int index = startScan + 1; index < size; index++)
 {
 if (sales[index] > maxValue)
 {
 maxValue = sales[index];
 tempId = id[index];
 maxIndex = index;
 }
 }

476 Chapter 8 Searching and Sorting Arrays

 sales[maxIndex] = sales[startScan];
 id[maxIndex] = id[startScan];
 sales[startScan] = maxValue;
 id[startScan] = tempId;
 }
}

The showOrder Function
The showOrder function displays a heading and the sorted list of product numbers and
their sales amounts. It accepts the id and sales arrays as arguments. Here is its
pseudocode:

Display heading.
For index variable is set to each subscript of the arrays from 0
through the last subscript
 Display id[index].
 Display sales[index].
End For.

Here is the function’s actual C++ code:

void showOrder(double sales[], int id[], int num)
{
 cout << "Product Number\tSales\n";

 cout << "----------------------------------\n";
 for (int index = 0; index < num; index++)
 {
 cout << id[index] << "\t\t$";
 cout << setw(8) << sales[index] << endl;
 }
 cout << endl;
}

The showTotals Function
The showTotals function displays the total number of units of all products sold and the
total sales for the period. It accepts the units and sales arrays as arguments. Here is its
pseudocode:

Set totalUnits variable to 0.
Set totalSales variable to 0.0.
For index variable is set to each subscript in the arrays from 0
through the last subscript
 Add units[index] to totalUnits[index].
 Add sales[index] to totalSales.

NOTE: Once the dualSort function is called, the id and sales arrays are no longer
synchronized with the units and prices arrays. Because this program doesn’t use units
and prices together with id and sales after this point, it will not be noticed in the final
output. However, it is never a good programming practice to sort parallel arrays in such a
way that they are out of synchronization. It will be left as an exercise for you to modify
the program so all the arrays are synchronized and used in the final output of the program.

8.4 Focus on Problem Solving and Program Design: A Case Study 477

End For.
Display totalUnits with appropriate heading.
Display totalSales with appropriate heading.

Here is the function’s actual C++ code:

void showTotals(double sales[], int units[], int num)
{
 int totalUnits = 0;
 double totalSales = 0.0;
 for (int index = 0; index < num; index++)
 {
 totalUnits += units[index];
 totalSales += sales[index];
 }
 cout << "Total Units Sold: " << totalUnits << endl;
 cout << "Total Sales: $" << totalSales << endl;
}

The Entire Program
Program 8-6 shows the entire program’s source code.

Program 8-6

 1 // This program produces a sales report for DLC, Inc.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 // Function prototypes
 7 void calcSales(int [], double [], double [], int);
 8 void showOrder(double [], int [], int);
 9 void dualSort(int [], double [], int);
 10 void showTotals(double [], int [], int);
 11
 12 // NUM_PRODS is the number of products produced.
 13 const int NUM_PRODS = 9;
 14
 15 int main()
 16 {
 17 // Array with product ID numbers
 18 int id[NUM_PRODS] = {914, 915, 916, 917, 918, 919, 920,
 19 921, 922};
 20
 21 // Array with number of units sold for each product
 22 int units[NUM_PRODS] = {842, 416, 127, 514, 437, 269, 97,
 23 492, 212};
 24
 25 // Array with product prices
 26 double prices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95, 21.95,
 27 31.95, 14.95, 14.95, 16.95};
 28

(program continues)

478 Chapter 8 Searching and Sorting Arrays

 29 // Array to hold the computed sales amounts
 30 double sales[NUM_PRODS];
 31
 32 // Calculate each product's sales.
 33 calcSales(units, prices, sales, NUM_PRODS);
 34
 35 // Sort the elements in the sales array in descending
 36 // order and shuffle the ID numbers in the id array to
 37 // keep them in parallel.
 38 dualSort(id, sales, NUM_PRODS);
 39
 40 // Set the numeric output formatting.
 41 cout << setprecision(2) << fixed << showpoint;
 42
 43 // Display the products and sales amounts.
 44 showOrder(sales, id, NUM_PRODS);
 45
 46 // Display total units sold and total sales.
 47 showTotals(sales, units, NUM_PRODS);
 48 return 0;
 49 }
 50
 51 //**
 52 // Definition of calcSales. Accepts units, prices, and sales *
 53 // arrays as arguments. The size of these arrays is passed *
 54 // into the num parameter. This function calculates each *
 55 // product's sales by multiplying its units sold by each unit's *
 56 // price. The result is stored in the sales array. *
 57 //**
 58
 59 void calcSales(int units[], double prices[], double sales[], int num)
 60 {
 61 for (int index = 0; index < num; index++)
 62 sales[index] = units[index] * prices[index];
 63 }
 64
 65 //***
 66 // Definition of function dualSort. Accepts id and sales arrays *
 67 // as arguments. The size of these arrays is passed into size. *
 68 // This function performs a descending order selection sort on *
 69 // the sales array. The elements of the id array are exchanged *
 70 // identically as those of the sales array. size is the number *
 71 // of elements in each array. *
 72 //***
 73
 74 void dualSort(int id[], double sales[], int size)
 75 {
 76 int startScan, maxIndex, tempid;
 77 double maxValue;
 78

Program 8-6 (continued)

8.4 Focus on Problem Solving and Program Design: A Case Study 479

 79 for (startScan = 0; startScan < (size - 1); startScan++)
 80 {
 81 maxIndex = startScan;
 82 maxValue = sales[startScan];
 83 tempid = id[startScan];
 84 for(int index = startScan + 1; index < size; index++)
 85 {
 86 if (sales[index] > maxValue)
 87 {
 88 maxValue = sales[index];
 89 tempid = id[index];
 90 maxIndex = index;
 91 }
 92 }
 93 sales[maxIndex] = sales[startScan];
 94 id[maxIndex] = id[startScan];
 95 sales[startScan] = maxValue;
 96 id[startScan] = tempid;
 97 }
 98 }
 99
100 //**
101 // Definition of showOrder function. Accepts sales and id arrays *
102 // as arguments. The size of these arrays is passed into num. *
103 // The function first displays a heading, then the sorted list *
104 // of product numbers and sales. *
105 //**
106
107 void showOrder(double sales[], int id[], int num)
108 {
109 cout << "Product Number\tSales\n";
110 cout << "----------------------------------\n";
111 for (int index = 0; index < num; index++)
112 {
113 cout << id[index] << "\t\t$";
114 cout << setw(8) << sales[index] << endl;
115 }
116 cout << endl;
117 }
118
119 //***
120 // Definition of showTotals function. Accepts sales and id arrays *
121 // as arguments. The size of these arrays is passed into num. *
122 // The function first calculates the total units (of all *
123 // products) sold and the total sales. It then displays these *
124 // amounts. *
125 //***
126

(program continues)

480 Chapter 8 Searching and Sorting Arrays

8.5 If You Plan to Continue in Computer Science:
Sorting and Searching vectors
(Continued from Section 7.12)

CONCEPT: The sorting and searching algorithms you have studied in this chapter may be
applied to STL vectors as well as arrays.

Once you have properly defined an STL vector and populated it with values, you may
sort and search the vector with the algorithms presented in this chapter. Simply substi-
tute the vector syntax for the array syntax when necessary. Program 8-7, which illus-
trates this, is a modification of the case study in Program 8-6.

Program 8-6 (continued)

127 void showTotals(double sales[], int units[], int num)
128 {
129 int totalUnits = 0;
130 double totalSales = 0.0;
131
132 for (int index = 0; index < num; index++)
133 {
134 totalUnits += units[index];
135 totalSales += sales[index];
136 }
137 cout << "Total Units Sold: " << totalUnits << endl;
138 cout << "Total Sales: $" << totalSales << endl;
139 }

Program Output
Product Number Sales

914 $10903.90
918 $ 9592.15
917 $ 8712.30
919 $ 8594.55
921 $ 7355.40
915 $ 6219.20
922 $ 3593.40
916 $ 2406.65
920 $ 1450.15
Total Units Sold: 3406
Total Sales: $58827.70

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 481

Program 8-7

 1 // This program produces a sales report for DLC, Inc.
 2 // This version of the program uses STL vectors instead of arrays.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <vector>
 6 using namespace std;
 7
 8 // Function prototypes
 9 void initVectors(vector<int> &, vector<int> &, vector<double> &);
 10 void calcSales(vector<int>, vector<double>, vector<double> &);
 11 void showOrder(vector<double>, vector<int>);
 12 void dualSort(vector<int> &, vector<double> &);
 13 void showTotals(vector<double>, vector<int>);
 14
 15 int main()
 16 {
 17 vector<int> id; // Product ID numbers
 18 vector<int> units; // Units sold
 19 vector<double> prices; // Product prices
 20 vector<double> sales; // To hold product sales
 21
 22 // Must provide an initialization routine.
 23 initVectors(id, units, prices);
 24
 25 // Calculate each product's sales.
 26 calcSales(units, prices, sales);
 27
 28 // Sort the elements in the sales array in descending
 29 // order and shuffle the ID numbers in the id array to
 30 // keep them in parallel.
 31 dualSort(id, sales);
 32
 33 // Set the numeric output formatting.
 34 cout << fixed << showpoint << setprecision(2);
 35
 36 // Display the products and sales amounts.
 37 showOrder(sales, id);
 38
 39 // Display total units sold and total sales.
 40 showTotals(sales, units);
 41 return 0;
 42 }
 43
 44 //**
 45 // Definition of initVectors. Accepts id, units, and prices *
 46 // vectors as reference arguments. This function initializes each *
 47 // vector to a set of starting values. *
 48 //**
 49

(program continues)

482 Chapter 8 Searching and Sorting Arrays

 50 void initVectors(vector<int> &id, vector<int> &units,
 51 vector<double> &prices)
 52 {
 53 // Initialize the id vector with the ID numbers
 54 // 914 through 922.
 55 for (int value = 914; value <= 922; value++)
 56 id.push_back(value);
 57
 58 // Initialize the units vector with data.
 59 units.push_back(842);
 60 units.push_back(416);
 61 units.push_back(127);
 62 units.push_back(514);
 63 units.push_back(437);
 64 units.push_back(269);
 65 units.push_back(97);
 66 units.push_back(492);
 67 units.push_back(212);
 68
 69 // Initialize the prices vector.
 70 prices.push_back(12.95);
 71 prices.push_back(14.95);
 72 prices.push_back(18.95);
 73 prices.push_back(16.95);
 74 prices.push_back(21.95);
 75 prices.push_back(31.95);
 76 prices.push_back(14.95);
 77 prices.push_back(14.95);
 78 prices.push_back(16.95);
 79 }
 80
 81
 82 //**
 83 // Definition of calcSales. Accepts units, prices, and sales *
 84 // vectors as arguments. The sales vector is passed into a *
 85 // reference parameter. This function calculates each product's *
 86 // sales by multiplying its units sold by each unit's price. The *
 87 // result is stored in the sales vector. *
 88 //**
 89
 90 void calcSales(vector<int> units, vector<double> prices,
 91 vector<double> &sales)
 92 {
 93 for (int index = 0; index < units.size(); index++)
 94 sales.push_back(units[index] * prices[index]);
 95 }
 96

Program 8-7 (continued)

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 483

 97 //**
 98 // Definition of function dualSort. Accepts id and sales vectors *
 99 // as reference arguments. This function performs a descending *
100 // order selection sort on the sales vector. The elements of the *
101 // id vector are exchanged identically as those of the sales *
102 // vector. *
103 //**
104
105 void dualSort(vector<int> &id, vector<double> &sales)
106 {
107 int startScan, maxIndex, tempid, size;
108 double maxValue;
109
110 size = id.size();
111 for (startScan = 0; startScan < (size - 1); startScan++)
112 {
113 maxIndex = startScan;
114 maxValue = sales[startScan];
115 tempid = id[startScan];
116 for(int index = startScan + 1; index < size; index++)
117 {
118 if (sales[index] > maxValue)
119 {
120 maxValue = sales[index];
121 tempid = id[index];
122 maxIndex = index;
123 }
124 }
125 sales[maxIndex] = sales[startScan];
126 id[maxIndex] = id[startScan];
127 sales[startScan] = maxValue;
128 id[startScan] = tempid;
129 }
130 }
131
132 //***
133 // Definition of showOrder function. Accepts sales and id vectors *
134 // as arguments. The function first displays a heading, then the *
135 // sorted list of product numbers and sales. *
136 //***
137
138 void showOrder(vector<double> sales, vector<int> id)
139 {
140 cout << "Product Number\tSales\n";
141 cout << "----------------------------------\n";
142 for (int index = 0; index < id.size(); index++)
143 {
144 cout << id[index] << "\t\t$";
145 cout << setw(8) << sales[index] << endl;
146 }
147 cout << endl;
148 }

(program continues)

484 Chapter 8 Searching and Sorting Arrays

There are some differences between this program and Program 8-6. First, the initVectors
function was added. In Program 8-6, this was not necessary because the id, units, and
prices arrays had initialization lists. vectors do not accept initialization lists, so this func-
tion stores the necessary initial values in the id, units, and prices vectors.

Now, look at the function header for initVectors:

void initVectors(vector<int> &id, vector<int> &units,
vector<double> &prices)

Notice that the vector parameters are references (as indicated by the & that precedes the
parameter name). This brings up an important difference between vectors and arrays: By

Program 8-7 (continued)

 149
150 //***
151 // Definition of showTotals function. Accepts sales and id vectors *
152 // as arguments. The function first calculates the total units (of *
153 // all products) sold and the total sales. It then displays these *
154 // amounts. *
155 //***
156
157 void showTotals(vector<double> sales, vector<int> units)
158 {
159 int totalUnits = 0;
160 double totalSales = 0.0;
161
162 for (int index = 0; index < units.size(); index++)
163 {
164 totalUnits += units[index];
165 totalSales += sales[index];
166 }
167 cout << "Total Units Sold: " << totalUnits << endl;
168 cout << "Total Sales: $" << totalSales << endl;
169 }

Program Output
Product Number Sales

914 $10903.90
918 $ 9592.15
917 $ 8712.30
919 $ 8594.55
921 $ 7355.40
915 $ 6219.20
922 $ 3593.40
916 $ 2406.65
920 $ 1450.15
Total Units Sold: 3406
Total Sales: $58827.70

8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors 485

default, vectors are passed by value, whereas arrays are only passed by reference. If you
want to change a value in a vector argument, it must be passed into a reference parameter.
Reference vector parameters are also used in the calcSales and dualSort functions.

Also, notice that each time a value is added to a vector, the push_back member function
is called. This is because the [] operator cannot be used to store a new element in a
vector. It can only be used to store a value in an existing element or read a value from an
existing element.

The code in this function appears cumbersome because it calls each vector’s push_back
member function once for each value that is to be stored in the vector. This code can be
simplified by storing the vector initialization values in arrays, and then using loops to call
the push_back member function, storing the values in the arrays in the vectors. The fol-
lowing code shows an alternative initVectors function that takes this approach.

void initVectors(vector<int> &id, vector<int> &units,
 vector<double> &prices)
{
 const int NUM_PRODS = 9;
 int count;
 int unitsSold[NUM_PRODS] = {842, 416, 127, 514, 437, 269, 97,
 492, 212};
 double productPrices[NUM_PRODS] = {12.95, 14.95, 18.95, 16.95,
 21.95, 31.95, 14.95, 14.95,
 16.95};

 // Initialize the id vector
 for (int value = 914; value <= 922; value++)
 id.push_back(value);

 // Initialize the units vector
 for (count = 0; count < NUM_PRODS; count++)
 units.push_back(unitsSold[count]);

 // Initialize the prices vector
 for (count = 0; count < NUM_PRODS; count++)
 prices.push_back(productPrices[count]);
}

Next, notice that the calcSales, showOrder, dualSort, and showTotals functions do
not accept an argument indicating the number of elements in the vectors. This is not nec-
essary because vectors have the size member function, which returns the number of ele-
ments in the vector. The following code segment, which is taken from the calcSales
function, shows the units.size() member function being used to control the number of
loop iterations.

for (int index = 0; index < units.size(); index++)
sales.push_back(units[index] * prices[index]);

486 Chapter 8 Searching and Sorting Arrays

Review Questions and Exercises

Short Answer

1. Why is the linear search also called “sequential search”?

2. If a linear search function is searching for a value that is stored in the last element of a
10,000-element array, how many elements will the search code have to read to locate
the value?

3. In an average case involving an array of N elements, how many times will a linear
search function have to read the array to locate a specific value?

4. A binary search function is searching for a value that is stored in the middle element
of an array. How many times will the function read an element in the array before
finding the value?

5. What is the maximum number of comparisons that a binary search function will
make when searching for a value in a 1,000-element array?

6. Why is the bubble sort inefficient for large arrays?

7. Why is the selection sort more efficient than the bubble sort on large arrays?

Fill-in-the-Blank

8. The _________ search algorithm steps sequentially through an array, comparing each
item with the search value.

9. The _________ search algorithm repeatedly divides the portion of an array being
searched in half.

10. The _________ search algorithm is adequate for small arrays but not large arrays.

11. The _________ search algorithm requires that the array’s contents be sorted.

12. If an array is sorted in _________ order, the values are stored from lowest to highest.

13. If an array is sorted in _________ order, the values are stored from highest to lowest.

True or False
14. T F If data are sorted in ascending order, it means they are ordered from lowest

value to highest value.

15. T F If data are sorted in descending order, it means they are ordered from lowest
value to highest value.

16. T F The average number of comparisons performed by the linear search on an
array of N elements is N/2 (assuming the search values are consistently found).

17. T F The maximum number of comparisons performed by the linear search on an
array of N elements is N/2 (assuming the search values are consistently found).

18. Complete the following table calculating the average and maximum number of com-
parisons the linear search will perform, and the maximum number of comparisons the
binary search will perform.

Review Questions and Exercises 487

Programming Challenges
1. Charge Account Validation

Write a program that lets the user enter a charge account number. The program
should determine if the number is valid by checking for it in the following list:

5658845 4520125 7895122 8777541 8451277 1302850
8080152 4562555 5552012 5050552 7825877 1250255
1005231 6545231 3852085 7576651 7881200 4581002

The list of numbers above should be initialized in a single-dimensional array. A simple
linear search should be used to locate the number entered by the user. If the user
enters a number that is in the array, the program should display a message saying that
the number is valid. If the user enters a number that is not in the array, the program
should display a message indicating that the number is invalid.

2. Lottery Winners

A lottery ticket buyer purchases 10 tickets a week, always playing the same 10 5-digit
“lucky” combinations. Write a program that initializes an array or a vector with
these numbers and then lets the player enter this week’s winning 5-digit number. The
program should perform a linear search through the list of the player’s numbers and
report whether or not one of the tickets is a winner this week. Here are the numbers:

13579 26791 26792 33445 55555
62483 77777 79422 85647 93121

3. Lottery Winners Modification

Modify the program you wrote for Programming Challenge 2 (Lottery Winners) so it
performs a binary search instead of a linear search.

4. Charge Account Validation Modification

Modify the program you wrote for Problem 1 (Charge Account Validation) so it per-
forms a binary search to locate valid account numbers. Use the selection sort algo-
rithm to sort the array before the binary search is performed.

5. Rainfall Statistics Modification

Modify the Rainfall Statistics program you wrote for Programming Challenge 2 of
Chapter 7. The program should display a list of months, sorted in order of rainfall,
from highest to lowest.

Array Size �
50
Elements

500
Elements

10,000
Elements

100,000
Elements

10,000,000
Elements

Linear Search
(Average
Comparisons)

Linear Search
(Maximum
Comparisons)

Binary Search
(Maximum
Comparisons)

Solving the
Charge

Account
Validation

Modification
Problem

488 Chapter 8 Searching and Sorting Arrays

6. String Selection Sort

Modify the selectionSort function presented in this chapter so it searches an array
of strings instead of an array of ints. Test the function with a driver program. Use
Program 8-8 as a skeleton to complete.

7. Binary String Search

Modify the binarySearch function presented in this chapter so it searches an array
of strings instead of an array of ints. Test the function with a driver program. Use
Program 8-8 as a skeleton to complete. (The array must be sorted before the binary
search will work.)

8. Search Benchmarks

Write a program that has an array of at least 20 integers. It should call a function that
uses the linear search algorithm to locate one of the values. The function should keep
a count of the number of comparisons it makes until it finds the value. The program
then should call a function that uses the binary search algorithm to locate the same
value. It should also keep count of the number of comparisons it makes. Display these
values on the screen.

9. Sorting Benchmarks

Write a program that uses two identical arrays of at least 20 integers. It should call a
function that uses the bubble sort algorithm to sort one of the arrays in ascending
order. The function should keep a count of the number of exchanges it makes. The
program then should call a function that uses the selection sort algorithm to sort the
other array. It should also keep count of the number of exchanges it makes. Display
these values on the screen.

Program 8-8

 #include <iostream>
 using namespace std;

 int main()
 {
 const int NUM_NAMES = 20, SIZE = 17;
 char names[NUM_NAMES][SIZE] = {"Collins, Bill", "Smith, Bart", "Allen, Jim",
 "Griffin, Jim", "Stamey, Marty", "Rose, Geri",
 "Taylor, Terri", "Johnson, Jill",
 "Allison, Jeff", "Looney, Joe", "Wolfe, Bill",
 "James, Jean", "Weaver, Jim", "Pore, Bob",
 "Rutherford, Greg", "Javens, Renee",
 "Harrison, Rose", "Setzer, Cathy",
 "Pike, Gordon", "Holland, Beth" };

 // Insert your code to complete this program

 return 0;
 }

Review Questions and Exercises 489

10. Sorting Orders

Write a program that uses two identical arrays of just eight integers. It should display
the contents of the first array, then call a function to sort the array using an ascending
order bubble sort modified to print out the array contents after each pass of the sort.
Next, the program should display the contents of the second array, then call a func-
tion to sort the array using an ascending order selection sort modified to print out the
array contents after each pass of the sort.

11. Using Files—String Selection Sort Modification

Modify the program you wrote for Programming Challenge 6 so it reads in 20 strings
from a file. The data can be found in the names.dat file.

This page intentionally left blank

491

C
H

A
P

T
E

R

9 Pointers

9.1 Getting the Address of a Variable

CONCEPT: The address operator (&) returns the memory address of a variable.

Every variable is allocated a section of memory large enough to hold a value of the vari-
able’s data type. On a PC, for instance, it’s common for one byte to be allocated for chars,
two bytes for shorts , four bytes for ints, longs, and floats, and eight bytes for doubles.

Each byte of memory has a unique address. A variable’s address is the address of the first
byte allocated to that variable. Suppose the following variables are defined in a program:

char letter;
short number;
float amount;

Figure 9-1 illustrates how they might be arranged in memory and shows their addresses.

TOPICS

9.1 Getting the Address of a Variable
9.2 Pointer Variables
9.3 The Relationship Between Arrays

and Pointers
9.4 Pointer Arithmetic
9.5 Initializing Pointers
9.6 Comparing Pointers

9.7 Pointers as Function Parameters
9.8 Focus on Software Engineering:

Dynamic Memory Allocation
9.9 Focus on Software Engineering:

Returning Pointers from Functions
9.10 Focus on Problem Solving and

Program Design: A Case Study

492 Chapter 9 Pointers

In Figure 9-1, the variable letter is shown at address 1200, number is at address 1201,
and amount is at address 1203.

Getting the address of a variable is accomplished with an operator in C++. When the
address operator (&) is placed in front of a variable name, it returns the address of that
variable. Here is an expression that returns the address of the variable amount:

&amount

And here is a statement that displays the variable’s address on the screen:

cout << &amount;

Program 9-1 demonstrates the use of the address operator to display the address, size, and
contents of a variable.

Figure 9-1

NOTE: The addresses of the variables shown in Figure 9-1 are arbitrary values used
only for illustration purposes.

NOTE: Do not confuse the address operator with the & symbol used when defining a
reference variable.

Program 9-1

1 // This program uses the & operator to determine a variable's
2 // address and the sizeof operator to determine its size.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 25;
9
10 cout << "The address of x is " << &x << endl;
11 cout << "The size of x is " << sizeof(x) << " bytes\n";
12 cout << "The value in x is " << x << endl;
13 return 0;
14 }

letter

1200

number

1201

amount

1203

9.2 Pointer Variables 493

9.2 Pointer Variables

CONCEPT: Pointer variables, which are often just called pointers, are designed to
hold memory addresses. With pointer variables you can indirectly
manipulate data stored in other variables.

A pointer variable, which often is just called a pointer, is a special variable that holds a
memory address. Just as int variables are designed to hold integers, and double variables
are designed to hold floating-point numbers, pointer variables are designed to hold mem-
ory addresses.

Memory addresses identify specific locations in the computer’s memory. Because a pointer
variable holds a memory address, it can be used to hold the location of some other piece
of data. This should give you a clue as to why it is called a pointer: It “points” to some
piece of data that is stored in the computer’s memory. Pointer variables also allow you to
work with the data that they point to.

We’ve already used memory addresses in this book to work with data. Recall from Chap-
ter 6 that when we pass an array as an argument to a function, we are actually passing the
array’s beginning address. For example, suppose we have an array named numbers and
we call the showValues function as shown here.

const int SIZE = 5;
int numbers[SIZE] = { 1, 2, 3, 4, 5 };
showValues(numbers, SIZE);

In this code we are passing the name of the array, numbers, and its size as arguments to
the showValues function. Here is the definition for the showValues function:

void showValues(int values[], int size)
{
 for (int count = 0; count < size; count++)
 cout << values[count] << endl;
}

In the function, the values parameter receives the address of the numbers array. It works
like a pointer because it “points” to the numbers array, as shown in Figure 9-2.

Program Output
The address of x is 0x8f05
The size of x is 4 bytes
The value in x is 25

NOTE: The address of the variable x is displayed in hexadecimal. This is the way
addresses are normally shown in C++.

494 Chapter 9 Pointers

Inside the showValues function, anything that is done to the values parameter is actu-
ally done to the numbers array. We can say that the values parameter references the
numbers array.

Also recall from Chapter 6 that we discussed reference variables. A reference variable acts
as an alias for another variable. It is called a reference variable because it references
another variable in the program. Anything that you do to the reference variable is actually
done to the variable it references. For example, suppose we have the variable
jellyDonuts and we pass the variable to the getOrder function, as shown here:

int jellyDonuts;
getOrder(jellyDonuts);

Here is the definition for the getOrder function:

void getOrder(int &donuts)
{
 cout << "How many doughnuts do you want? ";
 cin >> donuts;
}

In the function, the donuts parameter is a reference variable, and it receives the address of
the jellyDonuts variable. It works like a pointer because it “points” to the jellyDonuts
variable as shown in Figure 9-3.

Inside the getOrder function, the donuts parameter references the jellyDonuts vari-
able. Anything that is done to the donuts parameter is actually done to the jellyDonuts
variable. When the user enters a value, the cin statement uses the donuts reference vari-
able to indirectly store the value in the jellyDonuts variable.

Notice that the connection between the donuts reference variable and the jellyDonuts
argument is automatically established by C++ when the function is called. When you are
writing this code, you don’t have go to the trouble of finding the memory address of the

Figure 9-2

showValues(numbers, SIZE);

 void showValues(int values[], int size)
 {
 for (int count = 0; count < size; count++)
 cout << values[count] << endl;
 }

numbers array

1 2 3 4 5

address 5

9.2 Pointer Variables 495

jellyDonuts variable and then properly storing that address in the donuts reference
variable. When you are storing a value in the donuts variable, you don’t have to specify
that the value should actually be stored in the jellyDonuts variable. C++ handles all of
that automatically.

In C++, pointer variables are yet another mechanism for using memory addresses to work
with pieces of data. Pointer variables are similar to reference variables, but pointer vari-
ables operate at a lower level. By this, I mean that C++ does not automatically do as much
work for you with pointer variables as it does with reference variables. In order to make a
pointer variable reference another item in memory, you have to write code that fetches the
memory address of that item and assigns the address to the pointer variable. Also, when
you use a pointer variable to store a value in the memory location that the pointer refer-
ences, your code has to specify that the value should be stored in the location referenced
by the pointer variable, and not in the pointer variable itself.

Because reference variables are easier to work with, you might be wondering why you
would ever use pointers at all. In C++, pointers are useful, and even necessary, for many
operations. One such operation is dynamic memory allocation. When you are writing a
program that will need to work with an unknown amount of data, dynamic memory allo-
cation allows you to create variables, arrays, and more complex data structures in mem-
ory while the program is running. We will discuss dynamic memory allocation in greater
detail in this chapter. Pointers are also very useful in algorithms that manipulate arrays
and C-strings. In object-oriented programming, which you will learn about in Chapters
13, 14, and 15, pointers are very useful for creating and working with objects and for
sharing access to those objects.

Figure 9-3

getOrder(jellyDonuts);

void getOrder(int &donuts)
{
 cout << "How many doughnuts do you want? ";
 cin >> donuts;
}

jellyDonuts variable

address

496 Chapter 9 Pointers

Creating and Using Pointer Variables
The definition of a pointer variable looks pretty much like any other definition. Here is an
example:

int *ptr;

The asterisk in front of the variable name indicates that ptr is a pointer variable. The int
data type indicates that ptr can be used to hold the address of an integer variable. The
definition statement above would read “ptr is a pointer to an int.”

Some programmers prefer to define pointers with the asterisk next to the type name,
rather than the variable name. For example, the previous definition shown above could be
written as:

int* ptr;

This style of definition might visually reinforce the fact that ptr’s data type is not int, but
pointer-to-int. Both definition styles are correct.

Program 9-2 demonstrates a very simple usage of a pointer: storing and printing the
address of another variable.

In Program 9-2, two variables are defined: x and ptr. The variable x is an int and the
variable ptr is a pointer to an int. The variable x is initialized with the value 25. The
variable ptr is assigned the address of x with the following statement in line 10:

ptr = &x;

NOTE: In this definition, the word int does not mean that ptr is an integer variable. It
means that ptr can hold the address of an integer variable. Remember, pointers only hold
one kind of value: an address.

Program 9-2

 1 // This program stores the address of a variable in a pointer.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int x = 25; // int variable
 8 int *ptr; // Pointer variable, can point to an int
 9
10 ptr = &x; // Store the address of x in ptr
11 cout << "The value in x is " << x << endl;
12 cout << "The address of x is " << ptr << endl;
13 return 0;
14 }

Program Output
The value in x is 25
The address of x is 0x7e00

9.2 Pointer Variables 497

Figure 9-4 illustrates the relationship between ptr and x.

As shown in Figure 9-4, x, which is located at memory address 0x7e00, contains the num-
ber 25. ptr contains the address 0x7e00. In essence, it “points” to the variable x.

The real benefit of pointers is that they allow you to indirectly access and modify the vari-
able being pointed to. In Program 9-2, for instance, ptr could be used to change the con-
tents of the variable x. This is done with the indirection operator, which is an asterisk (*).
When the indirection operator is placed in front of a pointer variable name, it dereferences
the pointer. When you are working with a dereferenced pointer, you are actually working
with the value the pointer is pointing to. This is demonstrated in Program 9-3.

Figure 9-4

Program 9-3

 1 // This program demonstrates the use of the indirection operator.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int x = 25; // int variable
 8 int *ptr; // Pointer variable, can point to an int
 9
10 ptr = &x; // Store the address of x in ptr
11
12 // Use both x and ptr to display the value in x.
13 cout << "Here is the value in x, printed twice:\n";
14 cout << x << endl; // Displays the contents of x
15 cout << *ptr << endl; // Displays the contents of x
16
17 // Assign 100 to the location pointed to by ptr. This
18 // will actually assign 100 to x.
19 *ptr = 100;
20
21 // Use both x and ptr to display the value in x.
22 cout << "Once again, here is the value in x:\n";
23 cout << x << endl; // Displays the contents of x
24 cout << *ptr << endl; // Displays the contents of x
25 return 0;
26 }

(program output continues)

x

25
ptr

0x7e00 Address of x: 0x7e00

498 Chapter 9 Pointers

Take a closer look at the statement in line 10:

ptr = &x;

This statement assigns the address of the x variable to the ptr variable. Now look at line 15:

cout << *ptr << endl; // Displays the contents of x

When you apply the indirection operator (*) to a pointer variable, you are working, not
with the pointer variable itself, but with the item it points to. Because this statement sends the
expression *ptr to the cout object, it does not display the value in ptr, but the value that
ptr points to. Since ptr points to the x variable, this statement displays the contents of
the x variable.

Suppose the statement did not use the indirection operator. Suppose that statement had
been written as:

cout << ptr << endl; // Displays an address

Because the indirection operator is not applied to ptr in this statement, it works directly
with the ptr variable. This statement would display the address that is stored in ptr.

Now take a look at the following statement, which appears in line 19:

*ptr = 100;

Notice the indirection operator being used with ptr. That means the statement is not
affecting ptr, but the item that ptr points to. This statement assigns 100 to the item ptr
points to, which is the x variable. After this statement executes, 100 will be stored in the x
variable.

Program 9-4 demonstrates that pointers can point to different variables.

Program Output
Here is the value in x, printed twice:
25
25
Once again, here is the value in x:
100
100

Program 9-4

 1 // This program demonstrates a pointer variable referencing
 2 // different variables.
 3 #include <iostream>
 4 using namespace std;

 5
 6 int main()
 7 {
 8 int x = 25, y = 50, z = 75; // Three int variables
 9 int *ptr; // Pointer variable
10

Program 9-3 (continued)

9.2 Pointer Variables 499

Take a closer look at the statement in line 17:

ptr = &x;

This statement assigns the address of the x variable to the ptr variable. Now look at line 18:

*ptr += 100;

In this statement notice that the indirection operator (*) is used with the ptr variable. When
we apply the indirection operator to ptr, we are working, not with ptr, but with the item
that ptr points to. When this statement executes, ptr is pointing at x, so the statement in
line 18 adds 100 to the contents of x. Then the following statement, in line 20, executes:

ptr = &y;

This statement assigns the address of the y variable to the ptr variable. After this state-
ment executes, ptr is no longer pointing at x. Rather, it will be pointing at y. The state-
ment in line 21, shown here, adds 100 to the y variable.

*ptr += 100;

These steps are repeated with the z variable in lines 23 and 24.

11 // Display the contents of x, y, and z.
12 cout << "Here are the values of x, y, and z:\n";
13 cout << x << " " << y << " " << z << endl;
14
15 // Use the pointer to manipulate x, y, and z.
16
17 ptr = &x; // Store the address of x in ptr.
18 *ptr += 100; // Add 100 to the value in x.
19
20 ptr = &y; // Store the address of y in ptr.
21 *ptr += 100; // Add 100 to the value in y.
22
23 ptr = &z; // Store the address of z in ptr.
24 *ptr += 100; // Add 100 to the value in z.
25
26 // Display the contents of x, y, and z.
27 cout << "Once again, here are the values of x, y, and z:\n";
28 cout << x << " " << y << " " << z << endl;
29 return 0;
30 }

Program Output
Here are the values of x, y, and z:
25 50 75
Once again, here are the values of x, y, and z:
125 150 175

500 Chapter 9 Pointers

9.3 The Relationship Between Arrays and Pointers

CONCEPT: Array names can be used as constant pointers, and pointers can be used
as array names.

You learned in Chapter 7 that an array name, without brackets and a subscript, actually
represents the starting address of the array. This means that an array name is really a
pointer. Program 9-5 illustrates this by showing an array name being used with the indi-
rection operator.

Because numbers works like a pointer to the starting address of the array, the first element
is retrieved when numbers is dereferenced. So how could the entire contents of an array be
retrieved using the indirection operator? Remember, array elements are stored together in
memory, as illustrated in Figure 9-5.

It makes sense that if numbers is the address of numbers[0], values could be added to
numbers to get the addresses of the other elements in the array. It’s important to know,
however, that pointers do not work like regular variables when used in mathematical
statements. In C++, when you add a value to a pointer, you are actually adding that value
times the size of the data type being referenced by the pointer. In other words, if you add

NOTE: So far you’ve seen three different uses of the asterisk in C++:

• As the multiplication operator, in statements such as
 distance = speed * time;

• In the definition of a pointer variable, such as
 int *ptr;

• As the indirection operator, in statements such as
 *ptr = 100;

Program 9-5

 1 // This program shows an array name being dereferenced with the *
 2 // operator.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 short numbers[] = {10, 20, 30, 40, 50};

 9
10 cout << "The first element of the array is ";
11 cout << *numbers << endl;
12 return 0;
13 }

Program Output
The first element of the array is 10

9.3 The Relationship Between Arrays and Pointers 501

one to numbers, you are actually adding 1 * sizeof(short) to numbers. If you add two
to numbers, the result is numbers + 2 * sizeof(short), and so forth. On a PC, this
means the following are true, because short integers typically use two bytes:

*(numbers + 1) is actually *(numbers + 1 * 2)
*(numbers + 2) is actually *(numbers + 2 * 2)
*(numbers + 3) is actually *(numbers + 3 * 2)

and so forth.

This automatic conversion means that an element in an array can be retrieved by using
its subscript or by adding its subscript to a pointer to the array. If the expression
*numbers, which is the same as *(numbers + 0), retrieves the first element in the array,
then *(numbers + 1) retrieves the second element. Likewise, *(numbers + 2) retrieves
the third element, and so forth. Figure 9-6 shows the equivalence of subscript notation
and pointer notation.

Program 9-6 shows the entire contents of the array being accessed, using pointer notation.

Figure 9-5

Figure 9-6

NOTE: The parentheses are critical when adding values to pointers. The * operator has
precedence over the + operator, so the expression *number + 1 is not equivalent to
*(number + 1). *number + 1 adds one to the contents of the first element of the array,
while *(number + 1) adds one to the address in number, then dereferences it.

Program 9-6

 1 // This program processes an array using pointer notation.
 2 #include <iostream>
 3 using namespace std;
 4

(program continues)

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

numbers

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4]

*numbers *(numbers+1) *(numbers+2) *(numbers+3) *(numbers+4)

502 Chapter 9 Pointers

When working with arrays, remember the following rule:

array[index] is equivalent to *(array + index)

To demonstrate just how close the relationship is between array names and pointers, look
at Program 9-7. It defines an array of doubles and a double pointer, which is assigned the
starting address of the array. Not only is pointer notation then used with the array name,
but subscript notation is used with the pointer!

 5 int main()
 6 {
 7 const int SIZE = 5; // Size of the array
 8 int numbers[SIZE]; // Array of integers
 9 int count; // Counter variable
10
11 // Get values to store in the array.
12 // Use pointer notation instead of subscripts.
13 cout << "Enter " << SIZE << " numbers: ";
14 for (count = 0; count < SIZE; count++)
15 cin >> *(numbers + count);
16
17 // Display the values in the array.
18 // Use pointer notation instead of subscripts.
19 cout << "Here are the numbers you entered:\n";
20 for (count = 0; count < SIZE; count++)
21 cout << *(numbers + count)<< " ";
22 cout << endl;
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter 5 numbers: 5 10 15 20 25 [Enter]
Here are the numbers you entered:
5 10 15 20 25

WARNING! Remember that C++ performs no bounds checking with arrays. When
stepping through an array with a pointer, it’s possible to give the pointer an address
outside of the array.

Program 9-7

 1 // This program uses subscript notation with a pointer variable and
 2 // pointer notation with an array name.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6

Program 9-6 (continued)

9.3 The Relationship Between Arrays and Pointers 503

Notice that the address operator is not needed when an array’s address is assigned to a
pointer. Because the name of an array is already an address, use of the & operator would
be incorrect. You can, however, use the address operator to get the address of an individ-
ual element in an array. For instance, &numbers[1] gets the address of numbers[1]. This
technique is used in Program 9-8.

 7 int main()
 8 {
 9 const int NUM_COINS = 5;
10 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
11 double *doublePtr; // Pointer to a double
12 int count; // Array index
13
14 // Assign the address of the coins array to doublePtr.
15 doublePtr = coins;
16
17 // Display the contents of the coins array. Use subscripts
18 // with the pointer!
19 cout << "Here are the values in the coins array:\n";
20 for (count = 0; count < NUM_COINS; count++)
21 cout << doublePtr[count] << " ";
22
23 // Display the contents of the array again, but this time
24 // use pointer notation with the array name!
25 cout << "\nAnd here they are again:\n";
26 for (count = 0; count < NUM_COINS; count++)
27 cout << *(coins + count) << " ";
28 cout << endl;
29 return 0;
30 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1
And here they are again:
0.05 0.1 0.25 0.5 1

Program 9-8

 1 // This program uses the address of each element in the array.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int NUM_COINS = 5;
 9 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
10 double *doublePtr; // Pointer to a double
11 int count; // Array index
12

(program continues)

504 Chapter 9 Pointers

The only difference between array names and pointer variables is that you cannot change
the address an array name points to. For example, consider the following definitions:

double readings[20], totals[20];
double *dptr;

These statements are legal:

dptr = readings; // Make dptr point to readings.
dptr = totals; // Make dptr point to totals.

But these are illegal:

readings = totals; // ILLEGAL! Cannot change readings.
totals = dptr; // ILLEGAL! Cannot change totals.

Array names are pointer constants. You can’t make them point to anything but the array
they represent.

9.4 Pointer Arithmetic

CONCEPT: Some mathematical operations may be performed on pointers.

The contents of pointer variables may be changed with mathematical statements that per-
form addition or subtraction. This is demonstrated in Program 9-9. The first loop incre-
ments the pointer variable, stepping it through each element of the array. The second loop
decrements the pointer, stepping it through the array backward.

13 // Use the pointer to display the values in the array.
14 cout << "Here are the values in the coins array:\n";
15 for (count = 0; count < NUM_COINS; count++)
16 {
17 // Get the address of an array element.
18 doublePtr = &coins[count];
19
20 // Display the contents of the element.
21 cout << *doublePtr << " ";
22 }
23 cout << endl;
24 return 0;
25 }

Program Output
Here are the values in the coins array:
0.05 0.1 0.25 0.5 1

Program 9-8 (continued)

9.4 Pointer Arithmetic 505

Not all arithmetic operations may be performed on pointers. For example, you cannot
multiply or divide a pointer. The following operations are allowable:

• The ++ and -- operators may be used to increment or decrement a pointer variable.
• An integer may be added to or subtracted from a pointer variable. This may be

performed with the + and - operators, or the += and -= operators.
• A pointer may be subtracted from another pointer.

Program 9-9

 1 // This program uses a pointer to display the contents of an array.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 const int SIZE = 8;
 8 int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
 9 int *numPtr; // Pointer
10 int count; // Counter variable for loops
11
12 // Make numPtr point to the set array.
13 numPtr = set;
14
15 // Use the pointer to display the array contents.
16 cout << "The numbers in set are:\n";
17 for (count = 0; count < SIZE; count++)
18 {
19 cout << *numPtr << " ";
20 numPtr++;
21 }
22
23 // Display the array contents in reverse order.
24 cout << "\nThe numbers in set backward are:\n";
25 for (count = 0; count < SIZE; count++)
26 {
27 numPtr--;
28 cout << *numPtr << " ";
29 }
30 return 0;
31 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backward are:
40 35 30 25 20 15 10 5

NOTE: Because numPtr is a pointer to an integer, the increment operator adds the size
of one integer to numPtr, so it points to the next element in the array. Likewise, the
decrement operator subtracts the size of one integer from the pointer.

506 Chapter 9 Pointers

9.5 Initializing Pointers

CONCEPT: Pointers may be initialized with the address of an existing object.

Remember that a pointer is designed to point to an object of a specific data type. When a
pointer is initialized with an address, it must be the address of an object the pointer can point
to. For instance, the following definition of pint is legal because myValue is an integer:

int myValue;
int *pint = &myValue;

The following is also legal because ages is an array of integers:

int ages[20];
int *pint = ages;

But the following definition of pint is illegal because myFloat is not an int:

float myFloat;
int *pint = &myFloat; // Illegal!

Pointers may be defined in the same statement as other variables of the same type. The fol-
lowing statement defines an integer variable, myValue, and then defines a pointer, pint,
which is initialized with the address of myValue:

int myValue, *pint = &myValue;

And the following statement defines an array, readings, and a pointer, marker, which is
initialized with the address of the first element in the array:

double readings[50], *marker = readings;

Of course, a pointer can only be initialized with the address of an object that has already
been defined. The following is illegal because pint is being initialized with the address of
an object that does not exist yet:

int *pint = &myValue; // Illegal!
int myValue;

Checkpoint
9.1 Write a statement that displays the address of the variable count.

9.2 Write the definition statement for a variable fltPtr. The variable should be a
pointer to a float.

9.3 List three uses of the * symbol in C++.

9.4 What is the output of the following code?

int x = 50, y = 60, z = 70;
int *ptr;

cout << x << " " << y << " " << z << endl;
ptr = &x;

9.6 Comparing Pointers 507

*ptr *= 10;
ptr = &y;
*ptr *= 5;
ptr = &z;
*ptr *= 2;
cout << x << " " << y << " " << z << endl;

9.5 Rewrite the following loop so it uses pointer notation (with the indirection opera-
tor) instead of subscript notation.

for (int x = 0; x < 100; x++)
 cout << arr[x] << endl;

9.6 Assume ptr is a pointer to an int, and holds the address 12000. On a system
with 4-byte integers, what address will be in ptr after the following statement?

ptr += 10;

9.7 Assume pint is a pointer variable. Is each of the following statements valid or
invalid? If any is invalid, why?
A) pint++;

B) --pint;

C) pint /= 2;

D) pint *= 4;

E) pint += x; // Assume x is an int.

9.8 Is each of the following definitions valid or invalid? If any is invalid, why?
A) int ivar;

int *iptr = &ivar;
B) int ivar, *iptr = &ivar;

C) float fvar;
int *iptr = &fvar;

D) int nums[50], *iptr = nums;

E) int *iptr = &ivar;
int ivar;

9.6 Comparing Pointers

CONCEPT: If one address comes before another address in memory, the first address
is considered “less than” the second. C++’s relational operators may be
used to compare pointer values.

Pointers may be compared by using any of C++’s relational operators:

> < == != >= <=

In an array, all the elements are stored in consecutive memory locations, so the address of
element 1 is greater than the address of element 0. This is illustrated in Figure 9-7.

508 Chapter 9 Pointers

Because the addresses grow larger for each subsequent element in the array, the following
if statements are all true:

if (&arr[1] > &arr[0])
if (arr < &arr[4])
if (arr == &arr[0])
if (&arr[2] != &arr[3])

The capability of comparing addresses gives you another way to be sure a pointer does not
go beyond the boundaries of an array. Program 9-10 initializes the pointer nums with the
starting address of the array set. The nums pointer is then stepped through the array set
until the address it contains is equal to the address of the last element of the array. Then
the pointer is stepped backward through the array until it points to the first element.

Figure 9-7

NOTE: Comparing two pointers is not the same as comparing the values the two
pointers point to. For example, the following if statement compares the addresses stored
in the pointer variables ptr1 and ptr2:

if (ptr1 < ptr2)

The following statement, however, compares the values that ptr1 and ptr2 point to:

if (*ptr1 < *ptr2)

Program 9-10

 1 // This program uses a pointer to display the contents
 2 // of an integer array.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 int set[8] = {5, 10, 15, 20, 25, 30, 35, 40};
 9 int *nums = set; // Make nums point to set
10
11 // Display the numbers in the array.
12 cout << "The numbers in set are:\n";
13 cout << *nums << " "; // Display first element

arr[0] arr[1] arr[2] arr[3] arr[4]

0x5A00
(Addresses)

0x5A04 0x5A08 0x5A0C 0x5A10

An array of five integers

9.7 Pointers as Function Parameters 509

9.7 Pointers as Function Parameters

CONCEPT: A pointer can be used as a function parameter. It gives the function access
to the original argument, much like a reference parameter does.

In Chapter 6 you were introduced to the concept of reference variables being used as func-
tion parameters. A reference variable acts as an alias to the original variable used as an
argument. This gives the function access to the original argument variable, allowing it to
change the variable’s contents. When a variable is passed into a reference parameter, the
argument is said to be passed by reference.

Another way to pass an argument by reference is to use a pointer variable as the parame-
ter. Admittedly, reference variables are much easier to work with than pointers. Reference
variables hide all the “mechanics” of dereferencing and indirection. You should still learn
to use pointers as function arguments, however, because some tasks, especially when you
are dealing with strings, are best done with pointers.* Also, the C++ library has many
functions that use pointers as parameters.

14 while (nums < &set[7])
15 {
16 // Advance nums to point to the next element.
17 nums++;
18 // Display the value pointed to by nums.
19 cout << *nums << " ";
20 }
21
22 // Display the numbers in reverse order.
23 cout << "\nThe numbers in set backward are:\n";
24 cout << *nums << " "; // Display first element
25 while (nums > set)
26 {
27 // Move backward to the previous element.
28 nums--;
29 // Display the value pointed to by nums.
30 cout << *nums << " ";
31 }
32 return 0;
33 }

Program Output
The numbers in set are:
5 10 15 20 25 30 35 40
The numbers in set backward are:
40 35 30 25 20 15 10 5

* It is also important to learn this technique in case you ever need to write a C program. In C, the
only way to pass a variable by reference is to use a pointer.

510 Chapter 9 Pointers

Here is the definition of a function that uses a pointer parameter:

void doubleValue(int *val)
{

*val *= 2;
}

The purpose of this function is to double the variable pointed to by val with the following
statement:

*val *= 2;

When val is dereferenced, the *= operator works on the variable pointed to by val. This
statement multiplies the original variable, whose address is stored in val, by two. Of
course, when the function is called, the address of the variable that is to be doubled must
be used as the argument, not the variable itself. Here is an example of a call to the
doubleValue function:

doubleValue(&number);

This statement uses the address operator (&) to pass the address of number into the val
parameter. After the function executes, the contents of number will have been multiplied
by two. The use of this function is illustrated in Program 9-11.

Program 9-11

 1 // This program uses two functions that accept addresses of
 2 // variables as arguments.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototypes
 7 void getNumber(int *);
 8 void doubleValue(int *);
 9
10 int main()
11 {
12 int number;
13
14 // Call getNumber and pass the address of number.
15 getNumber(&number);
16
17 // Call doubleValue and pass the address of number.
18 doubleValue(&number);
19
20 // Display the value in number.
21 cout << "That value doubled is " << number << endl;
22 return 0;
23 }
24

9.7 Pointers as Function Parameters 511

Program 9-11 has two functions that use pointers as parameters. Notice the function pro-
totypes:

void getNumber(int *);
void doubleValue(int *);

Each one uses the notation int * to indicate the parameter is a pointer to an int. As with
all other types of parameters, it isn’t necessary to specify the name of the variable in the
prototype. The * is required, though.

The getNumber function asks the user to enter an integer value. The following cin state-
ment, in line 34, stores the value entered by the user in memory:

cin >> *input;

The indirection operator causes the value entered by the user to be stored, not in input,
but in the variable pointed to by input.

25 //***
26 // Definition of getNumber. The parameter, input, is a pointer. *
27 // This function asks the user for a number. The value entered *
28 // is stored in the variable pointed to by input. *
29 //***
30
31 void getNumber(int *input)
32 {
33 cout << "Enter an integer number: ";
34 cin >> *input;
35 }
36
37 //***
38 // Definition of doubleValue. The parameter, val, is a pointer. *
39 // This function multiplies the variable pointed to by val by *
40 // two. *
41 //***
42
43 void doubleValue(int *val)
44 {
45 *val *= 2;
46 }

Program Output with Example Input Shown in Bold
Enter an integer number: 10 [Enter]
That value doubled is 20

WARNING! It’s critical that the indirection operator be used in the statement above.
Without it, cin would store the value entered by the user in input, as if the value were
an address. If this happens, input will no longer point to the number variable in function
main. Subsequent use of the pointer will result in erroneous, if not disastrous, results.

512 Chapter 9 Pointers

When the getNumber function is called in line 15, the address of the number variable in
function main is passed as the argument. After the function executes, the value entered by
the user is stored in number. Next, the doubleValue function is called in line 18, with the
address of number passed as the argument. This causes number to be multiplied by two.

Pointer variables can also be used to accept array addresses as arguments. Either subscript
or pointer notation may then be used to work with the contents of the array. This is dem-
onstrated in Program 9-12.

Program 9-12

 1 // This program demonstrates that a pointer may be used as a
 2 // parameter to accept the address of an array.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 // Function prototypes
 8 void getSales(double *, int);
 9 double totalSales(double *, int);
10
11 int main()
12 {
13 const int QTRS = 4;
14 double sales[QTRS];
15
16 // Get the sales data for all quarters.
17 getSales(sales, QTRS);
18
19 // Set the numeric output formatting.
20 cout << fixed << showpoint << setprecision(2);
21
22 // Display the total sales for the year.
23 cout << "The total sales for the year are $";
24 cout << totalSales(sales, QTRS) << endl;
25 return 0;
26 }
27
28 //***
29 // Definition of getSales. This function uses a pointer to accept *
30 // the address of an array of doubles. The function asks the user *
31 // to enter sales figures and stores them in the array. *
32 //***
33 void getSales(double *arr, int size)
34 {
35 for (int count = 0; count < size; count++)
36 {
37 cout << "Enter the sales figure for quarter ";
38 cout << (count + 1) << ": ";
39 cin >> arr[count];
40 }
41 }
42

9.7 Pointers as Function Parameters 513

Notice that in the getSales function in Program 9-12, even though the parameter arr is
defined as a pointer, subscript notation is used in the cin statement in line 39:

cin >> arr[count];

In the totalSales function, arr is used with the indirection operator in line 54:

sum += *arr;

And in line 55, the address in arr is incremented to point to the next element:

arr++;

Pointers to Constants
You have seen how an item’s address can be passed into a pointer parameter, and how the
pointer can be used to modify the item that was passed as an argument. Sometimes it is
necessary to pass the address of a const item into a pointer. When this is the case, the
pointer must be defined as a pointer to a const item. For example, consider the following
array definition:

43 //***
44 // Definition of totalSales. This function uses a pointer to *
45 // accept the address of an array. The function returns the total *
46 // of the elements in the array. *
47 //***
48 double totalSales(double *arr, int size)
49 {
50 double sum = 0.0;

 51
52 for (int count = 0; count < size; count++)
53 {
54 sum += *arr;
55 arr++;
56 }
57 return sum;
58 }

Program Output with Example Input Shown in Bold
Enter the sales figure for quarter 1: 10263.98 [Enter]
Enter the sales figure for quarter 2: 12369.69 [Enter]
Enter the sales figure for quarter 3: 11542.13 [Enter]
Enter the sales figure for quarter 4: 14792.06 [Enter]
The total sales for the year are $48967.86

NOTE: The two previous statements could be combined into the following statement:

sum += *arr++;

The * operator will first dereference arr, then the ++ operator will increment the address
in arr.

514 Chapter 9 Pointers

const int SIZE = 6;
const double payRates[SIZE] = { 18.55, 17.45,
 12.85, 14.97,
 10.35, 18.89 };

In this code, payRates is an array of const doubles. This means that each element in the
array is a const double, and the compiler will not allow us to write code that changes
the array’s contents. If we want to pass the payRates array into a pointer parameter, the
parameter must be declared as a pointer to const double. The following function shows
such an example:

void displayPayRates(const double *rates, int size)
{
 // Set numeric output formatting.
 cout << setprecision(2) << fixed << showpoint;

 // Display all the pay rates.
 for (int count = 0; count < size; count++)
 {
 cout << "Pay rate for employee " << (count + 1)
 << " is $" << *(rates + count) << endl;
 }
}

In the function header, notice that the rates parameter is defined as a pointer to const
double. It should be noted that the word const is applied to the thing that rates points
to, not rates itself. This is illustrated in Figure 9-8.

Because rates is a pointer to a const, the compiler will not allow us to write code that
changes the thing that rates points to.

In passing the address of a constant into a pointer variable, the variable must be defined as
a pointer to a constant. If the word const had been left out of the definition of the rates
parameter, a compiler error would have resulted.

Passing a Nonconstant Argument into a Pointer to a Constant
Although a constant’s address can be passed only to a pointer to const, a pointer to const
can also receive the address of a nonconstant item. For example, look at Program 9-13.

Figure 9-8

const double *rates

The asterisk indicates that
rates is a pointer.

This is what rates points to.

9.7 Pointers as Function Parameters 515

Program 9-13

 1 // This program demonstrates a pointer to const parameter
 2 #include <iostream>
 3 using namespace std;
 4
 5 void displayValues(const int *, int);
 6
 7 int main()
 8 {
 9 // Array sizes
10 const int SIZE = 6;
11
12 // Define an array of const ints.
13 const int array1[SIZE] = { 1, 2, 3, 4, 5, 6 };
14
15 // Define an array of nonconst ints.
16 int array2[SIZE] = { 2, 4, 6, 8, 10, 12 };
17
18 // Display the contents of the const array.
19 displayValues(array1, SIZE);
20
21 // Display the contents of the nonconst array.
22 displayValues(array2, SIZE);
23 return 0;
24 }
25
26 //***
27 // The displayValues function uses a pointer to *
28 // parameter to display the contents of an array. *
29 //***
30
31 void displayValues(const int *numbers, int size)
32 {
33 // Display all the values.
34 for (int count = 0; count < size; count++)
35 {
36 cout << *(numbers + count) << " ";
37 }
38 cout << endl;
39 }

Program Output
1 2 3 4 5 6
2 4 6 8 10 12

NOTE: When you are writing a function that uses a pointer parameter, and the function
is not intended to change the data the parameter points to, it is always a good idea to
make the parameter a pointer to const. Not only will this protect you from writing code
in the function that accidentally changes the argument, but the function will be able to
accept the addresses of both constant and nonconstant arguments.

516 Chapter 9 Pointers

Constant Pointers
In the previous section we discussed pointers to const. That is, pointers that point to
const data. You can also use the const key word to define a constant pointer. Here is the
difference between a pointer to const and a const pointer:

• A pointer to const points to a constant item. The data that the pointer points to
cannot change, but the pointer itself can change.

• With a const pointer, it is the pointer itself that is constant. Once the pointer is
initialized with an address, it cannot point to anything else.

The following code shows an example of a const pointer.

int value = 22;
int * const ptr = &value;

Notice in the definition of ptr the word const appears after the asterisk. This means that
ptr is a const pointer. This is illustrated in Figure 9-9. In the code, ptr is initialized with
the address of the value variable. Because ptr is a constant pointer, a compiler error will
result if we write code that makes ptr point to anything else. An error will not result,
however, if we use ptr to change the contents of value. This is because value is not con-
stant, and ptr is not a pointer to const.

Constant pointers must be initialized with a starting value, as shown in the previous
example code. If a constant pointer is used as a function parameter, the parameter will be
initialized with the address that is passed as an argument into it, and cannot be changed to
point to anything else while the function is executing. Here is an example that attempts to
violate this rule:

void setToZero(int * const ptr)
{
 ptr = 0; // ERROR!! Cannot change the contents of ptr.
}

This function’s parameter, ptr, is a const pointer. It will not compile because we cannot
have code in the function that changes the contents of ptr. However, ptr does not point
to a const, so we can have code that changes the data that ptr points to. Here is an
example of the function that will compile:

void setToZero(int * const ptr)
{
 *ptr = 0;
}

Figure 9-9

int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

9.7 Pointers as Function Parameters 517

Although the parameter is const pointer, we can call the function multiple times with dif-
ferent arguments. The following code will successfully pass the addresses of x, y, and z to
the setToZero function:

int x, y, z;
// Set x, y, and z to 0.
setToZero(&x);
setToZero(&y);
setToZero(&z);

Constant Pointers to Constants
So far, when using const with pointers we’ve seen pointers to constants and we’ve seen
constant pointers. You can also have constant pointers to constants. For example, look at
the following code:

int value = 22;
const int * const ptr = &value;

In this code ptr is a const pointer to a const int. Notice the word const appears before
int, indicating that ptr points to a const int, and it appears after the asterisk, indicating
that ptr is a constant pointer. This is illustrated in Figure 9-10.

In the code, ptr is initialized with the address of value. Because ptr is a const pointer, we
cannot write code that makes ptr point to anything else. Because ptr is a pointer to const,
we cannot use it to change the contents of value. The following code shows one more
example of a const pointer to a const. This is another version of the displayValues
function in Program 9-13.

void displayValues(const int * const numbers, int size)
{
 // Display all the values.
 for (int count = 0; count < size; count++)
 {
 cout << *(numbers + count) << " ";
 }
 cout << endl;
}

In this code, the parameter numbers is a const pointer to a const int. Although we can
call the function with different arguments, the function itself cannot change what
numbers points to, and it cannot use numbers to change the contents of an argument.

Figure 9-10

const int * const ptr

* const indicates that
ptr is a constant pointer.

This is what ptr points to.

518 Chapter 9 Pointers

9.8 Focus on Software Engineering:
Dynamic Memory Allocation

CONCEPT: Variables may be created and destroyed while a program is running.

As long as you know how many variables you will need during the execution of a pro-
gram, you can define those variables up front. For example, a program to calculate the
area of a rectangle will need three variables: one for the rectangle’s length, one for the rect-
angle’s width, and one to hold the area. If you are writing a program to compute the pay-
roll for 30 employees, you’ll probably create an array of 30 elements to hold the amount
of pay for each person.

But what about those times when you don’t know how many variables you need? For
instance, suppose you want to write a test-averaging program that will average any num-
ber of tests. Obviously the program would be very versatile, but how do you store the
individual test scores in memory if you don’t know how many variables to define? Quite
simply, you allow the program to create its own variables “on the fly.” This is called
dynamic memory allocation, and is only possible through the use of pointers.

To dynamically allocate memory means that a program, while running, asks the computer
to set aside a chunk of unused memory large enough to hold a variable of a specific data
type. Let’s say a program needs to create an integer variable. It will make a request to the
computer that it allocate enough bytes to store an int. When the computer fills this
request, it finds and sets aside a chunk of unused memory large enough for the variable. It
then gives the program the starting address of the chunk of memory. The program can
only access the newly allocated memory through its address, so a pointer is required to use
those bytes.

The way a C++ program requests dynamically allocated memory is through the new oper-
ator. Assume a program has a pointer to an int defined as

int *iptr;

Here is an example of how this pointer may be used with the new operator:

iptr = new int;

This statement is requesting that the computer allocate enough memory for a new int
variable. The operand of the new operator is the data type of the variable being created.
Once the statement executes, iptr will contain the address of the newly allocated mem-
ory. This is illustrated in Figure 9-11. A value may be stored in this new variable by deref-
erencing the pointer:

*iptr = 25;

Any other operation may be performed on the new variable by simply using the derefer-
enced pointer. Here are some example statements:

cout << *iptr; // Display the contents of the new variable.
cin >> *iptr; // Let the user input a value.
total += *iptr; // Use the new variable in a computation.

9.8 Focus on Software Engineering: Dynamic Memory Allocation 519

Although the statements above illustrate the use of the new operator, there’s little purpose
in dynamically allocating a single variable. A more practical use of the new operator is to
dynamically create an array. Here is an example of how a 100-element array of integers
may be allocated:

iptr = new int[100];

Once the array is created, the pointer may be used with subscript notation to access it. For
instance, the following loop could be used to store the value 1 in each element:

for (int count = 0; count < 100; count++)
 iptr[count] = 1;

But what if there isn’t enough free memory to accommodate the request? What if the
program asks for a chunk large enough to hold a 100,000-element array of floats,
and that much memory isn’t available? When memory cannot be dynamically allo-
cated, C++ throws an exception and terminates the program. Throwing an exception
means the program signals that an error has occurred.

Programs created with older C++ compilers behave differently when memory cannot be
dynamically allocated. Under older compilers, the new operator returns the address 0, or
NULL when it fails to allocate the requested amount of memory. (NULL is a named con-
stant, defined in the iostream file, that stands for address 0.) A program created with an
older compiler should always check to see if the new operator returns NULL, as shown in
the following code:

iptr = new int[100];
if (iptr == NULL)
{
 cout << "Error allocating memory!\n";
 return;
}

Figure 9-11

Pool of unused memory

This chunk of memory
starts at address 0xA652

iptr variable

Dynamically
Allocating an

Array

520 Chapter 9 Pointers

The if statement determines whether iptr points to address 0. If it does, then the new
operator was unable to allocate enough memory for the array. In this case, an error mes-
sage is displayed and the return statement terminates the function.

When a program is finished using a dynamically allocated chunk of memory, it should
release it for future use. The delete operator is used to free memory that was allocated
with new. Here is an example of how delete is used to free a single variable, pointed to
by iptr:

delete iptr;

If iptr points to a dynamically allocated array, the [] symbol must be placed between
delete and iptr:

delete [] iptr;

Program 9-14 demonstrates the use of new and delete. It asks for sales figures for any
number of days. The figures are stored in a dynamically allocated array, and then totaled
and averaged.

Appendix F on the Student CD discusses garbage collection in .NET.

NOTE: A pointer that contains the address 0 is called a null pointer.

WARNING! The address 0 is considered an unusable address. Most computers store
special operating system data structures in the lower areas of memory. Anytime you use
the new operator with an older compiler, you should always test the pointer for the NULL
address before you use it.

WARNING! Only use pointers with delete that were previously used with new. If you
use a pointer with delete that does not reference dynamically allocated memory,
unexpected problems could result!

Program 9-14

 1 // This program totals and averages the sales figures for any
 2 // number of days. The figures are stored in a dynamically
 3 // allocated array.
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double *sales, // To dynamically allocate an array
11 total = 0.0, // Accumulator
12 average; // To hold average sales

9.8 Focus on Software Engineering: Dynamic Memory Allocation 521

13 int numDays, // To hold the number of days of sales
14 count; // Counter variable
15
16 // Get the number of days of sales.
17 cout << "How many days of sales figures do you wish ";
18 cout << "to process? ";
19 cin >> numDays;
20
21 // Dynamically allocate an array large enough to hold
22 // that many days of sales amounts.
23 sales = new double[numDays];
24
25 // Get the sales figures for each day.
26 cout << "Enter the sales figures below.\n";
27 for (count = 0; count < numDays; count++)
28 {
29 cout << "Day " << (count + 1) << ": ";
30 cin >> sales[count];
31 }
32
33 // Calculate the total sales
34 for (count = 0; count < numDays; count++)
35 {
36 total += sales[count];
37 }
38
39 // Calculate the average sales per day
40 average = total / numDays;
41
42 // Display the results
43 cout << fixed << showpoint << setprecision(2);
44 cout << "\n\nTotal Sales: $" << total << endl;
45 cout << "Average Sales: $" << average << endl;
46
47 // Free dynamically allocated memory
48 delete [] sales;
49 sales = 0; // Make sales point to null.
50
51 return 0;
52 }

Program Output with Example Input Shown in Bold
How many days of sales figures do you wish to process? 5 [Enter]
Enter the sales figures below.
Day 1: 898.63 [Enter]
Day 2: 652.32 [Enter]
Day 3: 741.85 [Enter]
Day 4: 852.96 [Enter]
Day 5: 921.37 [Enter]

Total Sales: $4067.13
Average Sales: $813.43

522 Chapter 9 Pointers

The statement in line 23 dynamically allocates memory for an array of doubles, using the
value in numDays as the number of elements. The new operator returns the starting
address of the chunk of memory, which is assigned to the sales pointer variable. The
sales variable is then used throughout the program to store the sales amounts in the
array and perform the necessary calculations. In line 48 the delete operator is used to
free the allocated memory.

Notice that in line 49 the value 0 is assigned to the sales pointer. It is a good practice to
store 0 in a pointer variable after using delete on it. First, it prevents code from inadvert-
ently using the pointer to access the area of memory that was freed. Second, it prevents
errors from occurring if delete is accidentally called on the pointer again. The delete
operator is designed to have no effect when used on a null pointer.

9.9 Focus on Software Engineering:
Returning Pointers from Functions

CONCEPT: Functions can return pointers, but you must be sure the item the pointer
references still exists.

Like any other data type, functions may return pointers. For example, the following func-
tion locates the null terminator in a string and returns a pointer to it.

char *findNull(char *str)
{
 char *ptr = str;

 while (*ptr != '\0')
 ptr++;
 return ptr;
}

The char * return type in the function header indicates the function returns a pointer to a
char:

char *findNull(char *str)

When writing functions that return pointers, however, you should take care not to create
elusive bugs. For instance, see if you can determine what’s wrong with the following func-
tion.

char *getName()
{
 char name[81];
 cout << "Enter your name: ";
 cin.getline(name, 81);
 return name;
}

The problem, of course, is that the function returns a pointer to an array that no longer
exists. Because name is defined locally, it is destroyed when the function terminates.
Attempting to use the pointer will result in erroneous and unpredictable results.

9.9 Focus on Software Engineering: Returning Pointers from Functions 523

You should only return a pointer from a function if it is

• A pointer to an item that was passed into the function as an argument
• A pointer to a dynamically allocated chunk of memory

For instance, the following function is acceptable:

char *getName(char *name)
{
 cout << "Enter your name: ";
 cin.getline(name, 81);
 return name;
}

This function accepts a pointer to the memory location where the user’s input is to be
stored. Because the pointer references a memory location that was valid prior to the func-
tion being called, it is safe to return a pointer to the same location. Here is another accept-
able function:

char *getName()
{
 char *name;

 name = new char[81];
 cout << "Enter your name: ";
 cin.getline(name, 81);
 return name;
}

This function uses the new operator to allocate a section of memory. This memory will
remain allocated until the delete operator is used or the program ends, so it’s safe to
return a pointer to it.

Program 9-15 shows another example. This program uses a function, getRandomNumbers,
to get a pointer to an array of random numbers. The function accepts an integer argument
that is the number of random numbers in the array. The function dynamically allocates an
array, uses the system clock to seed the random number generator, populates the array
with random values, and then returns a pointer to the array.

Program 9-15

 1 // This program demonstrates a function that returns
 2 // a pointer.
 3 #include <iostream>
 4 #include <cstdlib> // For rand and srand
 5 #include <ctime> // For the time function
 6 using namespace std;
 7
 8 // Function prototype
 9 int *getRandomNumbers(int);
10

(program continues)

524 Chapter 9 Pointers

11 int main()
12 {
13 int *numbers; // To point to the numbers
14
15 // Get an array of five random numbers.
16 numbers = getRandomNumbers(5);
17
18 // Display the numbers.
19 for (int count = 0; count < 5; count++)
20 cout << numbers[count] << endl;
21
22 // Free the memory.
23 delete [] numbers;
24 numbers = 0;
25 return 0;
26 }
27
28 //**
29 // The getRandomNumbers function returns a pointer *
30 // to an array of random integers. The parameter *
31 // indicates the number of numbers requested. *
32 //**
33
34 int *getRandomNumbers(int num)
35 {
36 int *arr; // Array to hold the numbers
37
38 // Return null if num is zero or negative.
39 if (num <= 0)
40 return NULL;
41
42 // Dynamically allocate the array.
43 arr = new int[num];
44
45 // Seed the random number generator by passing
46 // the return value of time(0) to srand.
47 srand(time(0));
48
49 // Populate the array with random numbers.
50 for (int count = 0; count < num; count++)
51 arr[count] = rand();
52
53 // Return a pointer to the array.
54 return arr;
55 }

Program Output
2712
9656
24493
12483
7633

Program 9-15 (continued)

9.9 Focus on Software Engineering: Returning Pointers from Functions 525

In the Spotlight

Suppose you are developing a program that works with arrays of integers, and you find
that you frequently need to duplicate the arrays. Rather than rewriting the array-duplicating
code each time you need it, you decide to write a function that accepts an array and its
size as arguments, creates a new array that is a copy of the argument array, and returns a
pointer to the new array. The function will work as follows:

Accept an array and its size as arguments.
Dynamically allocate a new array that is the same size as the argument array.
Copy the elements of the argument array to the new array.
Return a pointer to the new array.

Program 9-16 demonstrates the function, which is named duplicateArray.

Program 9-16

 1 // This program uses a function to duplicate
 2 // an int array of any size.
 3 #include <iostream>
 4 using namespace std;
 5
 6 // Function prototype
 7 int *duplicateArray(const int *, int);
 8 void displayArray(int[], int);
 9
 10 int main()
 11 {
 12 // Define constants for the array sizes.
 13 const int SIZE1 = 5, SIZE2 = 7, SIZE3 = 10;
 14
 15 // Define three arrays of different sizes.
 16 int array1[SIZE1] = { 100, 200, 300, 400, 500 };
 17 int array2[SIZE2] = { 10, 20, 30, 40, 50, 60, 70 };
 18 int array3[SIZE3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 19
 20 // Define three pointers for the duplicate arrays.
 21 int *dup1, *dup2, *dup3;
 22
 23 // Duplicate the arrays.
 24 dup1 = duplicateArray(array1, SIZE1);
 25 dup2 = duplicateArray(array2, SIZE2);
 26 dup3 = duplicateArray(array3, SIZE3);
 27
 28 // Display the original arrays.
 29 cout << "Here are the original array contents:\n";
 30 displayArray(array1, SIZE1);
 31 displayArray(array2, SIZE2);
 32 displayArray(array3, SIZE3);
 33
 34 // Display the new arrays.

(program continues)

526 Chapter 9 Pointers

 35 cout << "\nHere are the duplicate arrays:\n";
 36 displayArray(dup1, SIZE1);
 37 displayArray(dup2, SIZE2);
 38 displayArray(dup3, SIZE3);
 39
 40 // Free the dynamically allocated memory and
 41 // set the pointers to 0.
 42 delete [] dup1;
 43 delete [] dup2;
 44 delete [] dup3;
 45 dup1 = 0;
 46 dup2 = 0;
 47 dup3 = 0;
 48 return 0;
 49 }
 50 //***
 51 // The duplicateArray function accepts an int array *
 52 // and an int that indicates the array's size. The *
 53 // function creates a new array that is a duplicate *
 54 // of the argument array and returns a pointer to the *
 55 // new array. If an invalid size is passed the *
 56 // function returns null. *
 57 //***
 58
 59 int *duplicateArray(const int *arr, int size)
 60 {
 61 int *newArray;
 62
 63 // Validate the size. If 0 or a negative
 64 // number was passed, return null.
 65 if (size <= 0)
 66 return NULL;
 67
 68 // Allocate a new array.
 69 newArray = new int[size];
 70
 71 // Copy the array's contents to the
 72 // new array.
 73 for (int index = 0; index < size; index++)
 74 newArray[index] = arr[index];
 75
 76 // Return a pointer to the new array.
 77 return newArray;
 78 }
 79
 80 //**
 81 // The displayArray function accepts an int array *
 82 // and its size as arguments and displays the *
 83 // contents of the array. *
 84 //**
 85
 86 void displayArray(int arr[], int size)

Program 9-16 (continued)

9.9 Focus on Software Engineering: Returning Pointers from Functions 527

The duplicateArray function appears in lines 59 through 78. The if statement in lines
65 through 66 validates that size contains a valid array size. If size is 0 or less, the func-
tion immediately returns NULL to indicate that an invalid size was passed.

Line 69 allocates a new array and assigns its address to the newArray pointer. Then the
loop in lines 73 through 74 copies the elements of the arr parameter to the new array.
Then the return statement in line 77 returns a pointer to the new array.

Checkpoint
9.9 Assuming arr is an array of ints, will each of the following program segments

display “True” or “False”?
A) if (arr < &arr[1])

 cout << "True";
else
 cout << "False";

B) if (&arr[4] < &arr[1])
 cout << "True";
else
 cout << "False";

C) if (arr != &arr[2])
 cout << "True";
else
 cout << "False";

D) if (arr != &arr[0])
 cout << "True";
else
 cout << "False";

9.10 Give an example of the proper way to call the following function:

void makeNegative(int *val)
{
 if (*val > 0)

 87 {
 88 for (int index = 0; index < size; index++)
 89 cout << arr[index] << " ";
 90 cout << endl;
 91 }

Program Output
Here are the original array contents:
100 200 300 400 500
10 20 30 40 50 60 70
1 2 3 4 5 6 7 8 9 10

Here are the duplicate arrays:
100 200 300 400 500
10 20 30 40 50 60 70
1 2 3 4 5 6 7 8 9 10

528 Chapter 9 Pointers

 *val = -(*val);
}

9.11 Complete the following program skeleton. When finished, the program will ask
the user for a length (in inches), convert that value to centimeters, and display the
result. You are to write the function convert. (Note: 1 inch = 2.54 cm. Do not
modify function main.)

#include <iostream>
#include <iomanip>
using namespace std;

// Write your function prototype here.

int main()
{
 double measurement;

 cout << "Enter a length in inches, and I will convert\n";
 cout << "it to centimeters: ";
 cin >> measurement;
 convert(&measurement);
 cout << fixed << setprecision(4);
 cout << "Value in centimeters: " << measurement << endl;
 return 0;
}
//
// Write the function convert here.
//

9.12 Look at the following array definition:

const int numbers[SIZE] = { 18, 17, 12, 14 };

Suppose we want to pass the array to the function processArray in the follow-
ing manner:

processArray(numbers, SIZE);

Which of the following function headers is the correct one for the processArray
function?
A) void processArray(const int *arr, int size)

B) void processArray(int * const arr, int size)

9.13 Assume ip is a pointer to an int. Write a statement that will dynamically allocate
an integer variable and store its address in ip. Write a statement that will free the
memory allocated in the statement you wrote above.

9.14 Assume ip is a pointer to an int. Then, write a statement that will dynamically
allocate an array of 500 integers and store its address in ip. Write a statement
that will free the memory allocated in the statement you just wrote.

9.15 What is a null pointer?

9.16 Give an example of a function that correctly returns a pointer.

9.17 Give an example of a function that incorrectly returns a pointer.

9.10 Focus on Problem Solving and Program Design: A Case Study 529

9.10
Focus on Problem Solving and Program Design:
A Case Study

CONCEPT: This case study demonstrates how an array of pointers can be used to
display the contents of a second array in sorted order, without sorting the
second array.

The United Cause, a charitable relief agency, solicits donations from businesses. The local
United Cause office received the following donations from the employees of CK Graphics, Inc.:

$5, $100, $5, $25, $10, $5, $25, $5, $5, $100, $10, $15, $10, $5, $10

The donations were received in the order they appear. The United Cause manager has
asked you to write a program that displays the donations in ascending order, as well as in
their original order.

Variables
Table 9-1 shows the major variables needed.

Programming Strategy
In this program the donations array will contain the donations in the order they were
received. The elements of the arrPtr array are pointers to integers. They will point to the
elements of the donations array, as illustrated in Figure 9-12.

Table 9-1

Variable Description
NUM_DONATIONS A constant integer initialized with the number of donations received from CK

Graphics, Inc. This value will be used in the definition of the program’s arrays.
donations An array of integers containing the donation amounts.
arrPtr An array of pointers to integers. This array has the same number of elements as

the donations array. Each element of arrPtr will be initialized to point to an
element of the donations array.

Figure 9-12

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

530 Chapter 9 Pointers

The arrPtr array will initially be set up to point to the elements of the donations array
in their natural order. In other words, arrPtr[0] will point to donations[0],
arrPtr[1] will point to donations[1], and so forth. In that arrangement, the following
statement would cause the contents of donations[5] to be displayed:

cout << *(arrPtr[5]) << endl;

After the arrPtr array is sorted, however, arrPtr[0] will point to the smallest element of
donations, arrPtr[1] will point to the next-to-smallest element of donations, and so
forth. This is illustrated in Figure 9-13.

This technique gives us access to the elements of the donations array in a sorted order
without actually disturbing the contents of the donations array itself.

Modules
The program will consist of the functions listed in Table 9-2.

Function main
In addition to containing the variable definitions, function main sets up the arrPtr array
to point to the elements of the donations array. Then the function arrSelectSort is

Figure 9-13

Table 9-2

Function Description
main The program’s main function. It calls the program’s other functions.
arrSelectSort Performs an ascending order selection sort on its parameter, arr, which is an

array of pointers. Each element of arr points to an element of a second array.
After the sort, arr will point to the elements of the second array in ascending
order.

showArray Displays the contents of its parameter, arr, which is an array of integers. This
function is used to display the donations in their original order.

showArrPtr Accepts an array of pointers to integers as an argument. Displays the contents
of what each element of the array points to. This function is used to display the
contents of the donations array in sorted order.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

arrPtr Array

[0]

[1]

[2]

[3]

[4]

[5]

[6]

donations Array

9.10 Focus on Problem Solving and Program Design: A Case Study 531

called to sort the elements of arrPtr. Last, the functions showArrPtr and showArray are
called to display the donations. Here is the pseudocode for main’s executable statements:

For count is set to the values 0 through the number of donations
 Set arrPtr[count] to the address of donations[count].
End For
Call arrSelectSort.
Call showArrPtr.
Call showArray.

The arrSelectSort Function
The arrSelectSort function is a modified version of the selection sort algorithm shown
in Chapter 8. The only difference is that arr is now an array of pointers. Instead of sort-
ing on the contents of arr’s elements, arr is sorted on the contents of what its elements
point to. Here is the pseudocode:

For startScan is set to the values 0 up to (but not including) the
 next-to-last subscript in arr
 Set index variable to startScan.
 Set minIndex variable to startScan.
 Set minElem pointer to arr[startScan].
 For index variable is set to the values from (startScan + 1) through
 the last subscript in arr
 If *(arr[index]) is less than *minElem
 Set minElem to arr[index].
 Set minIndex to index.
 End If.
 End For.
 Set arr[minIndex] to arr[startScan].
 Set arr[startScan] to minElem.
End For.

The showArrPtr Function
The showArrPtr function accepts an array of pointers as its argument. It displays the val-
ues pointed to by the elements of the array. Here is its pseudocode:

For every element in the arr
 Dereference the element and display what it points to.
End For.

The showArray Function
The showArray function simply displays the contents of arr sequentially. Here is its
pseudocode:

For every element in arr
 Display the element’s contents
End For.

532 Chapter 9 Pointers

The Entire Program
Program 9-17 shows the entire program’s source code.

Program 9-17

1 // This program shows the donations made to the United Cause
2 // by the employees of CK Graphics, Inc. It displays
3 // the donations in order from lowest to highest
4 // and in the original order they were received.
5 #include <iostream>
6 using namespace std;
7
8 // Function prototypes
9 void arrSelectSort(int *[], int);

 10 void showArray(int [], int);
 11 void showArrPtr(int *[], int);
 12
 13 int main()
 14 {
 15 const int NUM_DONATIONS = 15; // Number of donations
 16
 17 // An array containing the donation amounts.
 18 int donations[NUM_DONATIONS] = {5, 100, 5, 25, 10,
 19 5, 25, 5, 5, 100,
 20 10, 15, 10, 5, 10 };
 21
 22 // An array of pointers to int.
 23 int *arrPtr[NUM_DONATIONS];
 24
 25 // Each element of arrPtr is a pointer to int. Make each
 26 // element point to an element in the donations array.
 27 for (int count = 0; count < NUM_DONATIONS; count++)
 28 arrPtr[count] = &donations[count];
 29
 30 // Sort the elements of the array of pointers.
 31 arrSelectSort(arrPtr, NUM_DONATIONS);
 32
 33 // Display the donations using the array of pointers. This
 34 // will display them in sorted order.
 35 cout << "The donations, sorted in ascending order, are: \n";
 36 showArrPtr(arrPtr, NUM_DONATIONS);
 37
 38 // Display the donations in their original order.
 39 cout << "The donations, in their original order, are: \n";
 40 showArray(donations, NUM_DONATIONS);
 41 return 0;
 42 }
 43
 44 //**
 45 // Definition of function arrSelectSort. *

9.10 Focus on Problem Solving and Program Design: A Case Study 533

 46 // This function performs an ascending order selection sort on *
 47 // arr, which is an array of pointers. Each element of arr *
 48 // points to an element of a second array. After the sort, *
 49 // arr will point to the elements of the second array in *
 50 // ascending order. *
 51 //**
 52
 53 void arrSelectSort(int *arr[], int size)
 54 {
 55 int startScan, minIndex;
 56 int *minElem;
 57
 58 for (startScan = 0; startScan < (size - 1); startScan++)
 59 {
 60 minIndex = startScan;
 61 minElem = arr[startScan];
 62 for(int index = startScan + 1; index < size; index++)
 63 {
 64 if (*(arr[index]) < *minElem)
 65 {
 66 minElem = arr[index];
 67 minIndex = index;
 68 }
 69 }
 70 arr[minIndex] = arr[startScan];
 71 arr[startScan] = minElem;
 72 }
 73 }
 74
 75 //***
 76 // Definition of function showArray. *
 77 // This function displays the contents of arr. size is the *
 78 // number of elements. *
 79 //***
 80
 81 void showArray(int arr[], int size)
 82 {
 83 for (int count = 0; count < size; count++)
 84 cout << arr[count] << " ";
 85 cout << endl;
 86 }
 87
 88 //**
 89 // Definition of function showArrPtr. *
 90 // This function displays the contents of the array pointed to *
 91 // by arr. size is the number of elements. *
 92 //**
 93
 94 void showArrPtr(int *arr[], int size)
 95 {
 96 for (int count = 0; count < size; count++)

(program continues)

534 Chapter 9 Pointers

Review Questions and Exercises

Short Answer
1. What does the indirection operator do?

2. Look at the following code.

int x = 7;
int *iptr = &x;

What will be displayed if you send the expression *iptr to cout? What happens if
you send the expression ptr to cout?

3. So far you have learned three different uses for the * operator. What are they?

4. What math operations are allowed on pointers?

5. Assuming that ptr is a pointer to an int, what happens when you add 4 to ptr?

6. Look at the following array definition.

int numbers[] = { 2, 4, 6, 8, 10 };

What will the following statement display?

cout << *(numbers + 3) << endl;

7. What is the purpose of the new operator?

8. What happens when a program uses the new operator to allocate a block of memory,
but the amount of requested memory isn’t available? How do programs written with
older compilers handle this?

9. What is the purpose of the delete operator?

10. Under what circumstances can you successfully return a pointer from a function?

11. What is the difference between a pointer to a constant and a constant pointer?

12. What are two advantages of declaring a pointer parameter as a constant pointer?

Fill-in-the-Blank

13. Each byte in memory is assigned a unique __________.

14. The __________ operator can be used to determine a variable’s address.

Program 9-17 (continued)

 97 cout << *(arr[count]) << " ";
 98 cout << endl;
 99 }

Program Output
The donations, sorted in ascending order, are:
5 5 5 5 5 5 10 10 10 10 15 25 25 100 100
The donations, in their original order, are:
5 100 5 25 10 5 25 5 5 100 10 15 10 5 10

Review Questions and Exercises 535

15. __________ variables are designed to hold addresses.

16. The __________ operator can be used to work with the variable a pointer points to.

17. Array names can be used as __________, and vice versa.

18. Creating variables while a program is running is called __________.

19. The __________ operator is used to dynamically allocate memory.

20. Under older compilers, if the new operator cannot allocate the amount of memory
requested, it returns __________.

21. A pointer that contains the address 0 is called a(n) __________ pointer.

22. When a program is finished with a chunk of dynamically allocated memory, it should
free it with the __________ operator.

23. You should only use pointers with delete that were previously used with
__________.

Algorithm Workbench

24. Look at the following code.

double value = 29.7;
double *ptr = &value;

Write a cout statement that uses the ptr variable to display the contents of the value
variable.

25. Look at the following array definition.

int set[10];

Write a statement using pointer notation that stores the value 99 in set[7];

26. Write code that dynamically allocates an array of 20 integers, then uses a loop to
allow the user to enter values for each element of the array.

27. Assume that tempNumbers is a pointer that points to a dynamically allocated array.
Write code that releases the memory used by the array.

28. Look at the following function definition.

void getNumber(int &n)
{
 cout << "Enter a number: ";
 cin >> n;
}

In this function, the parameter n is a reference variable. Rewrite the function so that n
is a pointer.

29. Write the definition of ptr, a pointer to a constant int.

30. Write the definition of ptr, a constant pointer to an int.

True or False
31. T F Each byte of memory is assigned a unique address.

32. T F The * operator is used to get the address of a variable.

33. T F Pointer variables are designed to hold addresses.

536 Chapter 9 Pointers

34. T F The & symbol is called the indirection operator.

35. T F The & operator dereferences a pointer.

36. T F When the indirection operator is used with a pointer variable, you are actually
working with the value the pointer is pointing to.

37. T F Array names cannot be dereferenced with the indirection operator.

38. T F When you add a value to a pointer, you are actually adding that number times
the size of the data type referenced by the pointer.

39. T F The address operator is not needed to assign an array’s address to a pointer.

40. T F You can change the address that an array name points to.

41. T F Any mathematical operation, including multiplication and division, may be
performed on a pointer.

42. T F Pointers may be compared using the relational operators.

43. T F When used as function parameters, reference variables are much easier to work
with than pointers.

44. T F The new operator dynamically allocates memory.

45. T F A pointer variable that has not been initialized is called a null pointer.

46. T F The address 0 is generally considered unusable.

47. T F In using a pointer with the delete operator, it is not necessary for the pointer
to have been previously used with the new operator.

Find the Error

Each of the following definitions and program segments has errors. Locate as many as you can.
48. int ptr*;

49. int x, *ptr;
&x = ptr;

50. int x, *ptr;
*ptr = &x;

51. int x, *ptr;
ptr = &x;
ptr = 100; // Store 100 in x
cout << x << endl;

52. int numbers[] = {10, 20, 30, 40, 50};
cout << "The third element in the array is ";
cout << *numbers + 3 << endl;

53. int values[20], *iptr;
iptr = values;
iptr *= 2;

54. float level;
int fptr = &level;

55. int *iptr = &ivalue;
int ivalue;

56. void doubleVal(int val)
{
 *val *= 2;
}

Review Questions and Exercises 537

57. int *pint;
new pint;

58. int *pint;
pint = new int;
if (pint == NULL)
 *pint = 100;
else
 cout << "Memory allocation error\n";

59. int *pint;
pint = new int[100]; // Allocate memory

.

.
 Code that processes the array.

 .
 .
delete pint; // Free memory

60. int *getNum()
{
 int wholeNum;

 cout << "Enter a number: ";
 cin >> wholeNum;
 return &wholeNum;
}

61. const int arr[] = { 1, 2, 3 };
int *ptr = arr;

62. void doSomething(int * const ptr)
{
 int localArray[] = { 1, 2, 3 };
 ptr = localArray;
}

Programming Challenges
1. Array Allocator

Write a function that dynamically allocates an array of integers. The function should
accept an integer argument indicating the number of elements to allocate. The func-
tion should return a pointer to the array.

2. Test Scores #1

Write a program that dynamically allocates an array large enough to hold a user-
defined number of test scores. Once all the scores are entered, the array should be
passed to a function that sorts them in ascending order. Another function should be
called that calculates the average score. The program should display the sorted list of
scores and averages with appropriate headings. Use pointer notation rather than array
notation whenever possible.

Input Validation: Do not accept negative numbers for test scores.

3. Drop Lowest Score

Modify Problem 2 above so the lowest test score is dropped. This score should not be
included in the calculation of the average.

538 Chapter 9 Pointers

4. Test Scores #2

Modify the program of Programming Challenge 2 to allow the user to enter name-score
pairs. For each student taking a test, the user types the student’s name followed by the
student’s integer test score. Modify the sorting function so it takes an array holding the
student names and an array holding the student test scores. When the sorted list of
scores is displayed, each student’s name should be displayed along with his or her score.
In stepping through the arrays, use pointers rather than array subscripts.

5. getString Function

Write a function named getString that has a local char array of 80 elements. The
function should ask the user to enter a sentence, and store the sentence in the array.
Then the function should dynamically allocate a char array just large enough to hold
the sentence, plus the null terminator. It should copy the sentence to the dynamically
allocated array, and then return a pointer to the array. Demonstrate the function in a
complete program.

6. Case Study Modification #1

Modify Program 9-17 (the United Cause case study program) so it can be used with
any set of donations. The program should dynamically allocate the donations array
and ask the user to input its values.

7. Case Study Modification #2

Modify Program 9-17 (the United Cause case study program) so the arrptr array is
sorted in descending order instead of ascending order.

8. Mode Function

In statistics, the mode of a set of values is the value that occurs most often or with the
greatest frequency. Write a function that accepts as arguments the following:
A) An array of integers
B) An integer that indicates the number of elements in the array

The function should determine the mode of the array. That is, it should determine
which value in the array occurs most often. The mode is the value the function should
return. If the array has no mode (none of the values occur more than once), the func-
tion should return -1. (Assume the array will always contain nonnegative values.)

Demonstrate your pointer prowess by using pointer notation instead of array nota-
tion in this function.

9. Median Function

In statistics, when a set of values is sorted in ascending or descending order, its median
is the middle value. If the set contains an even number of values, the median is the
mean, or average, of the two middle values. Write a function that accepts as arguments
the following:
A) An array of integers
B) An integer that indicates the number of elements in the array

Solving the
getString

Function
Problem

Review Questions and Exercises 539

The function should determine the median of the array. This value should be returned
as a double. (Assume the values in the array are already sorted.)

Demonstrate your pointer prowess by using pointer notation instead of array nota-
tion in this function.

10. Reverse Array

Write a function that accepts an int array and the array’s size as arguments. The
function should create a copy of the array, except that the element values should be
reversed in the copy. The function should return a pointer to the new array. Demon-
strate the function in a complete program.

11. Pointer Rewrite

The following function uses reference variables as parameters. Rewrite the function so
it uses pointers instead of reference variables, and then demonstrate the function in a
complete program.

int doSomething(int &x, int &y)
{
 int temp = x;
 x = y * 10;
 y = temp * 10;
 return x + y;
}

12. Array Expander

Write a function that accepts an int array and the array’s size as arguments. The
function should create a new array that is twice the size of the argument array. The
function should copy the contents of the argument array to the new array, and initial-
ize the unused elements of the second array with 0. The function should return a
pointer to the new array.

13. Element Shifter

Write a function that accepts an int array and the array’s size as arguments. The
function should create a new array that is one element larger than the argument array.
The first element of the new array should be set to 0. Element 0 of the argument array
should be copied to element 1 of the new array, element 1 of the argument array
should be copied to element 2 of the new array, and so forth. The function should
return a pointer to the new array.

14. Movie Statistics

Write a program that can be used to gather statistical data about the number of mov-
ies college students see in a month. The program should perform the following steps:
A) Ask the user how many students were surveyed. An array of integers with this

many elements should then be dynamically allocated.
B) Allow the user to enter the number of movies each student saw into the array.
C) Calculate and display the average, median, and mode of the values entered. (Use

the functions you wrote in Problems 8 and 9 to calculate the median and mode.)

Input Validation: Do not accept negative numbers for input.

This page intentionally left blank

541

C
H

A
P

T
E

R

10 Characters, Strings,
and the string Class

10.1 Character Testing

CONCEPT: The C++ library provides several functions for testing characters. To use
these functions you must include the cctype header file.

The C++ library provides several functions that allow you to test the value of a character.
These functions test a single char argument and return either true or false.* For exam-
ple, the following program segment uses the isupper function to determine whether the
character passed as an argument is an uppercase letter. If it is, the function returns true.
Otherwise, it returns false.

char letter = 'a';
if (isupper(letter))

cout << "Letter is uppercase.\n";
else

cout << "Letter is lowercase.\n";

TOPICS

10.1 Character Testing
10.2 Character Case Conversion
10.3 Review of the Internal Storage

of C-Strings
10.4 Library Functions for Working

with C-Strings
10.5 String/Numeric Conversion Functions

10.6 Focus on Software Engineering:
Writing Your Own C-String-
Handling Functions

10.7 The C++ string Class
10.8 Focus on Problem Solving

and Program Design: A Case Study

* These functions actually return an int value. The return value is nonzero to indicate true, or
zero to indicate false.

542 Chapter 10 Characters, Strings, and the string Class

Because the variable letter, in this example, contains a lowercase character, isupper
returns false. The if statement will cause the message “Letter is lowercase” to be
displayed.

Table 10-1 lists several character-testing functions. Each of these is prototyped in the
cctype header file, so be sure to include that file when using the functions.

Program 10-1 uses several of the functions shown in Table 10-1. It asks the user to
input a character and then displays various messages, depending upon the return value
of each function.

Table 10-1

Character
Function Description
isalpha Returns true (a nonzero number) if the argument is a letter of the alphabet. Returns

0 if the argument is not a letter.
isalnum Returns true (a nonzero number) if the argument is a letter of the alphabet or a

digit. Otherwise it returns 0.
isdigit Returns true (a nonzero number) if the argument is a digit from 0 through 9.

Otherwise it returns 0.
islower Returns true (a nonzero number) if the argument is a lowercase letter. Otherwise, it

returns 0.
isprint Returns true (a nonzero number) if the argument is a printable character (including

a space). Returns 0 otherwise.
ispunct Returns true (a nonzero number) if the argument is a printable character other than

a digit, letter, or space. Returns 0 otherwise.
isupper Returns true (a nonzero number) if the argument is an uppercase letter. Otherwise,

it returns 0.
isspace Returns true (a nonzero number) if the argument is a whitespace character.

Whitespace characters are any of the following:

space '' vertical tab '\v'
newline '\n' tab '\t'

Otherwise, it returns 0.

Program 10-1

 1 // This program demonstrates some character-testing functions.
 2 #include <iostream>
 3 #include <cctype>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char input;
 9

10.1 Character Testing 543

Program 10-2 shows a more practical application of the character testing functions. It
tests a seven-character customer number to determine whether it is in the proper format.

10 cout << "Enter any character: ";
11 cin.get(input);
12 cout << "The character you entered is: " << input << endl;
13 if (isalpha(input))
14 cout << "That's an alphabetic character.\n";
15 if (isdigit(input))
16 cout << "That's a numeric digit.\n";
17 if (islower(input))
18 cout << "The letter you entered is lowercase.\n";
19 if (isupper(input))
20 cout << "The letter you entered is uppercase.\n";
21 if (isspace(input))
22 cout << "That's a whitespace character.\n";
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter any character: A [Enter]
The character you entered is: A
That's an alphabetic character.
The letter you entered is uppercase.

Program Output with Different Example Input Shown in Bold
Enter any character: 7 [Enter]
The character you entered is: 7
That's a numeric digit.

Program 10-2

 1 // This program tests a customer number to determine whether
 2 // it is in the proper format.
 3 #include <iostream>
 4 #include <cctype>
 5 using namespace std;
 6
 7 // Function prototype
 8 bool testNum(char [], int);
 9
10 int main()
11 {
12 const int SIZE = 8; // Array size
13 char customer[SIZE]; // To hold a customer number
14
15 // Get the customer number.
16 cout << "Enter a customer number in the form ";
17 cout << "LLLNNNN\n";
18 cout << "(LLL = letters and NNNN = numbers): ";
19 cin.getline(customer, SIZE);

(program continues)

544 Chapter 10 Characters, Strings, and the string Class

20
21 // Determine whether it is valid.
22 if (testNum(customer, SIZE))
23 cout << "That's a valid customer number.\n";
24 else
25 {
26 cout << "That is not the proper format of the ";
27 cout << "customer number.\nHere is an example:\n";
28 cout << " ABC1234\n";
29 }
30 return 0;
31 }
32
33 //**
34 // Definition of function testNum. *
35 // This function determines whether the custNum parameter *
36 // holds a valid customer number. The size parameter is *
37 // the size of the custNum array. *
38 //**
39
40 bool testNum(char custNum[], int size)
41 {
42 int count; // Loop counter
43
44 // Test the first three characters for alphabetic letters.
45 for (count = 0; count < 3; count++)
46 {
47 if (!isalpha(custNum[count]))
48 return false;
49 }
50
51 // Test the remaining characters for numeric digits.
52 for (count = 3; count < size - 1; count++)
53 {
54 if (!isdigit(custNum[count]))
55 return false;
56 }
57 return true;
58 }

Program Output with Example Input Shown in Bold
Enter a customer number in the form LLLNNNN
(LLL = letters and NNNN = numbers): RQS4567 [Enter]
That's a valid customer number.

Program Output with Different Example Input Shown in Bold
Enter a customer number in the form LLLNNNN
(LLL = letters and NNNN = numbers): AX467T9 [Enter]
That is not the proper format of the customer number.
Here is an example:
 ABC1234

Program 10-2 (continued)

10.2 Character Case Conversion 545

In this program, the customer number is expected to consist of three alphabetic letters fol-
lowed by four numeric digits. The testNum function accepts an array argument and tests
the first three characters with the following loop in lines 45 through 49:

for (count = 0; count < 3; count++)
{
 if (!isalpha(custNum[count]))
 return false;
}

The isalpha function returns true if its argument is an alphabetic character. The ! oper-
ator is used in the if statement to determine whether the tested character is NOT alpha-
betic. If this is so for any of the first three characters, the function testNum returns false.
Likewise, the next four characters are tested to determine whether they are numeric digits
with the following loop in lines 52 through 56:

for (count = 3; count < size - 1; count++)
{
 if (!isdigit(custNum[count]))
 return false;
}

The isdigit function returns true if its argument is the character representation of any of
the digits 0 through 9. Once again, the ! operator is used to determine whether the tested
character is not a digit. If this is so for any of the last four characters, the function testNum
returns false. If the customer number is in the proper format, the function will cycle
through both the loops without returning false. In that case, the last line in the function is
the return true statement, which indicates the customer number is valid.

10.2 Character Case Conversion

CONCEPT: The C++ library offers functions for converting a character to upper- or
lowercase.

The C++ library provides two functions, toupper and tolower, for converting the case of
a character. The functions are described in Table 10-2. (These functions are prototyped in
the header file cctype, so be sure to include it.)

Each of the functions in Table 10-2 accepts a single character argument. If the argument is
a lowercase letter, the toupper function returns its uppercase equivalent. For example, the
following statement will display the character A on the screen:

cout << toupper('a');

Table 10-2

Function Description
toupper Returns the uppercase equivalent of its argument.
tolower Returns the lowercase equivalent of its argument.

546 Chapter 10 Characters, Strings, and the string Class

If the argument is already an uppercase letter, toupper returns it unchanged. The follow-
ing statement causes the character Z to be displayed:

cout << toupper('Z');

Any nonletter argument passed to toupper is returned as it is. Each of the following state-
ments display toupper’s argument without any change:

cout << toupper('*'); // Displays *
cout << toupper ('&'); // Displays &
cout << toupper('%'); // Displays %

toupper and tolower don’t actually cause the character argument to change, they simply
return the upper- or lowercase equivalent of the argument. For example, in the following
program segment, the variable letter is set to the value ‘A’. The tolower function
returns the character ‘a’, but letter still contains ‘A’.

char letter = 'A';
cout << tolower(letter) << endl;
cout << letter << endl;

These statements will cause the following to be displayed:

a
A

Program 10-3 demonstrates the toupper function in an input validation loop.

Program 10-3

 1 // This program calculates the area of a circle. It asks the user
 2 // if he or she wishes to continue. A loop that demonstrates the
 3 // toupper function repeats until the user enters 'y', 'Y',
 4 // 'n', or 'N'.
 5 #include <iostream>
 6 #include <cctype>
 7 #include <iomanip>
 8 using namespace std;
 9
10 int main()
11 {
12 const double PI = 3.14159; // Constant for pi
13 double radius; // The circle's radius
14 char goAgain; // To hold Y or N
15
16 cout << "This program calculates the area of a circle.\n";
17 cout << fixed << setprecision(2);
18
19 do
20 {
21 // Get the radius and display the area.
22 cout << "Enter the circle's radius: ";
23 cin >> radius;
24 cout << "The area is " << (PI * radius * radius);
25 cout << endl;

10.2 Character Case Conversion 547

In lines 28 and 29 the user is prompted to enter either Y or N to indicate whether he or
she wants to calculate another area. We don’t want the program to be so picky that it
accepts only uppercase Y or uppercase N. Lowercase y or lowercase n are also acceptable.
The input validation loop must be written so to reject anything except 'Y', 'y', 'N', or
'n'. One way to do this would be to test the goAgain variable in four relational expres-
sions, as shown here:

while (goAgain != 'Y' && goAgain != 'y' &&
 goAgain != 'N' && goAgain != 'N')

Although there is nothing wrong with this code, we could use the toupper function to get
the uppercase equivalent of goAgain, and make only two comparisons. This is the
approach taken in line 32:

while (toupper(goAgain) != 'Y' && toupper(goAgain) != 'N')

Another approach would have been to use the tolower function to get the lowercase
equivalent of goAgain. Here is an example:

while (tolower(goAgain) != 'y' && tolower(goAgain) != 'n')

Either approach will yield the same results.

26
27 // Does the user want to do this again?
28 cout << "Calculate another? (Y or N) ";
29 cin >> goAgain;
30
31 // Validate the input.
32 while (toupper(goAgain) != 'Y' && toupper(goAgain) != 'N')
33 {
34 cout << "Please enter Y or N: ";
35 cin >> goAgain;
36 }
37
38 } while (toupper(goAgain) == 'Y');
39 return 0;
40 }

Program Output with Example Input Shown in Bold
This program calculates the area of a circle.
Enter the circle's radius: 10 [Enter]
The area is 314.16
Calculate another? (Y or N) b Enter]
Please enter Y or N: y [Enter]
Enter the circle's radius: 1 [Enter]
The area is 3.14
Calculate another? (Y or N) n [Enter]

548 Chapter 10 Characters, Strings, and the string Class

Checkpoint
10.1 Write a short description of each of the following functions:

isalpha
isalnum
isdigit
islower
isprint
ispunct
isupper
isspace
toupper
tolower

10.2 Write a statement that will convert the contents of the char variable big to low-
ercase. The converted value should be assigned to the variable little.

10.3 Write an if statement that will display the word “digit” if the variable ch con-
tains a numeric digit. Otherwise, it should display “Not a digit.”

10.4 What is the output of the following statement?

cout << toupper(tolower('A'));

10.5 Write a loop that asks the user "Do you want to repeat the program or quit?
(R/Q)". The loop should repeat until the user has entered an R or Q (either
uppercase or lowercase).

10.3 Review of the Internal Storage of C-Strings

CONCEPT: In C++, a C-string is a sequence of characters stored in consecutive
memory locations, terminated by a null character.

In this section we will discuss strings, string literals, and C-strings. Although you have pre-
viously encountered these terms, make sure you understand what each means and the dif-
ferences between them.

String is a generic term that describes any consecutive sequence of characters. A word, a
sentence, a person’s name, and the title of a song are all strings. In a program, a string may
be constant or variable in nature, and may be stored in a variety of ways.

A string literal or string constant is the literal representation of a string in a program. In
C++, string literals are enclosed in double quotation marks, such as:

"What is your name?"

The term C-string describes a string whose characters are stored in consecutive memory
locations and are followed by a null character, or null terminator. Recall that a null char-
acter or null terminator is a byte holding the ASCII code 0. For example, Figure 10-1 illus-
trates how the string “Bailey” is stored in memory, as a C-string.

10.3 Review of the Internal Storage of C-Strings 549

The purpose of the null terminator is to mark the end of the C-string. Without it, there
would be no way for a function to know the length of a C-string argument.

String Literals
A string literal or string constant is enclosed in a set of double quotation marks (" "). For
example, here are five string literals:

"Have a nice day."
"What is your name?"
"John Smith"
"Please enter your age:"
"Part Number 45Q1789"

All of a program’s string literals are stored in memory as C-strings, with the null termina-
tor automatically appended. For example, look at Program 10-4.

This program contains two string literals:

"C++ programming is great fun!"
"Do you want to see the message again? "

Although the strings are not stored in arrays, they are still part of the program’s data. The
first string occupies 30 bytes of memory (including the null terminator), and the second
string occupies 39 bytes. They appear in memory in the following forms:

Figure 10-1

NOTE: Remember that \0 (“slash zero”) is the escape sequence representing the null
terminator. It stands for the ASCII code 0.

Program 10-4

 1 // This program contains string literals.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 char again;
 8
 9 do
10 {
11 cout << "C++ programming is great fun!" << endl;
12 cout << "Do you want to see the message again? ";
13 cin >> again;
14 } while (again == 'Y' || again == 'y');
15 return 0;
16 }

B a i l e y \0

550 Chapter 10 Characters, Strings, and the string Class

It’s important to realize that a string literal has its own storage location, just like a variable
or an array. When a string literal appears in a statement, it’s actually its memory address
that C++ uses. Look at the following example:

cout << "Do you want to see the message again? ";

In this statement, the memory address of the string literal “Do you want to see the mes-
sage again? ” is passed to the cout object. cout displays the consecutive characters found
at this address. It stops displaying the characters when a null terminator is encountered.

Strings Stored in Arrays
Quite often programs need to accept string input, change the contents of a string, or
access a string for performing comparisons. One method of storing nonliteral strings is in
character arrays, as C-strings. When defining a character array for holding a C-string, be
sure the array is large enough for the null terminator. For example, the following
12-element array can hold a string of no more than 11 characters:

char company[12];

String input can be performed by the cin object. For example, the following statement
allows the user to enter a string (with no whitespace characters) into the company array:

cin >> company;

Recall from Chapter 7 that an array name with no brackets and no subscript is converted
into the beginning address of the array. In the previous statement, company indicates the
address in memory where the string is to be stored. Of course, cin has no way of knowing
that company only has 12 elements. If the user enters a string of 30 characters, cin will
write past the end of the array. This can be prevented by using cin’s getline member
function. Assume the following array has been defined in a program:

char line[80];

The following statement uses cin’s getline member function to get a line of input
(including whitespace characters) and store it in the line array:

cin.getline(line, 80);

As you will recall from Chapter 3, the first argument tells getline where to store the
string input. This statement indicates the starting address of the line array as the storage
location for the string. The second argument (80) indicates the maximum length of the
string, including the null terminator. cin will read 79 characters, or until the user presses
the [Enter] key, whichever comes first. cin will automatically append the null terminator
to the end of the string.

Once a string is stored in an array, it can be processed using standard subscript notation.
For example, Program 10-5 displays a string stored in an array. It uses a loop to display
each character in the array until the null terminator is encountered.

C + + p r o g r a m m i n g i s g r e a t f u n ! \0

D o y o u w a n t t o s e e t h e m e s s a g

e a g a i n ? \0

10.4 Library Functions for Working with C-Strings 551

10.4 Library Functions for Working with C-Strings

CONCEPT: The C++ library has numerous functions for handling C-strings. These
functions perform various tests and manipulations, and require that the
cstring header file be included.

The strlen Function
Working with C-strings can be tedious. As discussed in Chapter 7, just copying a C-string
from one array to another isn’t a simple matter. Fortunately, the C++ library provides
many functions for manipulating and testing strings. For instance, the following program
segment uses the strlen function to determine the length of the string stored in name:

char name[50] = "Thomas Edison";
int length;
length = strlen(name);

Program 10-5

 1 // This program displays a string stored in a char array.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 const int SIZE = 80; // Array size
 8 char line[SIZE]; // To hold a line of input
 9 int count = 0; // Loop counter variable
10
11 // Get a line of input.
12 cout << "Enter a sentence of no more than "
13 << (SIZE - 1) << " characters:\n";
14 cin.getline(line, SIZE);
15
16 // Display the input one character at a time.
17 cout << "The sentence you entered is:\n";
18 while (line[count] != '\0')
19 {
20 cout << line[count];
21 count++;
22 }
23 return 0;
24 }

Program Output with Example Input Shown in Bold
Enter a sentence of no more than 79 characters:
C++ is challenging but fun! [Enter]
The sentence you entered is:
C++ is challenging but fun!

552 Chapter 10 Characters, Strings, and the string Class

The strlen function accepts a pointer to a C-string as its argument. It returns the length
of the string, which is the number of characters up to, but not including, the null termina-
tor. As a result, the variable length will have the number 13 stored in it. The length of a
string isn’t to be confused with the size of the array holding it. Remember, the only infor-
mation being passed to strlen is the beginning address of a C-string. It doesn’t know
where the array ends, so it looks for the null terminator to indicate the end of the string.

When using a C-string handling function, you must pass one or more C-strings as argu-
ments. This means passing the address of the C-string, which may be accomplished by
using any of the following as arguments:

• The name of the array holding the C-string
• A pointer variable that holds the address of the C-string
• A literal string

Anytime a literal string is used as an argument to a function, the address of the literal string
is passed. Here is an example of the strlen function being used with such an argument:

length = strlen("Thomas Edison");

The strcat Function
The strcat function accepts two pointers to C-strings as its arguments. The function con-
catenates, or appends one string to another. The following code shows an example of its use:

char string1[13] = "Hello ";
char string2[7] = "World!";
cout << string1 << endl;
cout << string2 << endl;
strcat(string1, string2);
cout << string1 << endl;

These statements will cause the following output:

Hello
World!
Hello World!

The strcat function copies the contents of string2 to the end of string1. In this exam-
ple, string1 contains the string “Hello ” before the call to strcat. After the call, it con-
tains the string “Hello World!”. Figure 10-2 shows the contents of both arrays before and
after the function call.

Notice the last character in string1 (before the null terminator) is a space. The strcat
function doesn’t insert a space, so it’s the programmer’s responsibility to make sure one is
already there, if needed. It’s also the programmer’s responsibility to make sure the array
holding string1 is large enough to hold string1 plus string2 plus a null terminator.

NOTE: strlen, as well as the other functions discussed in this section, require the
cstring header file to be included.

10.4 Library Functions for Working with C-Strings 553

Here is a program segment that uses the sizeof operator to test an array’s size before
strcat is called:

if (sizeof(string1) >= (strlen(string1) + strlen(string2) + 1))
 strcat(string1, string2);
else
 cout << "String1 is not large enough for both strings.\n";

The strcpy Function
Recall from Chapter 7 that one array cannot be assigned to another with the = operator.
Each individual element must be assigned, usually inside a loop. The strcpy function can
be used to copy one string to another. Here is an example of its use:

char name[20];
strcpy(name, "Albert Einstein");

The strcpy function’s two arguments are C-string addresses. The second C-string is cop-
ied to the first C-string, including the null terminator. (The first argument usually refer-
ences an array.) In this example, the strcpy function will copy the string “Albert
Einstein” to the name array.

If anything is already stored in the location referenced by the first argument, it is overwrit-
ten, as shown in the following program segment:

char string1[10] = "Hello", string2[10] = "World!";
cout << string1 << endl;
cout << string2 << endl;
strcpy(string1, string2);
cout << string1 << endl;
cout << string2 << endl;

Figure 10-2

WARNING! If the array holding the first string isn’t large enough to hold both strings,
strcat will overflow the boundaries of the array.

H e l l o \0

W o r l d ! \0

H e l l o o r l d ! \0W

W o r l d ! \0

string1

string2

string1

string2

Before the call to strcat (string1, string2):

After the call to strcat (string1, string2):

554 Chapter 10 Characters, Strings, and the string Class

Here is the output:

Hello
World!
World!
World!

The strncat and strncpy Functions
Because the the strcat and strcpy functions can potentially overwrite the bounds of an
array, they make it possible to write unsafe code. As an alternative, you should use
strncat and strncpy whenever possible.

The strncat functions works like strcat, except it takes a third argument specifying the
maximum number of characters from the second string to append to the first. Here is an
example call to strncat:

strncat(string1, string2, 10);

When this statement executes, strncat will append no more than 10 characters from
string2 to string1. The following code shows an example of calculating the maximum
number of characters that can be appended to an array.

int maxChars;
char string1[17] = "Welcome ";
char string2[18] = "to North Carolina";

cout << string1 << endl;
cout << string2 << endl;

maxChars = sizeof(string1) - (strlen(string1) + 1);

strncat(string1, string2, maxChars);
cout << string1 << endl;

The sixth statement in this code calculates the number of empty elements in string1. It
does this by subtracting the length of the string stored in the array plus 1 for the null ter-
minator. This code will cause the following output:

Welcome
to North Carolina
Welcome to North

The strncpy function allows you to copy a specified number of characters from a string
to a destination. Calling strncpy is similar to calling strcpy, except you pass a third
argument specifying the maximum number of characters from the second string to copy to
the first. Here is an example call to strncpy:

strncpy(string1, string2, 5);

WARNING! Being true to C++’s nature, strcpy performs no bounds checking. The
array specified by the first argument will be overflowed if it isn’t large enough to hold the
string specified by the second argument.

10.4 Library Functions for Working with C-Strings 555

When this statement executes, strncpy will copy no more than five characters from
string2 to string1. However, if the specified number of characters is less than or equal
to the length of string2, a null terminator is not appended to string1. If the specified
number of characters is greater than the length of string2, then string1 is padded with
null terminators, up to the specified number of characters. The following code shows an
example using the strncpy function.

int maxChars;
char string1[11];
char string2[] = "I love C++ programming!";

maxChars = sizeof(string1) - 1;
strncpy(string1, string2, maxChars);

// Put the null terminator at the end.
string1[10] = '\0';
cout << string1 << endl;

Notice that a statement was written to put the null terminator at the end of string1. This
is because maxChars was less than the length of string2, and strncpy did not automati-
cally place a null terminator there.

The strstr Function
The strstr function searches for a string inside of a string. For instance, it could be used
to search for the string “seven” inside the larger string “Four score and seven years ago.”
The function’s first argument is the string to be searched, and the second argument is the
string to look for. If the function finds the second string inside the first, it returns the
address of the occurrence of the second string within the first string. Otherwise it returns
the address 0, or the NULL address. Here is an example:

char arr[] = "Four score and seven years ago";
char *strPtr;
cout << arr << endl;
strPtr = strstr(arr, "seven"); // search for "seven"
cout << strPtr << endl;

In this code, strstr will locate the string “seven” inside the string “Four score and seven
years ago.” It will return the address of the first character in “seven” which will be stored
in the pointer variable strPtr. If run as part of a complete program, this segment will dis-
play the following:

Four score and seven years ago
seven years ago

The strstr function can be useful in any program that must locate data inside one or
more strings. Program 10-6, for example, stores a list of product numbers and descrip-
tions in an array of C-strings. It allows the user to look up a product description by enter-
ing all or part of its product number.

556 Chapter 10 Characters, Strings, and the string Class

Program 10-6

 1 // This program uses the strstr function to search an array.
 2 #include <iostream>
 3 #include <cstring> // For strstr
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Constants for array lengths
 9 const int NUM_PRODS = 5; // Number of products
10 const int LENGTH = 27; // String length
11
12 // Array of products
13 char products[NUM_PRODS][LENGTH] =
14 { "TV327 31-inch Television",
15 "CD257 CD Player",
16 "TA677 Answering Machine",
17 "CS109 Car Stereo",
18 "PC955 Personal Computer" };
19
20 char lookUp[LENGTH]; // To hold user's input
21 char *strPtr = NULL; // To point to the found product
22 int index; // Loop counter
23
24 // Prompt the user for a product number.
25 cout << "\tProduct Database\n\n";
26 cout << "Enter a product number to search for: ";
27 cin.getline(lookUp, LENGTH);
28
29 // Search the array for a matching substring
30 for (index = 0; index < NUM_PRODS; index++)
31 {
32 strPtr = strstr(products[index], lookUp);
33 if (strPtr != NULL)
34 break;
35 }
36
37 // If a matching substring was found, display the product info.
38 if (strPtr != NULL)
39 cout << products[index] << endl;
40 else
41 cout << "No matching product was found.\n";
42
43 return 0;
44 }

Program Output with Example Input Shown in Bold
Product Database

Enter a product to search for: CS [Enter]
CS109 Car Stereo

10.4 Library Functions for Working with C-Strings 557

Table 10-3 summarizes the string-handling functions discussed here, as well as the strcmp
function that was discussed in Chapter 4. (All the functions listed require the cstring
header file.)

In Program 10-6, the for loop in lines 30 through 35 cycles through each C-string in the
array calling the following statement:

strPtr = strstr(prods[index], lookUp);

The strstr function searches the string referenced by prods[index] for the name
entered by the user, which is stored in lookUp. If lookUp is found inside prods[index],
the function returns its address. In that case, the following if statement causes the for
loop to terminate:

if (strPtr != NULL)
break;

Outside the loop, the following if else statement in lines 38 through 41 determines
whether the string entered by the user was found in the array. If not, it informs the user
that no matching product was found. Otherwise, the product number and description are
displayed:

if (strPtr == NULL)
cout << "No matching product was found.\n";

else
cout << prods[index] << endl;

Program Output with Different Example Input Shown in Bold
Product Database

Enter a product to search for: AB [Enter]
No matching product was found.

Table 10-3

Function Description
strlen Accepts a C-string or a pointer to a C-string as an argument. Returns the length of the

C-string (not including the null terminator.)
Example Usage: len = strlen(name);

strcat Accepts two C-strings or pointers to two C-strings as arguments. The function appends
the contents of the second string to the first C-string. (The first string is altered, the
second string is left unchanged.)
Example Usage: strcat(string1, string2);

strcpy Accepts two C-strings or pointers to two C-strings as arguments. The function copies the
second C-string to the first C-string. The second C-string is left unchanged.
Example Usage: strcpy(string1, string2);

(table continues)

558 Chapter 10 Characters, Strings, and the string Class

Checkpoint
10.6 Write a short description of each of the following functions:

strlen
strcat
strcpy
strncat
strncpy
strcmp
strstr

10.7 What will the following program segment display?

char dog[] = "Fido";
cout << strlen(dog) << endl;

10.8 What will the following program segment display?

char string1[16] = "Have a ";
char string2[9] = "nice day";
strcat(string1, string2);
cout << string1 << endl;
cout << string2 << endl;

10.9 Write a statement that will copy the string “Beethoven” to the array composer.

strncat Accepts two C-strings or pointers to two C-strings, and an integer argument. The third
argument, an integer, indicates the maximum number of characters to copy from the
second C-string to the first C-string.
Example Usage: strncat(string1, string2, n);

strncpy Accepts two C-strings or pointers to two C-strings, and an integer argument. The third
argument, an integer, indicates the maximum number of characters to copy from the
second C-string to the first C-string. If n is less than the length of string2, the null
terminator is not automatically appended to string1. If n is greater than the length of
string2, string1 is padded with ‘\0’ characters.
Example Usage: strncpy(string1, string2, n);

strcmp Accepts two C-strings or pointers to two C-strings arguments. If string1 and string2
are the same, this function returns 0. If string2 is alphabetically greater than string1,
it returns a negative number. If string2 is alphabetically less than string1, it returns a
positive number.
Example Usage: if (strcmp(string1, string2))

strstr Accepts two C-strings or pointers to two C-strings as arguments. Searches for the first
occurrence of string2 in string1. If an occurrence of string2 is found, the function
returns a pointer to it. Otherwise, it returns a NULL pointer (address 0).
Example Usage: cout << strstr(string1, string2);

Table 10-3 (continued)

Function Description

10.5 String/Numeric Conversion Functions 559

10.10 When complete, the following program skeleton will search for the string
“Windy” in the array place. If place contains “Windy” the program will display
the message “Windy found.” Otherwise it will display “Windy not found.”

#include <iostream>
// include any other necessary header files
using namespace std;

int main()
{

char place[] = "The Windy City";
// Complete the program. It should search the array place
// for the string "Windy" and display the message "Windy
// found" if it finds the string. Otherwise, it should
// display the message "Windy not found."
return 0;

}

10.5 String/Numeric Conversion Functions

CONCEPT: The C++ library provides functions for converting a string representation
of a number to a numeric data type and vice versa. These functions
require the cstdlib header file to be included.

There is a great difference between a number that is stored as a string and one stored as a
numeric value. The string “26792” isn’t actually a number, but a series of ASCII codes
representing the individual digits of the number. It uses six bytes of memory (including the
null terminator). Because it isn’t an actual number, it’s not possible to perform mathemat-
ical operations with it, unless it is first converted to a numeric value.

Several functions exist in the C++ library for converting string representations of numbers
into numeric values, and vice versa. Table 10-4 shows some of these. Note that all of these
functions require the cstdlib header file.

Table 10-4

Function Description
atoi Accepts a C-string as an argument. The function converts the C-string to an integer and returns that

value.
Example Usage: num = atoi("4569");

atol Accepts a C-string as an argument. The function converts the C-string to a long integer and returns
that value.
Example Usage: lnum = atol("500000");

atof Accepts a C-string as an argument. The function converts the C-string to a double and returns that
value.
Example Usage: fnum = atof("3.14159");

itoa Converts an integer to a C-string.* The first argument, value, is the integer. The result will be
stored at the location pointed to by the second argument, string. The third argument, base, is an
integer. It specifies the numbering system that the converted integer should be expressed in (8 =
octal, 10 = decimal, 16 = hexadecimal, etc.).
Example Usage: itoa(value, string, base);

*The itoa function is not supported by all compilers.

560 Chapter 10 Characters, Strings, and the string Class

The atoi Function
The atoi function converts a string to an integer. It accepts a C-string argument and
returns the converted integer value. Here is an example of how to use it:

int num;
num = atoi("1000");

In these statements, atoi converts the string “1000” into the integer 1000. Once the vari-
able num is assigned this value, it can be used in mathematical operations or any task
requiring a numeric value.

The atol Function
The atol function works just like atoi, except the return value is a long integer. Here is
an example:

long bigNum;
bigNum = atol("500000");

The atof Function
The atof function accepts a C-string argument and converts it to a double. The numeric
double value is returned, as shown here:

double num;
num = atof("12.67");

Although the atof function returns a double, you can still use it to convert a C-string to
a float. For example, look at the following code.

float x;
x = atof("3.4");

The atof function converts the string “3.4” to the double value 3.4. Because 3.4 is
within the range of a float, it can be stored in a float variable without the loss of data.

The itoa Function
The itoa function is similar to atoi, but it works in reverse. It converts a numeric integer
into a string representation of the integer. The itoa function accepts three arguments: the
integer value to be converted, a pointer to the location in memory where the string is to be
stored, and a number that represents the base of the converted value. Here is an example:

char numArray[10];
itoa(1200, numArray, 10);
cout << numArray << endl;

NOTE: If a string that cannot be converted to a numeric value is passed to any of these
functions, the function’s behavior is undefined by C++. Many compilers, however, will
perform the conversion process until an invalid character is encountered. For example,
atoi("123x5") might return the integer 123. It is possible that these functions will
return 0 if they cannot successfully convert their argument.

10.5 String/Numeric Conversion Functions 561

This program segment converts the integer value 1200 to a string. The string is stored in
the array numArray. The third argument, 10, means the number should be written in deci-
mal, or base 10 notation. The output of the cout statement is

1200

Now let’s look at Program 10-7, which uses a string-to-number conversion function,
atoi. It allows the user to enter a series of values, or the letters Q or q to quit. The average
of the numbers is then calculated and displayed.

WARNING! As always, C++ performs no array bounds checking. Make sure the array
whose address is passed to itoa is large enough to hold the converted number, including
the null terminator.

Program 10-7

 1 // This program demonstrates the strcmp and atoi functions.
 2 #include <iostream>
 3 #include <cctype> // For tolower
 4 #include <cstring> // For strcmp
 5 #include <cstdlib> // For atoi
 6 using namespace std;
 7
 8 int main()
 9 {
10 const int SIZE = 20; // Array size
11 char input[SIZE]; // To hold user input
12 int total = 0; // Accumulator
13 int count = 0; // Loop counter
14 double average; // To hold the average of numbers
15
16 // Get the first number.
17 cout << "This program will average a series of numbers.\n";
18 cout << "Enter the first number or Q to quit: ";
19 cin.getline(input, SIZE);
20
21 // Process the number and subsequent numbers.
22 while (tolower(input[0]) != 'q')
23 {
24 total += atoi(input); // Keep a running total
25 count++; // Count the numbers entered
26 // Get the next number.
27 cout << "Enter the next number or Q to quit: ";
28 cin.getline(input, SIZE);
29 }
30
31 // If any numbers were entered, display their average.
32 if (count != 0)
33 {
34 average = static_cast<double>(total) / count;
35 cout << "Average: " << average << endl;
36 }
37 return 0;
38 }

(program output continues)

562 Chapter 10 Characters, Strings, and the string Class

In line 22, the following while statement uses the tolower function to determine whether
the first character entered by the user is “q” or “Q”.

while (tolower(input[0]) != 'q')

If the user hasn’t entered ‘Q’ or ‘q’ the loop performs an iteration. The following state-
ment, in line 24, uses atoi to convert the string in input to an integer and adds its value to
total:

total += atoi(input); // Keep a running total

The counter is updated in line 25 and then the user is asked for the next number. When all
the numbers are entered, the user terminates the loop by entering ‘Q’ or ‘q’. If one or more
numbers are entered, their average is displayed.

The string-to numeric conversion functions can also help with a common input problem.
Recall from Chapter 3 that using cin >> and then calling cin.get causes problems
because the >> operator leaves the newline character in the keyboard buffer. When the
cin.get function executes, the first character it sees in the keyboard buffer is the newline
character, so it reads no further.

The same problem exists when a program uses cin >> and then calls cin.getline to
read a line of input. For example, look at the following code. (Assume idNumber is an int
and name is a char array.)

1 // Get the user's ID number.
2 cout << "What is your ID number? ";
3 cin >> idNumber;
4
5 // Get the user's name.
6 cout << "What is your name? ";
7 cin.getline(name, NAME_SIZE);

Let’s say the user enters 25 and presses Enter when the cin >> statement in line 3 exe-
cutes. The value 25 will be stored in idNumber, and the newline character will be left in the
keyboard buffer. When the cin.getline function is called in line 7, the first character it
sees in the keyboard buffer is the newline character, so it reads no further. It will appear
that the statement in line 7 was skipped.

One work-around that we have used in this book is to call cin.ignore to skip over the
newline character just before calling cin.getline. Another approach is to use

Program Output with Example Input Shown in Bold
This program will average a series of numbers.
Enter the first number or Q to quit: 74 [Enter]
Enter the next number or Q to quit: 98 [Enter]
Enter the next number or Q to quit: 23 [Enter]
Enter the next number or Q to quit: 54 [Enter]
Enter the next number or Q to quit: Q [Enter]
Average: 62.25

Program 10-7 (continued)

10.5 String/Numeric Conversion Functions 563

cin.getline to read all of a program’s input, including numbers. When numeric input
is needed, it is read into a char array as a string, and then converted to the appropriate
numeric data type. Because you aren’t mixing cin >> with cin.getline, the problem
of the remaining newline character doesn’t exist. Program 10-8 shows an example.

Program 10-8

 1 // This program demonstrates how the getline function can
 2 // be used for all of a program's input.
 3 #include <iostream>
 4 #include <cstdlib>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const int INPUT_SIZE = 81; // Size of input array
11 const int NAME_SIZE = 30; // Size of name array
12 char input[INPUT_SIZE]; // To hold a line of input
13 char name[NAME_SIZE]; // To hold a name
14 int idNumber; // To hold an ID number
15 int age; // To hold an age
16 double income; // To hold income
17
18 // Get the user's ID number.
19 cout << "What is your ID number? ";
20 cin.getline(input, INPUT_SIZE); // Read as a string
21 idNumber = atoi(input); // Convert to int
22
23 // Get the user's name. No conversion necessary.
24 cout << "What is your name? ";
25 cin.getline(name, NAME_SIZE);
26
27 // Get the user's age.
28 cout << "How old are you? ";
29 cin.getline(input, INPUT_SIZE); // Read as a string
30 age = atoi(input); // Convert to int
31
32 // Get the user's income.
33 cout << "What is your annual income? ";
34 cin.getline(input, INPUT_SIZE); // Read as a string
35 income = atof(input); // Convert to double
36
37 // Show the resulting data.
38 cout << setprecision(2) << fixed << showpoint;
39 cout << "Your name is " << name
40 <<", you are " << age
41 << " years old,\nand you make $"
42 << income << " per year.\n";
43
44 return 0;
45 }

(program output continues)

564 Chapter 10 Characters, Strings, and the string Class

Checkpoint
10.11 Write a short description of each of the following functions:

atoi
atol
atof
itoa

10.12 Write a statement that will convert the string “10” to an integer and store the
result in the variable num.

10.13 Write a statement that will convert the string “100000” to a long and store the
result in the variable num.

10.14 Write a statement that will convert the string “7.2389” to a double and store the
result in the variable num.

10.15 Write a statement that will convert the integer 127 to a string, stored in base-10
notation in the array value.

10.6 Focus on Software Engineering: Writing Your Own
C-String-Handling Functions

CONCEPT: You can design your own specialized functions for manipulating strings.

By being able to pass arrays as arguments, you can write your own functions for process-
ing C-strings. For example, Program 10-9 uses a function to copy a C-string from one
array to another.

Program Output with Example Input Shown in Bold
What is your ID number? 1234 [Enter]
What is your name? Janice Smith [Enter]
How old are you? 25 [Enter]
What is your annual income? 60000 [Enter]
Your name is Janice Smith, you are 25 years old,
and you make $60000.00 per year.

Program 10-9

 1 // This program uses a function to copy a C-string into an array.
 2 #include <iostream>
 3 using namespace std;
 4
 5 void stringCopy(char [], char []); // Function prototype
 6

Program 10-8 (continued)

Writing a C-
String-

Handling
Function

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 565

Notice the function stringCopy does not accept an argument indicating the size of the
arrays. It simply copies the characters from string1 into string2 until it encounters a
null terminator in string1. When the null terminator is found, the loop has reached the
end of the C-string. The last statement in the function assigns a null terminator (the '\0'
character) to the end of string2, so it is properly terminated.

 7 int main()
 8 {
 9 const int LENGTH = 30; // Size of the arrays
10 char first[LENGTH]; // To hold the user's input
11 char second[LENGTH]; // To hold the copy
12
13 // Get a string from the user and store in first.
14 cout << "Enter a string with no more than "
15 << (LENGTH - 1) << " characters:\n";
16 cin.getline(first, LENGTH);
17
18 // Copy the contents of first to second.
19 stringCopy(first, second);
20
21 // Display the copy.
22 cout << "The string you entered is:\n" << second << endl;
23 return 0;
24 }
25
26 //***
27 // Definition of the stringCopy function. *
28 // This function copies the C-string in string1 to string2. *
29 //***
30
31 void stringCopy(char string1[], char string2[])
32 {
33 int index = 0; // Loop counter
34
35 // Step through string1, copying each element to
36 // string2. Stop when the null character is encountered.
37 while (string1[index] != '\0')
38 {
39 string2[index] = string1[index];
40 index++;
41 }
42
43 // Place a null character in string2.
44 string2[index] = '\0';
45 }

Program Output with Example Input Shown in Bold
Enter a string with no more than 29 characters:

 Thank goodness it’s Friday! [Enter]
The string you entered is:
Thank goodness it's Friday!

566 Chapter 10 Characters, Strings, and the string Class

Program 10-10 uses another C-string-handling function: nameSlice. The program asks
the user to enter his or her first and last names, separated by a space. The function
searches the string for the space, and replaces it with a null terminator. In effect, this
“cuts” the last name off of the string.

WARNING! Because the stringCopy function doesn’t know the size of the second
array, it’s the programmer’s responsibility to make sure the second array is large enough
to hold the string in the first array.

Program 10-10

 1 // This program uses the function nameSlice to cut the last
 2 // name off of a string that contains the user's first and
 3 // last names.
 4 #include <iostream>
 5 using namespace std;
 6
 7 void nameSlice(char []); // Function prototype
 8
 9 int main()
10 {
11 const int SIZE = 41; // Array size
12 char name[SIZE]; // To hold the user's name
13
14 cout << "Enter your first and last names, separated ";
15 cout << "by a space:\n";
16 cin.getline(name, SIZE);
17 nameSlice(name);
18 cout << "Your first name is: " << name << endl;
19 return 0;
20 }
21
22 //**
23 // Definition of function nameSlice. This function accepts a *
24 // character array as its argument. It scans the array looking *
25 // for a space. When it finds one, it replaces it with a null *
26 // terminator. *
27 //**
28
29 void nameSlice(char userName[])
30 {
31 int count = 0; // Loop counter
32
33 // Locate the first space, or the null terminator if there
34 // are no spaces.
35 while (userName[count] != ' ' && userName[count] != '\0')
36 count++;
37
38 // If a space was found, replace it with a null terminator.
39 if (userName[count] == ' ')
40 userName[count] = '\0';
41 }

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 567

The following loop in lines 35 and 36 starts at the first character in the array and scans the
string searching for either a space or a null terminator:

while (userName[count] != ' ' && userName[count] != '\0')
 count++;

If the character in userName[count] isn’t a space or the null terminator, count is incre-
mented, and the next character is examined. With the example input “Jimmy Jones,” the
loop finds the space separating “Jimmy” and “Jones” at userName[5]. When the loop
stops, count is set to 5. This is illustrated in Figure 10-3.

Once the loop has finished, userName[count] will either contain a space or a null termi-
nator. If it contains a space, the following if statement, in lines 39 and 40, replaces it with
a null terminator:

if (userName[count] == ' ')
 userName[count] = '\0';

This is illustrated in Figure 10-4.

The new null terminator now becomes the end of the string.

Program Output with Example Input Shown in Bold
Enter your first and last names, separated by a space:
Jimmy Jones [Enter]
Your first name is: Jimmy

Figure 10-3

NOTE: The loop will also stop if it encounters a null terminator. This is so it will not go
beyond the boundary of the array if the user didn’t enter a space.

Figure 10-4

J i m m y o n e s \0J

0 1 2 3 4 5 7 8 9 10 11 126

The loop stops when count reaches 5 because userName[5] contains a space

Subscripts

J i m m y \0 o n e s \0J

0 1 2 3 4 5 7 8 9 10 11 126

The space is replaced with a null terminator. This now becomes the end of the string.

Subscripts

568 Chapter 10 Characters, Strings, and the string Class

Using Pointers to Pass C-String Arguments
Pointers are extremely useful for writing functions that process C-strings. If the starting
address of a string is passed into a pointer parameter variable, it can be assumed that all
the characters, from that address up to the byte that holds the null terminator, are part of
the string. (It isn’t necessary to know the length of the array that holds the string.)

Program 10-11 demonstrates a function, countChars, that uses a pointer to count the
number of times a specific character appears in a C-string.

Program 10-11

 1 // This program demonstrates a function, countChars, that counts
 2 // the number of times a specific character appears in a string.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int countChars(char *, char); // Function prototype

 7
 8 int main()
 9 {
10 const int SIZE = 51; // Array size
11 char userString[SIZE]; // To hold a string
12 char letter; // The character to count
13
14 // Get a string from the user.
15 cout << "Enter a string (up to 50 characters): ";
16 cin.getline(userString, SIZE);
17
18 // Choose a character whose occurrences within the string will be counted.
19 cout << "Enter a character and I will tell you how many\n";
20 cout << "times it appears in the string: ";
21 cin >> letter;
22
23 // Display the number of times the character appears.
24 cout << letter << " appears ";
25 cout << countChars(userString, letter) << " times.\n";
26 return 0;
27 }
28
29 //**
30 // Definition of countChars. The parameter strPtr is a pointer *
31 // that points to a string. The parameter Ch is a character that *
32 // the function searches for in the string. The function returns *
33 // the number of times the character appears in the string. *
34 //**
35
36 int countChars(char *strPtr, char ch)
37 {
38 int times = 0; // Number of times ch appears in the string
39

10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions 569

In the function countChars, strPtr points to the C-string that is to be searched and ch
contains the character to look for. The while loop in lines 41 through 46 repeats as long
as the character that strPtr points to is not the null terminator:

while (*strPtr != '\0')

Inside the loop, the if statement in line 43 compares the character that strPtr points to
with the character in ch:

if (*strPtr == ch)

If the two are equal, the variable times is incremented in line 44. (times keeps a running
total of the number of times the character appears.) The last statement in the loop is

strPtr++;

This statement increments the address in strPtr. This causes strPtr to point to the next
character in the string. Then, the loop starts over. When strPtr finally reaches the null
terminator, the loop terminates and the function returns the value in times.

See the Student CD for the String Manipulation Case Study.

Checkpoint
10.16 What is the output of the following program?

#include <iostream>
using namespace std;

// Function Prototype
void mess(char []);

int main()
{
 char stuff[] = "Tom Talbert Tried Trains";

40 // Step through the string counting occurrences of ch.
41 while (*strPtr != '\0')
42 {
43 if (*strPtr == ch) // If the current character equals ch...
44 times++; // ... increment the counter
45 strPtr++; // Go to the next char in the string.
46 }
47
48 return times;
49 }

Program Output with Example Input Shown in Bold
Enter a string (up to 50 characters): Starting Out with C++ [Enter]
Enter a character and I will tell you how many
times it appears in the string: t [Enter]
t appears 4 times.

570 Chapter 10 Characters, Strings, and the string Class

 cout << stuff << endl;
 mess(stuff);
 cout << stuff << endl;
 return 0;
}

// Definition of function mess
void mess(char str[])
{
 int step = 0;

 while (str[step] != '\0')
 {
 if (str[step] == 'T')
 str[step] = 'D';
 step++;
 }
}

10.7 The C++ string Class

CONCEPT: Standard C++ provides a special data type for storing and working with
strings.

C++ provides two ways of storing and working with strings. One method is to store them
as C-strings in character array variables. Another way is to store them in string class
objects. Although string class objects are much easier to work with than C-strings, some
prestandard compilers do not support them. Because you are likely to encounter pro-
grams in the workplace that use one or the other approach to handling strings, this book
teaches both.

What Is the string Class?
The string class is an abstract data type. This means it is not a built-in, primitive data
type like int or char. Instead, it is a programmer-defined data type that accompanies the
C++ language. It provides many capabilities that make storing and working with strings
easy and intuitive.

Using the string Class
The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

Now you are ready to define a string object. Defining a string object is similar to defin-
ing a variable of a primitive type. For example, the following statement defines a string
object named movieTitle.

string movieTitle;

Using the
string Class

10.7 The C++ string Class 571

You assign a string value to the movieTitle object with the assignment operator, as
shown in the following statement.

movieTitle = "Wheels of Fury";

The contents of movieTitle is displayed on the screen with the cout object, as shown in
the next statement:

cout << "My favorite movie is " << movieTitle << endl;

Program 10-12 is a complete program that demonstrates the statements shown above.

As you can see, working with string objects is similar to working with variables of other
types. For example, Program 10-13 demonstrates how you can use cin to read a value
from the keyboard into a string object.

Program 10-12

 1 // This program demonstrates the string class.
 2 #include <iostream>
 3 #include <string> // Required for the string class.
 4 using namespace std;
 5
 6 int main()
 7 {
 8 string movieTitle;
 9
10 movieTitle = "Wheels of Fury";
11 cout << "My favorite movie is " << movieTitle << endl;
12 return 0;
13 }

Program Output
My favorite movie is Wheels of Fury

Program 10-13

 1 // This program demonstrates how cin can read a string into
 2 // a string class object.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 string name;
10
11 cout << "What is your name? ";
12 cin >> name;
13 cout << "Good morning " << name << endl;
14 return 0;
15 }

(program output continues)

572 Chapter 10 Characters, Strings, and the string Class

Reading a Line of Input into a string Object
If you want to read a line of input (with spaces) into a string object, use the getline()
function. Here is an example:

string name;
cout << "What is your name? ";
getline(cin, name);

The getline() function’s first argument is the name of a stream object you wish to read
the input from. The function call above passes the cin object to getline(), so the func-
tion reads a line of input from the keyboard. The second argument is the name of a
string object. This is where getline() stores the input that it reads.

Comparing and Sorting string Objects
There is no need to use a function such as strcmp to compare string objects. You may
use the <, >, <=, >=, ==, and != relational operators. For example, assume the following
definitions exist in a program:

string set1 = "ABC";
string set2 = "XYZ";

The object set1 is considered less than the object set2 because the characters “ABC”
alphabetically precede the characters “XYZ.” So, the following if statement will cause
the message “set1 is less than set2” to be displayed on the screen.

if (set1 < set2)
 cout << "set1 is less than set2.\n";

Relational operators perform comparisons on string objects in a fashion similar to the
way the strcmp function compares C-strings. One by one, each character in the first oper-
and is compared with the character in the corresponding position in the second operand.
If all the characters in both strings match, the two strings are equal. Other relationships
can be determined if two characters in corresponding positions do not match. The first
operand is less than the second operand if the mismatched character in the first operand is
less than its counterpart in the second operand. Likewise, the first operand is greater than
the second operand if the mismatched character in the first operand is greater than its
counterpart in the second operand.

For example, assume a program has the following definitions:

string name1 = "Mary";
string name2 = "Mark";

Program Output with Example Input Shown in Bold
What is your name? Peggy [Enter]
Good morning Peggy

Program 10-13 (continued)

10.7 The C++ string Class 573

The value in name1, “Mary,” is greater than the value in name2, “Mark.” This is because
the “y” in “Mary” has a greater ASCII value than the “k” in “Mark.”

string objects can also be compared to C-strings with relational operators. Assuming
str is a string object, all of the following are valid relational expressions:

str > "Joseph"
"Kimberly" < str
str == "William"

Program 10-14 demonstrates string objects and relational operators.

You may also use relational operators to sort string objects. Program 10-15 demon-
strates this.

Program 10-14

 1 // This program uses the == operator to compare the string entered
 2 // by the user with the valid stereo part numbers.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <string>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const double APRICE = 249.0; // Price for part A
11 const double BPRICE = 299.0; // Price for part B
12 string partNum; // Part number
13
14 cout << "The stereo part numbers are:\n";
15 cout << "\tBoom Box, part number S147-29A\n";
16 cout << "\tShelf Model, part number S147-29B\n";
17 cout << "Enter the part number of the stereo you\n";
18 cout << "wish to purchase: ";
19 cin >> partNum;
20 cout << fixed << showpoint << setprecision(2);
21
22 if (partNum == "S147-29A")
23 cout << "The price is $" << APRICE << endl;
24 else if (partNum == "S147-29B")
25 cout << "The price is $" << BPRICE << endl;
26 else
27 cout << partNum << " is not a valid part number.\n";
28 return 0;
29 }

Program Output with Example Input Shown in Bold
The stereo part numbers are:
 Boom Box, part number S147-29A
 Shelf Model, part number S147-29B
Enter the part number of the stereo you
wish to purchase: S147-29A [Enter]
The price is $249.00

574 Chapter 10 Characters, Strings, and the string Class

Other Ways to Define string Objects
There are a variety of ways to initialize a string object when you define it. Table 10-5
shows several example definitions, and describes each. Program 10-16 demonstrates a
string object initialized with the string “William Smith.”

Program 10-15

 1 // This program uses relational operators to alphabetically
 2 // sort two strings entered by the user.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main ()
 8 {
 9 string name1, name2;
10
11 // Get a name.
12 cout << "Enter a name (last name first): ";
13 getline(cin, name1);
14
15 // Get another name.
16 cout << "Enter another name: ";
17 getline(cin, name2);
18
19 // Display them in alphabetical order.
20 cout << "Here are the names sorted alphabetically:\n";
21 if (name1 < name2)
22 cout << name1 << endl << name2 << endl;
23 else if (name1 > name2)
24 cout << name2 << endl << name1 << endl;
25 else
26 cout << "You entered the same name twice!\n";
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter a name (last name first): Smith, Richard [Enter]
Enter another name: Jones, John [Enter]
Here are the names sorted alphabetically:
Jones, John
Smith, Richard

Program 10-16

 1 // This program initializes a string object.
 2 #include <iostream>
 3 #include <string>
 4 using namespace std;
 5

10.7 The C++ string Class 575

Notice in Program 10-16 the use of the = operator to assign a value to the string object.
The string class supports several operators, which are described in Table 10-6.

 6 int main()
 7 {
 8 string greeting;
 9 string name("William Smith");
10
11 greeting = "Hello ";
12 cout << greeting << name << endl;
13 return 0;
14 }

Program Output
Hello William Smith

Table 10-5

Definition Description
string address; Defines an empty string object named address.
string name("William Smith"); Defines a string object named name, initialized with

“William Smith.”
string person1(person2); Defines a string object named person1, which is a copy

of person2. person2 may be either a string object or
character array.

string set1(set2, 5); Defines a string object named set1, which is initialized
to the first five characters in the character array set2.

string lineFull('z', 10); Defines a string object named lineFull initialized
with 10 'z' characters.

string firstName(fullName, 0, 7); Defines a string object named firstName, initialized
with a substring of the string fullName. The substring
is seven characters long, beginning at position 0.

Table 10-6

Supported
Operator Description
>> Extracts characters from a stream and inserts them into the string. Characters

are copied until a whitespace or the end of the string is encountered.
<< Inserts the string into a stream.
= Assigns the string on the right to the string object on the left.
+= Appends a copy of the string on the right to the string object on the left.
+ Returns a string that is the concatenation of the two string operands.
[] Implements array-subscript notation, as in name[x]. A reference to the

character in the x position is returned.

Relational Operators Each of the relational operators is implemented:

< > <= >= == !=

576 Chapter 10 Characters, Strings, and the string Class

Program 10-17 demonstrates some of the string operators.

Using string Class Member Functions
The string class also has member functions. For example, the length member function
returns the length of the string stored in the object. The value is returned as an unsigned
integer.

Assume the following string object definition exists in a program:

string town = "Charleston";

The following statement in the same program would assign the value 10 to the variable x.

x = town.length();

Program 10-18 further demonstrates the length member function.

Program 10-17

 1 // This program demonstrates the C++ string class.
 2 #include <iostream>
 3 #include <string>
 4 using namespace std;
 5
 6 int main ()
 7 {
 8 // Define three string objects.
 9 string str1, str2, str3;
10
11 // Assign values to all three.
12 str1 = "ABC";
13 str2 = "DEF";
14 str3 = str1 + str2;
15
16 // Display all three.
17 cout << str1 << endl;
18 cout << str2 << endl;
19 cout << str3 << endl;
20
21 // Concatenate a string onto str3 and display it.
22 str3 += "GHI";
23 cout << str3 << endl;
24 return 0;
25 }

Program Output
ABC
DEF
ABCDEF
ABCDEFGHI

10.7 The C++ string Class 577

The size function returns the length of the string. It is demonstrated in the for loop in
Program 10-19.

Program 10-18

 1 // This program demonstrates a string
 2 // object's length member function.
 3 #include <iostream>
 4 #include <string>
 5 using namespace std;
 6
 7 int main ()
 8 {
 9 string town;
10
11 cout << "Where do you live? ";
12 cin >> town;
13 cout << "Your town's name has " << town.length() ;
14 cout << " characters\n";
15 return 0;
16 }

Program Output with Example Input Shown in Bold
Where do you live? Jacksonville [Enter]
Your town's name has 12 characters

Program 10-19

 1 // This program demonstrates the C++ string class.
 2 #include <iostream>
 3 #include <string>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Define three string objects.
 9 string str1, str2, str3;
10
11 // Assign values to all three.
12 str1 = "ABC";
13 str2 = "DEF";
14 str3 = str1 + str2;
15
16 // Use subscripts to display str3 one character
17 // at a time.
18 for (int x = 0; x < str3.size(); x++)
19 cout << str3[x];
20 cout << endl;
21

(program continues)

578 Chapter 10 Characters, Strings, and the string Class

Table 10-7 lists many of the string class member functions and their overloaded varia-
tions. In the examples, assume theString is the name of a string object.

22 // Compare str1 with str2.
23 if (str1 < str2)
24 cout << "str1 is less than str2\n";
25 else
26 cout << "str1 is not less than str2\n";
27 return 0;
28 }

Program Output
ABCDEF
str1 is less than str2

Table 10-7

Member Function
Example Description
theString.append(n, 'z'); Appends n copies of ‘z’ to theString.
theString.append(str); Appends str to theString. str can be a string object or

character array.
theString.append(str, n); The first n characters of the character array str are appended

to theString.
theString.append(str, x, n); n number of characters from str, starting at position x, are

appended to theString. If theString is too small, the
function will copy as many characters as possible.

theString.assign(n, 'z'); Assigns n copies of 'z' to theString.
theString.assign(str); Assigns str to theString. str can be a string object or

character array.
theString.assign(str, n); The first n characters of the character array str are assigned

to theString.
theString.assign(str, x, n); n number of characters from str, starting at position x, are

assigned to theString. If theString is too small, the
function will copy as many characters as possible.

theString.at(x); Returns the character at position x in the string.
theString.begin(); Returns an iterator pointing to the first character in the

string.
theString.c_str(); Returns a character array containing a null terminated string,

as stored in theString.
theString.capacity(); Returns the size of the storage allocated for the string.
theString.clear(); Clears the string by deleting all the characters stored in it.

Program 10-19 (continued)

10.7 The C++ string Class 579

theString.compare(str); Performs a comparison like the strcmp function (see Chapter
4), with the same return values. str can be a string object or
a character array.

theString.compare(x, n, str); Compares theString and str, starting at position x, and
continuing for n characters. The return value is like strcmp.
str can be a string object or character array.

theString.copy(str, x, n); Copies the character array str to theString, beginning at
position x, for n characters. If theString is too small, the
function will copy as many characters as possible.

theString.empty(); Returns true if theString is empty.
theString.end(); Returns an iterator pointing to the last character of the string

in theString.
theString.erase(x, n); Erases n characters from theString, beginning at position x.
theString.find(str, x); Returns the first position at or beyond position x where the

string str is found in theString. str may be either a string
object or a character array.

theString.find('z', x); Returns the first position at or beyond position x where ‘z’ is
found in theString.

theString.insert(x, n, 'z'); Inserts ‘z’ n times into theString at position x.
theString.insert(x, str); Inserts a copy of str into theString, beginning at position x.

str may be either a string object or a character array.
theString.length(); Returns the length of the string in theString.
theString.replace(x, n, str); Replaces the n characters in theString beginning at position

x with the characters in string object str.
theString.resize(n, 'z'); Changes the size of the allocation in theString to n. If n is

less than the current size of the string, the string is truncated
to n characters. If n is greater, the string is expanded and ‘z’ is
appended at the end enough times to fill the new spaces.

theString.size(); Returns the length of the string in theString.
theString.substr(x, n); Returns a copy of a substring. The substring is n characters

long and begins at position x of theString.
theString.swap(str); Swaps the contents of theString with str.

Table 10-7 (continued)

Member Function
Example Description

580 Chapter 10 Characters, Strings, and the string Class

10.8 Focus on Problem Solving and Program Design:
A Case Study

As a programmer for the Home Software Company, you are asked to develop a function
named dollarFormat that inserts commas and a $ sign at the appropriate locations in a
string object containing an unformatted dollar amount. As an argument, the function
should accept a reference to a string object. You may assume the string object contains
a value such as 1084567.89. The function should modify the string object so it contains
a formatted dollar amount, such as $1,084,567.89.

The code for the dollarFormat function follows.

void dollarFormat(string ¤cy)
{

int dp;

dp = currency.find('.'); // Find decimal point
if (dp > 3) // Insert commas
{

for (int x = dp - 3; x > 0; x -= 3)
currency.insert(x, ",");

}
currency.insert(0, "$"); // Insert dollar sign

}

The function defines an int variable named dp. This variable is used to hold the position
of the unformatted number’s decimal point. This is accomplished with the statement:

dp = currency.find('.');

The string class’ find member function returns the position number in the string where
the ‘.’ character is found. An if statement determines if the number has more than three
numbers preceding the decimal point:

if (dp > 3)

If the decimal point is at a position greater than 3, then the function inserts commas in the
string with the following loop:

for (int x = dp - 3; x > 0; x -= 3)
 currency.insert(x, ",");

Finally, a $ symbol is inserted at position 0 (the first character in the string).

Program 10-20 demonstrates the function.

10.8 Focus on Problem Solving and Program Design: A Case Study 581

Program 10-20

 1 // This program lets the user enter a number. The
 2 // dollarFormat function formats the number as
 3 // a dollar amount.
 4 #include <iostream>
 5 #include <string>
 6 using namespace std;
 7
 8 // Function prototype
 9 void dollarFormat(string &);
10
11 int main ()
12 {
13 string input;
14
15 // Get the dollar amount from the user.
16 cout << "Enter a dollar amount in the form nnnnn.nn : ";
17 cin >> input;
18 dollarFormat(input);
19 cout << "Here is the amount formatted:\n";
20 cout << input << endl;
21 return 0;
22 }
23
24 //**
25 // Definition of the dollarFormat function. This function *
26 // accepts a string reference object, which is assumed *
27 // to hold a number with a decimal point. The function *
28 // formats the number as a dollar amount with commas and *
29 // a $ symbol. *
30 //**
31
32 void dollarFormat(string ¤cy)
33 {
34 int dp;
35
36 dp = currency.find('.'); // Find decimal point
37 if (dp > 3) // Insert commas
38 {
39 for (int x = dp - 3; x > 0; x -= 3)
40 currency.insert(x, ",");
41 }
42 currency.insert(0, "$"); // Insert dollar sign
43 }

Program Output with Example Input Shown in Bold
Enter a dollar amount in the form nnnnn.nn: 1084567.89 [Enter]
Here is the amount formatted:
$1,084,567.89

582 Chapter 10 Characters, Strings, and the string Class

Review Questions and Exercises

Short Answer
1. What header file must you include in a program using character testing functions such

as isalpha and isdigit?

2. What header file must you include in a program using the character conversion func-
tions toupper and tolower?

3. Assume c is a char variable. What value does c hold after each of the following state-
ments executes?
Statement Contents of c
c = toupper('a');___________
c = toupper('B');___________
c = tolower('D');___________
c = toupper('e');___________

4. Look at the following code. What value will be stored in s after the code executes?

char name[10];
int s;
strcpy(name, "Jimmy");
s = strlen(name);

5. What header file must you include in a program using string functions such as strlen
and strcpy?

6. What header file must you include in a program using string/numeric conversion func-
tions such as atoi and atof?

7. What header file must you include in a program using string class objects?

8. How do you compare string class objects?

Fill-in-the-Blank

9. The _________ function returns true if the character argument is uppercase.

10. The _________ function returns true if the character argument is a letter of the alphabet.

11. The _________ function returns true if the character argument is a digit.

12. The _________ function returns true if the character argument is a whitespace character.

13. The _________ function returns the uppercase equivalent of its character argument.

14. The _________ function returns the lowercase equivalent of its character argument.

15. The _________ file must be included in a program that uses character testing functions.

16. The _________ function returns the length of a string.

17. To _________ two strings means to append one string to the other.

18. The _________ function concatenates two strings.

19. The _________ function copies one string to another.

20. The _________ function searches for a string inside of another one.

21. The _________ function compares two strings.

Review Questions and Exercises 583

22. The _________ function copies, at most, n number of characters from one string to
another.

23. The _________ function returns the value of a string converted to an integer.

24. The _________ function returns the value of a string converted to a long integer.

25. The _________ function returns the value of a string converted to a float.

26. The _________ function converts an integer to a string.

Algorithm Workbench

27. The following if statement determines whether choice is equal to ‘Y’ or ‘y’.

if (choice == 'Y' || choice == 'y')

Simplify this statement by using either the toupper or tolower function.

28. Assume input is a char array holding a C-string. Write code that counts the number
of elements in the array that contain an alphabetic character.

29. Look at the following array definition.

char str[10];

Assume that name is also a char array, and it holds a C-string. Write code that copies
the contents of name to str if the C-string in name is not too big to fit in str.

30. Look at the following statements.

char str[] = "237.89";
double value;

Write a statement that converts the string in str to a double and stores the result in
value.

31. Write a function that accepts a pointer to a C-string as its argument. The function
should count the number of times the character ‘w’ occurs in the argument and return
that number.

32. Assume that str1 and str2 are string class objects. Write code that displays “They
are the same!” if the two objects contain the same string.

True or False
33. T F Character testing functions, such as isupper, accept strings as arguments and

test each character in the string.

34. T F If toupper’s argument is already uppercase, it is returned as is, with no
changes.

35. T F If tolower’s argument is already lowercase, it will be inadvertently converted
to uppercase.

36. T F The strlen function returns the size of the array containing a string.

37. T F If the starting address of a string is passed into a pointer parameter, it can be
assumed that all the characters, from that address up to the byte that holds the
null terminator, are part of the string.

38. T F String-handling functions accept as arguments pointers to strings (array names
or pointer variables), or literal strings.

584 Chapter 10 Characters, Strings, and the string Class

39. T F The strcat function checks to make sure the first string is large enough to
hold both strings before performing the concatenation.

40. T F The strcpy function will overwrite the contents of its first string argument.

41. T F The strcpy function performs no bounds checking on the first argument.

42. T F There is no difference between “847” and 847.

Find the Errors

Each of the following programs or program segments has errors. Find as many as you can.

43. char str[] = "Stop";
if (isupper(str) == "STOP")
 exit(0);

44. char numeric[5];
int x = 123;
numeric = atoi(x);

45. char string1[] = "Billy";
char string2[] = " Bob Jones";
strcat(string1, string2);

46. char x = 'a', y = 'a';
if (strcmp(x, y) == 0)
 exit(0);

Programming Challenges
1. String Length

Write a function that returns an integer and accepts a pointer to a C-string as an argu-
ment. The function should count the number of characters in the string and return
that number. Demonstrate the function in a simple program that asks the user to input
a string, passes it to the function, and then displays the function’s return value.

2. Backward String

Write a function that accepts a pointer to a C-string as an argument and displays its
contents backward. For instance, if the string argument is “Gravity” the function
should display “ytivarG”. Demonstrate the function in a program that asks the user
to input a string and then passes it to the function.

3. Word Counter

Write a function that accepts a pointer to a C-string as an argument and returns the
number of words contained in the string. For instance, if the string argument is “Four
score and seven years ago” the function should return the number 6. Demonstrate the
function in a program that asks the user to input a string and then passes it to the
function. The number of words in the string should be displayed on the screen.
Optional Exercise: Write an overloaded version of this function that accepts a string
class object as its argument.

4. Average Number of Letters

Modify the program you wrote for Problem 3 (Word Counter), so it also displays the
average number of letters in each word.

Solving the
Backward

String
Problem

Review Questions and Exercises 585

5. Sentence Capitalizer

Write a function that accepts a pointer to a C-string as an argument and capitalizes
the first character of each sentence in the string. For instance, if the string argument is
“hello. my name is Joe. what is your name?” the function should manipulate
the string so it contains “Hello. My name is Joe. What is your name?” Demon-
strate the function in a program that asks the user to input a string and then passes it
to the function. The modified string should be displayed on the screen. Optional
Exercise: Write an overloaded version of this function that accepts a string class
object as its argument.

6. Vowels and Consonants

Write a function that accepts a pointer to a C-string as its argument. The function
should count the number of vowels appearing in the string and return that number.

Write another function that accepts a pointer to a C-string as its argument. This func-
tion should count the number of consonants appearing in the string and return that
number.

Demonstrate these two functions in a program that performs the following steps:

1. The user is asked to enter a string.

2. The program displays the following menu:
A) Count the number of vowels in the string
B) Count the number of consonants in the string
C) Count both the vowels and consonants in the string
D) Enter another string
E) Exit the program

3. The program performs the operation selected by the user and repeats until the
user selects E to exit the program.

7. Name Arranger

Write a program that asks for the user’s first, middle, and last names. The names
should be stored in three different character arrays. The program should then store, in
a fourth array, the name arranged in the following manner: the last name followed by
a comma and a space, followed by the first name and a space, followed by the middle
name. For example, if the user entered “Carol Lynn Smith”, it should store
“Smith, Carol Lynn” in the fourth array. Display the contents of the fourth array
on the screen.

8. Sum of Digits in a String

Write a program that asks the user to enter a series of single digit numbers with noth-
ing separating them. Read the input as a C-string or a string object. The program
should display the sum of all the single-digit numbers in the string. For example, if the
user enters 2514, the program should display 12, which is the sum of 2, 5, 1, and 4.
The program should also display the highest and lowest digits in the string.

586 Chapter 10 Characters, Strings, and the string Class

9. Most Frequent Character

Write a function that accepts either a pointer to a C-string, or a string object, as its
argument. The function should return the character that appears most frequently in
the string. Demonstrate the function in a complete program.

10. replaceSubstring Function

Write a function named replaceSubstring. The function should accept three C-
string or string object arguments. Let’s call them string1, string2, and string3.
It should search string1 for all occurrences of string2. When it finds an occurrence
of string2, it should replace it with string3. For example, suppose the three argu-
ments have the following values:

string1: “the dog jumped over the fence”
string2: “the”
string3: “that”

With these three arguments, the function would return a string object with the value
“that dog jumped over that fence.” Demonstrate the function in a complete program.

11. Case Manipulator

Write a program with three functions: upper, lower, and reverse. The upper func-
tion should accept a pointer to a C-string as an argument. It should step through each
character in the string, converting it to uppercase. The lower function, too, should
accept a pointer to a C-string as an argument. It should step through each character in
the string, converting it to lowercase. Like upper and lower, reverse should also
accept a pointer to a string. As it steps through the string, it should test each character
to determine whether it is upper- or lowercase. If a character is uppercase, it should be
converted to lowercase. Likewise, if a character is lowercase, it should be converted to
uppercase.

Test the functions by asking for a string in function main, then passing it to them in
the following order: reverse, lower, and upper.

12. Password Verifier

Imagine you are developing a software package that requires users to enter their own
passwords. Your software requires that users’ passwords meet the following criteria:

• The password should be at least six characters long.
• The password should contain at least one uppercase and at least one lowercase

letter.
• The password should have at least one digit.

Write a program that asks for a password and then verifies that it meets the stated cri-
teria. If it doesn’t, the program should display a message telling the user why.

13. Date Printer

Write a program that reads a string from the user containing a date in the form
mm/dd/yyyy. It should print the date in the form March 12, 2010.

Review Questions and Exercises 587

14. Word Separator

Write a program that accepts as input a sentence in which all of the words are run
together, but the first character of each word is uppercase. Convert the sentence to a
string in which the words are separated by spaces and only the first word starts with
an uppercase letter. For example the string “StopAndSmellTheRoses.” would be con-
verted to “Stop and smell the roses.”

15. Character Analysis

On the student CD you will find a file named text.txt. Write a program that reads
the file’s contents and determines the following:

• The number of uppercase letters in the file
• The number of lowercase letters in the file
• The number of digits in the file
• The number of whitespace characters in the file

16. Pig Latin

Write a program that reads a sentence as input and converts each word to “Pig
Latin.” In one version, to convert a word to Pig Latin you remove the first letter and
place that letter at the end of the word. Then you append the string “ay” to the word.
Here is an example:

English: I SLEPT MOST OF THE NIGHT

Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

17. Morse Code Converter

Morse code is a code where each letter of the English alphabet, each digit, and various
punctuation characters are represented by a series of dots and dashes. Table 10-8
shows part of the code.

Write a program that asks the user to enter a string, and then converts that string to
Morse code. (Use hyphens for dashes and periods for dots.)

Table 10-8 Morse Code

Character Code Character Code Character Code Character Code

space space 6 -.... G --. Q --.-

comma --..-- 7 --... H R .-.

period .-.-.- 8 ---.. I .. S ...

question mark ..--.. 9 ----. J .--- T -

0 ----- A .- K -.- U ..-

1 .---- B -... L .-.. V ...-

2 ..--- C -.-. M -- W .--

3 ...-- D -.. N -. X -..-

4- E . O --- Y -.--

5 F ..-. P .--. Z --..

588 Chapter 10 Characters, Strings, and the string Class

18. Phone Number List

Write a program that has an array of at least 10 string objects that hold people’s
names and phone numbers. You may make up your own strings, or use the following:

"Becky Warren, 555-1223"
"Joe Looney, 555-0097"
"Geri Palmer, 555-8787"
"Lynn Presnell, 555-1212"
"Holly Gaddis, 555-8878"
"Sam Wiggins, 555-0998"
"Bob Kain, 555-8712"
"Tim Haynes, 555-7676"
"Warren Gaddis, 555-9037"
"Jean James, 555-4939"
"Ron Palmer, 555-2783"

The program should ask the user to enter a name or partial name to search for in the
array. Any entries in the array that match the string entered should be displayed. For
example, if the user enters “Palmer” the program should display the following names
from the list:

Geri Palmer, 555-8787
Ron Palmer, 555-2783

19. Check Writer

Write a program that displays a simulated paycheck. The program should ask the user
to enter the date, the payee’s name, and the amount of the check. It should then dis-
play a simulated check with the dollar amount spelled out, as shown here:

 Date: 11/24/09

Pay to the Order of: John Phillips $1920.85

One thousand nine hundred twenty and 85 cents

Be sure to format the numeric value of the check in fixed-point notation with two dec-
imal places of precision. Be sure the decimal place always displays, even when the
number is zero or has no fractional part. Use either C-strings or string class objects in
this program.

Input Validation: Do not accept negative dollar amounts, or amounts over $10,000.

589

C
H

A
P

T
E

R

11 Structured Data

11.1 Abstract Data Types

CONCEPT: Abstract data types (ADTs) are data types created by the programmer.
ADTs have their own range (or domain) of data and their own sets of
operations that may be performed on them.

The term abstract data type, or ADT, is very important in computer science and is espe-
cially significant in object-oriented programming. This chapter introduces you to the
structure, which is one of C++’s mechanisms for creating abstract data types.

Abstraction
An abstraction is a general model of something. It is a definition that includes only the
general characteristics of an object. For example, the term “dog” is an abstraction. It
defines a general type of animal. The term captures the essence of what all dogs are
without specifying the detailed characteristics of any particular type of dog. According
to Webster’s New Collegiate Dictionary, a dog is

TOPICS

11.1 Abstract Data Types
11.2 Focus on Software Engineering:

Combining Data into Structures
11.3 Accessing Structure Members
11.4 Initializing a Structure
11.5 Arrays of Structures
11.6 Focus on Software Engineering:

Nested Structures
11.7 Structures as Function Arguments

11.8 Returning a Structure from a
Function

11.9 Pointers to Structures
11.10 Focus on Software Engineering:

When to Use ., When to Use ->,
and When to Use *

11.11 Unions
11.12 Enumerated Data Types

590 Chapter 11 Structured Data

a highly variable carnivorous domesticated mammal (Canis familiaris) probably
descended from the common wolf.

In real life, however, there is no such thing as a mere “dog.” There are specific types of
dogs, each with its own set of characteristics. There are poodles, cocker spaniels, Great
Danes, rottweilers, and many other breeds. There are small dogs and large dogs. There are
gentle dogs and ferocious dogs. They come in all shapes, sizes, and dispositions. A real-life
dog is not abstract. It is concrete.

Data Types
C++ has several primitive data types, or data types that are defined as a basic part of the
language, as shown in Table 11-1.

A data type defines what values a variable may hold. Each data type listed in Table 11-1
has its own range of values, such as –32,768 to +32,767 for shorts, and so forth. Data
types also define what values a variable may not hold. For example, integer variables may
not be used to hold fractional numbers.

In addition to defining a range or domain of values that a variable may hold, data types also
define the operations that may be performed on a value. All of the data types listed in
Table 11-1 allow the following mathematical and relational operators to be used with them:

+ - * / > < >= <= == !=

Only the integer data types, however, allow operations with the modulus operator (%).
So, a data type defines what values an object may hold and the operations that may be
performed on the object.

The primitive data types are abstract in the sense that a data type and an object of that
data type are not the same thing. For example, consider the following variable definition:

int x = 1, y = 2, z = 3;

In the statement above the integer variables x, y, and z are defined. They are three separate
instances of the data type int. Each variable has its own characteristics (x is set to 1, y is
set to 2, and z is set to 3). In this example, the data type int is the abstraction and the
variables x, y, and z are concrete occurrences.

Abstract Data Types
An abstract data type (ADT) is a data type created by the programmer and is composed of
one or more primitive data types. The programmer decides what values are acceptable for
the data type, as well as what operations may be performed on the data type. In many
cases, the programmer designs his or her own specialized operations.

Table 11-1

bool int unsigned long int

char long int float

unsigned char unsigned short int double

short int unsigned int long double

11.2 Focus on Software Engineering: Combining Data into Structures 591

For example, suppose a program is created to simulate a 12-hour clock. The program
could contain three ADTs: Hours, Minutes, and Seconds. The range of values for the
Hours data type would be the integers 1 through 12. The range of values for the Minutes
and Seconds data types would be 0 through 59. If an Hours object is set to 12 and then
incremented, it will then take on the value 1. Likewise if a Minutes object or a Seconds
object is set to 59 and then incremented, it will take on the value 0.

Abstract data types often combine several values. In the clock program, the Hours,
Minutes, and Seconds objects could be combined to form a single Clock object. In this
chapter you will learn how to combine variables of primitive data types to form your own
data structures, or ADTs.

11.2 Focus on Software Engineering:
Combining Data into Structures

CONCEPT: C++ allows you to group several variables together into a single item
known as a structure.

So far you’ve written programs that keep data in individual variables. If you need to group
items together, C++ allows you to create arrays. The limitation of arrays, however, is that
all the elements must be of the same data type. Sometimes a relationship exists between
items of different types. For example, a payroll system might keep the variables shown in
Table 11-2. These variables hold data for a single employee.

All of the variables listed in Table 11-2 are related because they can hold data about the
same employee. Their definition statements, though, do not make it clear that they belong
together. To create a relationship between variables, C++ gives you the ability to package
them together into a structure.

Before a structure can be used, it must be declared. Here is the general format of a struc-
ture declaration:

Table 11-2

Variable Definition Data Held
int empNumber; Employee number
char name[SIZE]; Employee’s name
double hours; Hours worked
double payRate; Hourly pay rate
double grossPay; Gross pay

 struct tag
 {

variable declaration;
 // ... more declarations
 // may follow...
 };

Creating a
Structure

592 Chapter 11 Structured Data

The tag is the name of the structure. As you will see later, it’s used like a data type name.
The variable declarations that appear inside the braces declare members of the structure.
Here is an example of a structure declaration that holds the payroll data listed in
Table 11-2:

const int SIZE = 25; // Array size

struct PayRoll
{
 int empNumber; // Employee number
 char name[SIZE]; // Employee's name
 double hours; // Hours worked
 double payRate; // Hourly pay rate
 double grossPay; // Gross pay
};

This declaration declares a structure named PayRoll. The structure has five members:
empNumber, name, hours, payRate, and grossPay.

It’s important to note that the structure declaration in our example does not define a vari-
able. It simply tells the compiler what a PayRoll structure is made of. In essence, it creates
a new data type named PayRoll. You can define variables of this type with simple defini-
tion statements, just as you would with any other data type. For example, the following
statement defines a variable named deptHead:

PayRoll deptHead;

WARNING! Notice that a semicolon is required after the closing brace of the structure
declaration.

NOTE: In this text we begin the names of structure tags with an uppercase letter. Later
you will see the same convention used with unions. This visually differentiates these
names from the names of variables.

NOTE: The structure declaration shown contains three double members, each declared
on a separate line. The three could also have been declared on the same line, as

 const int SIZE = 25;

 struct PayRoll
 {
 int empNumber;
 char name[SIZE];
 double hours, payRate, grossPay;
 };

Many programmers prefer to place each member declaration on a separate line, however,
for increased readability.

11.2 Focus on Software Engineering: Combining Data into Structures 593

The data type of deptHead is the PayRoll structure. The structure tag, PayRoll, is listed
before the variable name just as the word int or double would be listed to define vari-
ables of those types.

Remember that structure variables are actually made up of other variables known as
members. Because deptHead is a PayRoll structure it contains the following members:

empNumber, an int
name, a 25-element character array
hours, a double
payRate, a double
grossPay, a double

Figure 11-1 illustrates this.

Just as it’s possible to define multiple int or double variables, it’s possible to define multi-
ple structure variables in a program. The following statement defines three PayRoll vari-
ables: deptHead, foreman, and associate:

PayRoll deptHead, foreman, associate;

Figure 11-2 illustrates the existence of these three variables.

Figure 11-1

Figure 11-2

empNumber

name

hours

payRate

grossPay

deptHead

Structure variable name

Members

empNumber

name

hours

payRate

grossPay

deptHead

empNumber

name

hours

payRate

grossPay

foreman

empNumber

name

hours

payRate

grossPay

associate

594 Chapter 11 Structured Data

Each of the variables defined in this example is a separate instance of the PayRoll structure
and contains its own members. An instance of a structure is a variable that exists in mem-
ory. It contains within it all the members described in the structure declaration.

Although the structure variables in the example are separate, each contains members with
the same name. (In the next section you’ll see how to access these members.) Here are
some other examples of structure declarations and variable definitions:

struct Time struct Date
{ {
 int hour; int day;
 int minutes; int month;
 int seconds; int year;
}; };

// Definition of the // Definition of the structure
// structure variable now. // variable today.
Time now; Date today;

In review, there are typically two steps to implementing structures in a program:

• Create the structure declaration. This establishes the tag (or name) of the struc-
ture and a list of items that are members.

• Define variables (or instances) of the structure and use them in the program to
hold data.

11.3 Accessing Structure Members

CONCEPT: The dot operator (.) allows you to access structure members in
a program.

C++ provides the dot operator (a period) to access the individual members of a structure.
Using our example of deptHead as a PayRoll structure variable, the following statement
demonstrates how to access the empNumber member:

deptHead.empNumber = 475;

In this statement, the number 475 is assigned to the empNumber member of deptHead.
The dot operator connects the name of the member variable with the name of the struc-
ture variable it belongs to. The following statements assign values to the empNumber mem-
bers of the deptHead, foreman, and associate structure variables:

deptHead.empNumber = 475;
foreman.empNumber = 897;
associate.empNumber = 729;

11.3 Accessing Structure Members 595

With the dot operator you can use member variables just like regular variables. For exam-
ple these statements display the contents of deptHead’s members:

cout << deptHead.empNumber << endl;
cout << deptHead.name << endl;
cout << deptHead.hours << endl;
cout << deptHead.payRate << endl;
cout << deptHead.grossPay << endl;

Program 11-1 is a complete program that uses the PayRoll structure.

Program 11-1

 1 // This program demonstrates the use of structures.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 const int SIZE = 25; // Array size
 7
 8 struct PayRoll
 9 {
10 int empNumber; // Employee number
11 char name[SIZE]; // Employee's name
12 double hours; // Hours worked
13 double payRate; // Hourly pay rate
14 double grossPay; // Gross pay
15 };
16
17 int main()
18 {
19 PayRoll employee; // employee is a PayRoll structure.
20
21 // Get the employee's number.
22 cout << "Enter the employee's number: ";
23 cin >> employee.empNumber;
24
25 // Get the employee's name.
26 cout << "Enter the employee's name: ";
27 cin.ignore(); // To skip the remaining '\n' character
28 cin.getline(employee.name, SIZE);
29
30 // Get the hours worked by the employee.
31 cout << "How many hours did the employee work? ";
32 cin >> employee.hours;
33
34 // Get the employee's hourly pay rate.
35 cout << "What is the employee's hourly pay rate? ";
36 cin >> employee.payRate;
37
38 // Calculate the employee's gross pay.
39 employee.grossPay = employee.hours * employee.payRate;
40

(program continues)

596 Chapter 11 Structured Data

As you can see from Program 11-1, structure members that are of a primitive data type
can be used with cin, cout, mathematical statements, and any operation that can be per-
formed with regular variables. The only difference is that the structure variable name and
the dot operator must precede the name of a member. Program 11-2 shows the member of
a structure variable being passed to the pow function.

41 // Display the employee data.
42 cout << "Here is the employee's payroll data:\n";
43 cout << "Name: " << employee.name << endl;
44 cout << "Number: " << employee.empNumber << endl;
45 cout << "Hours worked: " << employee.hours << endl;
46 cout << "Hourly pay rate: " << employee.payRate << endl;
47 cout << fixed << showpoint << setprecision(2);
48 cout << "Gross pay: $" << employee.grossPay << endl;
49 return 0;
50 }

Program Output with Example Input Shown in Bold
Enter the employee's number: 489 [Enter]
Enter the employee's name: Jill Smith [Enter]
How many hours did the employee work? 40 [Enter]
What is the employee's hourly pay rate? 20 [Enter]
Here is the employee's payroll data:
Name: Jill Smith
Number: 489
Hours worked: 40
Hourly pay rate: 20
Gross pay: $800.00

NOTE: Program 11-1 has the following call, in line 27, to cin’s ignore member
function:

 cin.ignore();

Recall that the ignore function causes cin to ignore the next character in the input
buffer. This is necessary for the cin.getline statement to work properly in the program.

NOTE: The contents of a structure variable cannot be displayed by passing the entire
variable to cout. For example, assuming employee is a PayRoll structure variable, the
following statement will not work:

 cout << employee << endl; // Will not work!

Instead, each member must be separately passed to cout.

Program 11-1 (continued)

11.3 Accessing Structure Members 597

Program 11-2

 1 // This program stores data about a circle in a structure.
 2 #include <iostream>
 3 #include <cmath> // For the pow function
 4 #include <iomanip>
 5 using namespace std;
 6
 7 // Constant for pi.
 8 const double PI = 3.14159;
 9
10 // Structure declaration
11 struct Circle
12 {
13 double radius; // A circle's radius
14 double diameter; // A circle's diameter
15 double area; // A circle's area
16 };
17
18 int main()
19 {
20 Circle c; // Define a structure variable

 21
22 // Get the circle's diameter.
23 cout << "Enter the diameter of a circle: ";
24 cin >> c.diameter;
25
26 // Calculate the circle's radius.
27 c.radius = c.diameter / 2;
28
29 // Calculate the circle's area.
30 c.area = PI * pow(c.radius, 2.0);
31
32 // Display the circle data.
33 cout << fixed << showpoint << setprecision(2);
34 cout << "The radius and area of the circle are:\n";
35 cout << "Radius: " << c.radius << endl;
36 cout << "Area: " << c.area << endl;
37 return 0;
38 }

Program Output with Example Input Shown in Bold
Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:
Radius: 5
Area: 78.54

598 Chapter 11 Structured Data

Comparing Structure Variables
You cannot perform comparison operations directly on structure variables. For example,
assume that circle1 and circle2 are Circle structure variables. The following state-
ment will cause an error.

if (circle1 == circle2) // Error!

In order to compare two structures, you must compare the individual members, as shown
in the following code.

if (circle1.radius == circle2.radius &&
 circle1.diameter == circle2.diameter &&
 circle1.area == circle2.area)

Strings as Structure Members
When a character array is a structure member, you can use the same string manipulation
techniques with it as you would with any other character array. For example, assume
product.description is a character array. The following statement copies into it the
string “19-inch television”:

strcpy(product.description, "19-inch television");

Also, assume that product.partNum is a 15-element character array. The following state-
ment reads into it a line of input:

cin.getline(product.partNum, 15);

Program 11-3 demonstrates the use of a structure containing string data.

Program 11-3

 1 // This program uses a structure to hold someone's first,
 2 // middle, and last name.
 3 #include <iostream>
 4 #include <cstring>
 5 using namespace std;
 6
 7 // Constants for array lengths
 8 const int LENGTH = 15;
 9 const int FULL_LENGTH = 45;
10
11 struct Name
12 {
13 char first[LENGTH]; // To hold the first name
14 char middle[LENGTH]; // To hold the middle name
15 char last[LENGTH]; // To hold the last name
16 char full[FULL_LENGTH]; // To hold the full name
17 };
18

11.4 Initializing a Structure 599

11.4 Initializing a Structure

CONCEPT: The members of a structure variable may be initialized with starting
values when the structure variable is defined.

A structure variable may be initialized when it is defined, in a fashion similar to the initial-
ization of an array. Assume the following structure declaration exists in a program:

19 int main()
20 {
21 // personName is a Name structure variable
22 Name personName;
23
24 // Get the first name.
25 cout << "Enter your first name: ";
26 cin >> personName.first;
27
28 // Get the middle name.
29 cout << "Enter your middle name: ";
30 cin >> personName.middle;
31
32 // Get the last name.
33 cout << "Enter your last name: ";
34 cin >> personName.last;
35
36 // Assemble the full name.
37 strcpy(personName.full, personName.first);
38 strcat(personName.full, " ");
39 strcat(personName.full, personName.middle);
40 strcat(personName.full, " ");
41 strcat(personName.full, personName.last);
42
43 // Display the full name.
44 cout << "\nYour full name is " << personName.full << endl;
45 return 0;
46 }

Program Output with Example Input Shown in Bold
Enter your first name: Josephine [Enter]
Enter your middle name: Yvonne [Enter]
Enter your last name: Smith [Enter]

Your full name is Josephine Yvonne Smith

600 Chapter 11 Structured Data

struct CityInfo
{
 char cityName[30];
 char state[3];
 long population;
 int distance;
};

A variable may then be defined with an initialization list, as shown in the following:

CityInfo location = {"Asheville", "NC", 50000, 28};

This statement defines the variable location. The first value in the initialization list is
assigned to the first declared member, the second value in the initialization list is assigned
to the second member, and so on. The location variable is initialized in the following
manner:

The string “Asheville” is assigned to location.cityName
The string “NC” is assigned to location.state
50000 is assigned to location.population
28 is assigned to location.distance

You do not have to provide initializers for all the members of a structure variable. For
example, the following statement only initializes the cityName member of location:

CityInfo location = {"Tampa"};

The state, population, and distance members are left uninitialized. The following
statement only initializes the cityName and state members, while leaving population
and distance uninitialized:

CityInfo location = {"Atlanta", "GA"};

If you leave a structure member uninitialized, you must leave all the members that fol-
low it uninitialized as well. C++ does not provide a way to skip members in a structure.
For example, the following statement, which attempts to skip the initialization of the
population member, is not legal:

CityInfo location = {"Knoxville", "TN", , 90}; // Illegal!

Program 11-4 demonstrates the use of partially initialized structure variables.

Program 11-4

 1 // This program demonstrates partially initialized
 2 // structure variables.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 const int LENGTH = 25; // Array size
 8

11.4 Initializing a Structure 601

 9 struct EmployeePay
10 {
11 char name[LENGTH]; // Employee name
12 int empNum; // Employee number
13 double payRate; // Hourly pay rate
14 double hours; // Hours worked
15 double grossPay; // Gross pay
16 };
17
18 int main()
19 {
20 EmployeePay employee1 = {"Betty Ross", 141, 18.75};
21 EmployeePay employee2 = {"Jill Sandburg", 142, 17.50};
22
23 cout << fixed << showpoint << setprecision(2);
24
25 // Calculate pay for employee1
26 cout << "Name: " << employee1.name << endl;
27 cout << "Employee Number: " << employee1.empNum << endl;
28 cout << "Enter the hours worked by this employee: ";
29 cin >> employee1.hours;
30 employee1.grossPay = employee1.hours * employee1.payRate;
31 cout << "Gross Pay: " << employee1.grossPay << endl << endl;
32
33 // Calculate pay for employee2
34 cout << "Name: " << employee2.name << endl;
35 cout << "Employee Number: " << employee2.empNum << endl;
36 cout << "Enter the hours worked by this employee: ";
37 cin >> employee2.hours;
38 employee2.grossPay = employee2.hours * employee2.payRate;
39 cout << "Gross Pay: " << employee2.grossPay << endl;
40 return 0;
41 }

Program Output with Example Input Shown in Bold
Name: Betty Ross
Employee Number: 141
Enter the hours worked by this employee: 40 [Enter]
Gross Pay: 750.00

Name: Jill Sandburg
Employee Number: 142
Enter the hours worked by this employee: 20 [Enter]
Gross Pay: 350.00

602 Chapter 11 Structured Data

It’s important to note that you cannot initialize a structure member in the declaration of
the structure. For instance, the following declaration is illegal:

// Illegal structure declaration
struct CityInfo
{
 char cityName[30] = "Asheville"; // Error!
 char state[3] = "NC"; // Error!
 long population = 50000; // Error!
 int distance = 28; // Error!
};

Remember that a structure declaration doesn’t actually create the member variables. It
only declares what the structure “looks like.” The member variables are created in mem-
ory when a structure variable is defined. Because no variables are created by the structure
declaration, there’s nothing that can be initialized there.

Checkpoint
11.1 Write a structure declaration to hold the following data about a savings account:

Account Number (15-element character string)
Account Balance (double)
Interest Rate (double)
Average Monthly Balance (double)

11.2 Write a definition statement for a variable of the structure you declared in ques-
tion 11.1. Initialize the members with the following data:
Account Number: ACZ42137-B12-7
Account Balance: $4512.59
Interest Rate: 4%
Average Monthly Balance: $4217.07

11.3 The following program skeleton, when complete, asks the user to enter these data
about his or her favorite movie:
Name of movie
Name of the movie’s director
Name of the movie’s producer
The year the movie was released
Complete the program by declaring the structure that holds this data, defining a
structure variable, and writing the individual statements necessary.

#include <iostream>
using namespace std;

// Write the structure declaration here to hold the movie data.

int main()
{
 // define the structure variable here.

11.5 Arrays of Structures 603

 cout << "Enter the following data about your\n";
 cout << "favorite movie.\n";
 cout << "name: ";
 // Write a statement here that lets the user enter the
 // name of a favorite movie. Store the name in the
 // structure variable.
 cout << "Director: ";
 // Write a statement here that lets the user enter the
 // name of the movie's director. Store the name in the
 // structure variable.
 cout << "Producer: ";
 // Write a statement here that lets the user enter the
 // name of the movie's producer. Store the name in the
 // structure variable.
 cout << "Year of release: ";
 // Write a statement here that lets the user enter the
 // year the movie was released. Store the year in the
 // structure variable.
 cout << "Here is data on your favorite movie:\n";
 // Write statements here that display the data.
 // just entered into the structure variable.
 return 0;
}

11.5 Arrays of Structures

CONCEPT: Arrays of structures can simplify some programming tasks.

In Chapter 7 you saw that data can be stored in two or more arrays, with a relationship
established between the arrays through their subscripts. Because structures can hold sev-
eral items of varying data types, a single array of structures can be used in place of several
arrays of regular variables.

An array of structures is defined like any other array. Assume the following structure dec-
laration exists in a program:

struct BookInfo
{
 char title[50];
 char author[30];
 char publisher[25];
 double price;
};

The following statement defines an array, bookList, that has 20 elements. Each element is
a BookInfo structure.

BookInfo bookList[20];

Each element of the array may be accessed through a subscript. For example,
bookList[0] is the first structure in the array, bookList[1] is the second, and so forth.
To access a member of any element, simply place the dot operator and member name after

604 Chapter 11 Structured Data

the subscript. For example, the following expression refers to the title member of
bookList[5]:

bookList[5].title

The following loop steps through the array, displaying the data stored in each element:

for (int index = 0; index < 20; index++)
{
 cout << bookList[index].title << endl;
 cout << bookList[index].author << endl;
 cout << bookList[index].publisher << endl;
 cout << bookList[index].price << endl << endl;
}

Because the members title, author, and publisher are also arrays, their individual ele-
ments may be accessed as well. The following statement displays the character that is the
first element of the title member of bookList[10]:

cout << bookList[10].title[0];

And the following statement stores the character ‘t’ in the fourth element of the publisher
member of bookList[2]:

bookList[2].publisher[3] = 't';

Program 11-5 calculates and displays payroll data for three employees. It uses a single
array of structures.

Program 11-5

 1 // This program uses an array of structures.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 struct PayInfo
 7 {
 8 int hours; // Hours worked
 9 double payRate; // Hourly pay rate
10 };
11
12 int main()
13 {
14 const int NUM_WORKERS = 3; // Number of workers
15 PayInfo workers[NUM_WORKERS]; // Array of structures
16 int index; // Loop counter
17

11.5 Arrays of Structures 605

18 // Get employee pay data.
19 cout << "Enter the hours worked by " << NUM_WORKERS
20 << " employees and their hourly rates.\n";
21
22 for (index = 0; index < NUM_WORKERS; index++)
23 {
24 // Get the hours worked by an employee.
25 cout << "Hours worked by employee #" << (index + 1);
26 cout << ": ";
27 cin >> workers[index].hours;
28
29 // Get the employee's hourly pay rate.
30 cout << "Hourly pay rate for employee #";
31 cout << (index + 1) << ": ";
32 cin >> workers[index].payRate;
33 cout << endl;
34 }
35
36 // Display each employee's gross pay.
37 cout << "Here is the gross pay for each employee:\n";
38 cout << fixed << showpoint << setprecision(2);
39 for (index = 0; index < NUM_WORKERS; index++)
40 {
41 double gross;
42 gross = workers[index].hours * workers[index].payRate;
43 cout << "Employee #" << (index + 1);
44 cout << ": $" << gross << endl;
45 }
46 return 0;
47 }

Program Output with Example Input Shown in Bold
Enter the hours worked by 3 employees and their hourly rates.
Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]

Hours worked by employee #2: 20 [Enter]
Hourly pay rate for employee #2: 10.00 [Enter]

Hours worked by employee #3: 40 [Enter]
Hourly pay rate for employee #3: 20.00 [Enter]

Here is the gross pay for each employee:
Employee #1: $97.50
Employee #2: $200.00
Employee #3: $800.00

606 Chapter 11 Structured Data

Initializing a Structure Array
To initialize a structure array, simply provide an initialization list for one or more of the
elements. For example, the array in Program 11-5 could have been initialized as follows:

PayInfo workers[NUM_WORKERS] = {
 {10, 9.75 },
 {15, 8.62 },
 {20, 10.50},
 {40, 18.75},
 {40, 15.65}
 };

As in all single-dimensional arrays, you can initialize all or part of the elements in an array
of structures, as long as you do not skip elements.

11.6 Focus on Software Engineering: Nested Structures

CONCEPT: It’s possible for a structure variable to be a member of another structure
variable.

Sometimes it’s helpful to nest structures inside other structures. For example, consider the
following structure declarations:

struct Costs
{
 double wholesale;
 double retail;
};

struct Item
{
 char partNum[10];
 char description[25];
 Costs pricing;
};

The Costs structure has two members: wholesale and retail, both doubles. Notice
that the third member of the Item structure, pricing, is a Costs structure. Assume the
variable widget is defined as follows:

Item widget;

The following statements show examples of accessing members of the pricing variable,
which is inside widget:

widget.pricing.wholesale = 100.0;
widget.pricing.retail = 150.0;

Program 11-6 gives a more elaborate illustration of nested structures.

11.6 Focus on Software Engineering: Nested Structures 607

Program 11-6

 1 // This program uses nested structures.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Constants for char array sizes
 6 const int ADDR_LENGTH = 50; // Address length
 7 const int CITY_LENGTH = 20; // City length
 8 const int STATE_LENGTH = 15; // State length
 9 const int ZIP_LENGTH = 11; // ZIP code length
10 const int NAME_LENGTH = 50; // Name length
11
12 // The Date structure holds data about a date.
13 struct Date
14 {
15 int month;
16 int day;
17 int year;
18 };
19
20 // The Place structure holds a physical address.
21 struct Place
22 {
23 char address[ADDR_LENGTH];
24 char city[CITY_LENGTH];
25 char state[STATE_LENGTH];
26 char zip[ZIP_LENGTH];
27 };
28
29 // The EmployeeInfo structure holds an employee's data.
30 struct EmployeeInfo
31 {
32 char name[NAME_LENGTH];
33 int employeeNumber;
34 Date birthDate; // Nested structure
35 Place residence; // Nested structure
36 };
37
38 int main()
39 {
40 // Define a structure variable to hold info about the manager.
41 EmployeeInfo manager;

 42
43 // Get the manager's name and employee number
44 cout << "Enter the manager's name: ";
45 cin.getline(manager.name, NAME_LENGTH);
46 cout << "Enter the manager's employee number: ";
47 cin >> manager.employeeNumber;
48

(program continues)

608 Chapter 11 Structured Data

49 // Get the manager's birth date
50 cout << "Now enter the manager's date of birth.\n";
51 cout << "Month (up to 2 digits): ";
52 cin >> manager.birthDate.month;
53 cout << "Day (up to 2 digits): ";
54 cin >> manager.birthDate.day;
55 cout << "Year (2 digits): ";
56 cin >> manager.birthDate.year;
57 cin.ignore(); // Skip the remaining newline character
58
59 // Get the manager's residence information
60 cout << "Enter the manager's street address: ";
61 cin.getline(manager.residence.address, ADDR_LENGTH);
62 cout << "City: ";
63 cin.getline(manager.residence.city, CITY_LENGTH);
64 cout << "State: ";
65 cin.getline(manager.residence.state, STATE_LENGTH);
66 cout << "ZIP Code: ";
67 cin.getline(manager.residence.zip, ZIP_LENGTH);
68
69 // Display the information just entered
70 cout << "\nHere is the manager's information:\n";
71 cout << manager.name << endl;
72 cout << "Employee number " << manager.employeeNumber << endl;
73 cout << "Date of birth: ";
74 cout << manager.birthDate.month << "-";
75 cout << manager.birthDate.day << "-";
76 cout << manager.birthDate.year << endl;
77 cout << "Place of residence:\n";
78 cout << manager.residence.address << endl;
79 cout << manager.residence.city << ", ";
80 cout << manager.residence.state << " ";
81 cout << manager.residence.zip << endl;
82 return 0;
83 }

Program Output with Example Input Shown in Bold
Enter the manager's name: John Smith [Enter]
Enter the manager's employee number: 789 [Enter]
Now enter the manager's date of birth.
Month (up to 2 digits): 10 [Enter]
Day (up to 2 digits): 14 [Enter]
Year (2 digits): 65 [Enter]
Enter the manager's street address: 190 Disk Drive [Enter]
City: Redmond [Enter]
State: WA [Enter]
ZIP Code: 98052 [Enter]

Program 11-6 (continued)

11.6 Focus on Software Engineering: Nested Structures 609

Checkpoint

For questions 11.4–11.7 below, assume the Product structure is declared as follows:

struct Product
{
 char description[50]; // Product description
 int partNum; // Part number
 double cost; // Product cost
};

11.4 Write a definition for an array of 100 Product structures. Do not initialize the
array.

11.5 Write a loop that will step through the entire array you defined in Question 11.4,
setting all the product descriptions to a null string, all part numbers to zero, and
all costs to zero.

11.6 Write the statements that will store the following data in the first element of the
array you defined in Question 11.4:
Description: Claw hammer
Part Number: 547
Part Cost: $8.29

11.7 Write a loop that will display the contents of the entire array you created in
Question 11.4.

11.8 Write a structure declaration named Measurement, with the following members:
miles, an integer
meters, a long integer

11.9 Write a structure declaration named Destination, with the following members:
city, a 35-element character array
distance, a Measurement structure (declared in Question 11.8)
Also define a variable of this structure type.

11.10 Write statements that store the following data in the variable you defined in
Question 11.9:
City: Tupelo
Miles: 375
Meters: 603,375

Here is the manager's information:
John Smith
Employee number 789
Date of birth: 10-14-65
Place of residence:
190 Disk Drive
Redmond, WA 98052

610 Chapter 11 Structured Data

11.7 Structures as Function Arguments

CONCEPT: Structure variables may be passed as arguments to functions.

Like other variables, the individual members of a structure variable may be used as func-
tion arguments. For example, assume the following structure declaration exists in a pro-
gram:

struct Rectangle
{
 double length;
 double width;
 double area;
};

Let’s say the following function definition exists in the same program:

double multiply(double x, double y)
{
 return x * y;
}

Assuming that box is a variable of the Rectangle structure type, the following function
call will pass box.length into x and box.width into y. The return value will be stored in
box.area.

box.area = multiply(box.length, box.width);

Sometimes it’s more convenient to pass an entire structure variable into a function instead
of individual members. For example, the following function definition uses a Rectangle
structure variable as its parameter:

void showRect(Rectangle r)
{
 cout << r.length << endl;
 cout << r.width << endl;
 cout << r.area << endl;
}

The following function call passes the box variable into r:

showRect(box);

Inside the function showRect, r’s members contain a copy of box’s members. This is illus-
trated in Figure 11-3.

Once the function is called, r.length contains a copy of box.length, r.width contains
a copy of box.width, and r.area contains a copy of box.area.

Structures, like all variables, are normally passed by value into a function. If a function is to
access the members of the original argument, a reference variable may be used as the param-
eter. Program 11-7 uses two functions that accept structures as arguments. Arguments are
passed to the getItem function by reference, and to the showItem function by value.

Passing a
Structure to a

Function

11.7 Structures as Function Arguments 611

Figure 11-3

Program 11-7

 1 // This program has functions that accept structure variables
 2 // as arguments.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 const int DESC_SIZE = 50; // Array size
 8
 9 struct InventoryItem
10 {
11 int partNum; // Part number
12 char description[DESC_SIZE]; // Item description
13 int onHand; // Units on hand
14 double price; // Unit price
15 };
16
17 // Function Prototypes
18 void getItem(InventoryItem&); // Argument passed by reference
19 void showItem(InventoryItem); // Argument passed by value
20
21 int main()
22 {
23 InventoryItem part;

 24
25 getItem(part);
26 showItem(part);
27 return 0;
28 }
29
30 //***
31 // Definition of function getItem. This function uses *
32 // a structure reference variable as its parameter. It asks *
33 // the user for information to store in the structure. *
34 //***
35

(program continues)

showRect(box);

 void showRect(Rectangle r)
 {
 cout << r.length << endl;
 cout << r.width << endl;
 cout << r.area << endl;
 }

612 Chapter 11 Structured Data

Notice that the InventoryItem structure declaration in Program 11-7 appears before
both the prototypes and the definitions of the getItem and showItem functions. This is
because both functions use an InventoryItem structure variable as their parameter. The
compiler must know what InventoryItem is before it encounters any definitions for vari-
ables of that type. Otherwise, an error will occur.

36 void getItem(InventoryItem &p) // Uses a reference parameter
37 {
38 // Get the part number.
39 cout << "Enter the part number: ";
40 cin >> p.partNum;
41
42 // Get the part description.
43 cout << "Enter the part description: ";
44 cin.ignore(): // Ignore the remaining newline character.
45 cin.getline(p.description, DESC_SIZE);
46
47 // Get the quantity on hand.
48 cout << "Enter the quantity on hand: ";
49 cin >> p.onHand;
50
51 // Get the unit price.
52 cout << "Enter the unit price: ";
53 cin >> p.price;
54 }

 55
56 //***
57 // Definition of function showItem. This function accepts *
58 // an argument of the InventoryItem structure type. The *
59 // contents of the structure is displayed. *
60 //***
61
62 void showItem(InventoryItem p)
63 {
64 cout << fixed << showpoint << setprecision(2);
65 cout << "Part Number: " << p.partNum << endl;
66 cout << "Description: " << p.description << endl;
67 cout << "Units on Hand: " << p.onHand << endl;
68 cout << "Price: $" << p.price << endl;
69 }

Program Output with Example Input Shown in Bold
Enter the part number: 800 [Enter]
Enter the part description: Screwdriver [Enter]
Enter the quantity on hand: 135 [Enter]
Enter the unit price: 1.25 [Enter]
Part Number: 800
Description: Screwdriver
Units on Hand: 135
Price: $1.25

Program 11-7 (continued)

11.8 Returning a Structure from a Function 613

Constant Reference Parameters
Sometimes structures can be quite large. Passing large structures by value can decrease a
program’s performance because a copy of the structure has to be created. When a struc-
ture is passed by reference, however, it isn’t copied. A reference that points to the original
argument is passed instead. So, it’s often preferable to pass large objects such as structures
by reference.

Of course, the disadvantage of passing an object by reference is that the function has
access to the original argument. It can potentially alter the argument’s value. This can be
prevented, however, by passing the argument as a constant reference. The showItem func-
tion from Program 11-7 is shown here, modified to use a constant reference parameter.

void showItem(const InventoryItem &p)
{
 cout << fixed << showpoint << setprecision(2);
 cout << "Part Number: " << p.partNum << endl;
 cout << "Description: " << p.description << endl;
 cout << "Units on Hand: " << p.onHand << endl;
 cout << "Price: $" << p.price << endl;
}

This version of the function is more efficient than the original version because the amount
of time and memory consumed in the function call is reduced. Because the parameter is
defined as a constant, the function cannot accidentally corrupt the value of the argument.

The prototype for this version of the function follows.

void showItem(const InventoryItem&);

11.8 Returning a Structure from a Function

CONCEPT: A function may return a structure.

Just as functions can be written to return an int, long, double, or other data type, they
can also be designed to return a structure. Recall the following structure declaration from
Program 11-2:

struct Circle
{
 double radius;
 double diameter;
 double area;
};

A function, such as the following, could be written to return a variable of the Circle data
type:

614 Chapter 11 Structured Data

Circle getCircleData()
{
 Circle temp; // Temporary Circle structure

 temp.radius = 10.0; // Store the radius
 temp.diameter = 20.0; // Store the diameter
 temp.area = 314.159; // Store the area
 return temp; // Return the temporary structure
}

Notice that the getCircleData function has a return data type of Circle. That means
the function returns an entire Circle structure when it terminates. The return value can
be assigned to any variable that is a Circle structure. The following statement, for exam-
ple, assigns the function’s return value to the Circle structure variable named myCircle:

myCircle = getCircleData();

After this statement executes, myCircle.radius will be set to 10.0, myCircle.diameter
will be set to 20.0, and myCircle.area will be set to 314.159.

When a function returns a structure, it is always necessary for the function to have a
local structure variable to hold the member values that are to be returned. In the
getCircleData function, the values for diameter, radius, and area are stored in the
local variable temp. The temp variable is then returned from the function.

Program 11-8 is a modification of Program 11-2. The function getInfo gets the circle’s
diameter from the user and calculates the circle’s radius. The diameter and radius are
stored in a local structure variable, round, which is returned from the function.

Program 11-8

 1 // This program uses a function to return a structure. This
 2 // is a modification of Program 11-2.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <cmath> // For the pow function
 6 using namespace std;
 7
 8 // Constant for pi.
 9 const double PI = 3.14159;
10
11 // Structure declaration
12 struct Circle
13 {
14 double radius; // A circle's radius
15 double diameter; // A circle's diameter
16 double area; // A circle's area
17 };
18
19 // Function prototype
20 Circle getInfo();
21
22 int main()
23 {
24 Circle c; // Define a structure variable

11.8 Returning a Structure from a Function 615

25
26 // Get data about the circle.
27 c = getInfo();
28
29 // Calculate the circle's area.
30 c.area = PI * pow(c.radius, 2.0);
31
32 // Display the circle data.
33 cout << "The radius and area of the circle are:\n";
34 cout << fixed << setprecision(2);
35 cout << "Radius: " << c.radius << endl;
36 cout << "Area: " << c.area << endl;
37 return 0;
38 }
39
40 //***
41 // Definition of function getInfo. This function uses a local *
42 // variable, tempCircle, which is a circle structure. The user *
43 // enters the diameter of the circle, which is stored in *
44 // tempCircle.diameter. The function then calculates the radius *
45 // which is stored in tempCircle.radius. tempCircle is then *
46 // returned from the function. *
47 //***
48
49 Circle getInfo()
50 {
51 Circle tempCircle; // Temporary structure variable
52
53 // Store circle data in the temporary variable.
54 cout << "Enter the diameter of a circle: ";
55 cin >> tempCircle.diameter;
56 tempCircle.radius = tempCircle.diameter / 2.0;
57
58 // Return the temporary variable.
59 return tempCircle;
60 }

Program Output with Example Input Shown in Bold
Enter the diameter of a circle: 10 [Enter]
The radius and area of the circle are:
Radius: 5.00
Area: 78.54

NOTE: In Chapter 6 you learned that C++ only allows you to return a single value from
a function. Structures, however, provide a way around this limitation. Even though a
structure may have several members, it is technically a single value. By packaging
multiple values inside a structure, you can return as many variables as you need from a
function.

616 Chapter 11 Structured Data

11.9 Pointers to Structures

CONCEPT: You may take the address of a structure variable and create variables that are
pointers to structures.

Defining a variable that is a pointer to a structure is as simple as defining any other pointer
variable: The data type is followed by an asterisk and the name of the pointer variable.
Here is an example:

Circle *cirPtr;

This statement defines cirPtr as a pointer to a Circle structure. Look at the following code:

Circle myCircle = { 10.0, 20.0, 314.159 };
Circle *cirPtr;
cirPtr = &myCircle;

The first two lines define myCircle, a structure variable, and cirPtr, a pointer. The third
line assigns the address of myCircle to cirPtr. After this line executes, cirPtr will point
to the myCircle structure. This is illustrated in Figure 11-4.

Indirectly accessing the members of a structure through a pointer can be clumsy, however,
if the indirection operator is used. One might think the following statement would access
the radius member of the structure pointed to by cirPtr, but it doesn’t:

*cirPtr.radius = 10;

The dot operator has higher precedence than the indirection operator, so the indirection
operator tries to dereference cirPtr.radius, not cirPtr. To dereference the cirPtr
pointer, a set of parentheses must be used.

(*cirPtr).radius = 10;

Because of the awkwardness of this notation, C++ has a special operator for dereferencing
structure pointers. It’s called the structure pointer operator, and it consists of a hyphen (-)
followed by the greater-than symbol (>). The previous statement, rewritten with the struc-
ture pointer operator, looks like this:

cirPtr->radius = 10;

Figure 11-4

cirPtr

0xA604

myCircle Structure
At Address 0xA604

11.9 Pointers to Structures 617

The structure pointer operator takes the place of the dot operator in statements using
pointers to structures. The operator automatically dereferences the structure pointer on its
left. There is no need to enclose the pointer name in parentheses.

Program 11-9 shows that a pointer to a structure may be used as a function parameter,
allowing the function to access the members of the original structure argument.

NOTE: The structure pointer operator is supposed to look like an arrow, thus visually
indicating that a “pointer” is being used.

Program 11-9

 1 // This program demonstrates a function that uses a
 2 // pointer to a structure variable as a parameter.
 3 #include <iostream>
 4 #include <iomanip>
 5 using namespace std;
 6
 7 const int NAME_LENGTH = 35; // Array size
 8
 9 struct Student
10 {
11 char name[NAME_LENGTH]; // Student's name
12 int idNum; // Student ID number
13 int creditHours; // Credit hours enrolled
14 double gpa; // Current GPA
15 };
16
17 void getData(Student *); // Function prototype
18
19 int main()
20 {
21 Student freshman;
22
23 // Get the student data.
24 cout << "Enter the following student data:\n";
25 getData(&freshman); // Pass the address of freshman.
26 cout << "\nHere is the student data you entered:\n";
27
28 // Now display the data stored in freshman
29 cout << setprecision(2);
30 cout << "Name: " << freshman.name << endl;
31 cout << "ID Number: " << freshman.idNum << endl;
32 cout << "Credit Hours: " << freshman.creditHours << endl;
33 cout << "GPA: " << freshman.gpa << endl;
34 return 0;
35 }
36

(program continues)

618 Chapter 11 Structured Data

Dynamically Allocating a Structure
You can also use a structure pointer and the new operator to dynamically allocate a struc-
ture. For example, the following code defines a Circle pointer named cirPtr and
dynamically allocates a Circle structure. Values are then stored in the dynamically allo-
cated structure’s members.

Circle *cirPtr; // Define a Circle pointer
cirPtr = new Circle; // Dynamically allocate a Circle structure
cirPtr->radius = 10; // Store a value in the radius member
cirPtr->diameter = 20; // Store a value in the diameter member
cirPtr->area = 314.159; // Store a value in the area member

37 //***
38 // Definition of function getData. Uses a pointer to a *
39 // Student structure variable. The user enters student *
40 // information, which is stored in the variable. *
41 //***
42
43 void getData(Student *s)
44 {
45 // Get the student name.
46 cout << "Student Name: ";
47 cin.getline(s->name, NAME_LENGTH);
48
49 // Get the student ID number.
50 cout << "Student ID Number: ";
51 cin >> s->idNum;
52
53 // Get the credit hours enrolled.
54 cout << "Credit Hours Enrolled: ";
55 cin >> s->creditHours;

 56
57 // Get the GPA.
58 cout << "Current GPA: ";
59 cin >> s->gpa;
60 }

Program Output with Example Input Shown in Bold
Enter the following student data:
Student Name: Frank Smith [Enter]
Student ID Number: 4876 [Enter]
Credit Hours Enrolled: 12 [Enter]
Current GPA: 3.45 [Enter]

Here is the student data you entered:
Name: Frank Smith
ID Number: 4876
Credit Hours: 12
GPA: 3.45

Program 11-9 (continued)

11.10 Focus on Software Engineering: When to Use ., When to Use ->, and When to Use * 619

You can also dynamically allocate an array of structures. The following code shows an
array of five Circle structures being allocated.

Circle *circles;
circles = new Circle[5];
for (int count = 0; count < 5; count++)
{
 cout << "Enter the radius for circle "
 << (count + 1) << ": ";
 cin >> circles[count].radius;
}

11.10 Focus on Software Engineering: When to Use .,
When to Use ->, and When to Use *

Sometimes structures contain pointers as members. For example, the following structure
declaration has an int pointer member:

struct GradeInfo
{
 char name[25]; // Student names
 int *testScores; // Dynamically allocated array
 float average; // Test average
};

It is important to remember that the structure pointer operator (->) is used to dereference
a pointer to a structure, not a pointer that is a member of a structure. If a program deref-
erences the testScores pointer in this structure, the indirection operator must be used.
For example, assume that the following variable has been defined:

GradeInfo student1;

The following statement will display the value pointed to by the testScores member:

cout << *student1.testScores;

It is still possible to define a pointer to a structure that contains a pointer member. For
instance, the following statement defines stPtr as a pointer to a GradeInfo structure:

GradeInfo *stPtr;

Assuming that stPtr points to a valid GradeInfo variable, the following statement will
display the value pointed to by its testScores member:

cout << *stPtr->testScores;

In this statement, the * operator dereferences stPtr->testScores, while the -> operator
dereferences stPtr. It might help to remember that the following expression:

stPtr->testScores

is equivalent to

(*stPtr).testScores

620 Chapter 11 Structured Data

So, the expression

*stPtr->testScores

is the same as

*(*stPtr).testScores

The awkwardness of this last expression shows the necessity of the -> operator. Table 11-3
lists some expressions using the *, ->, and . operators, and describes what each references.

Checkpoint

Assume the following structure declaration exists for questions 11.11–11.15:

struct Rectangle
{
 int length;
 int width;
};

11.11 Write a function that accepts a Rectangle structure as its argument and displays
the structure’s contents on the screen.

11.12 Write a function that uses a Rectangle structure reference variable as its parame-
ter and stores the user’s input in the structure’s members.

11.13 Write a function that returns a Rectangle structure. The function should store
the user’s input in the members of the structure before returning it.

11.14 Write the definition of a pointer to a Rectangle structure.

11.15 Assume rptr is a pointer to a Rectangle structure. Which of the expressions, A,
B, or C, is equivalent to the following expression:
 rptr->width

A) *rptr.width
B) (*rptr).width

C) rptr.(*width)

Table 11-3

Expression Description
s->m s is a structure pointer and m is a member. This expression accesses the m member of the

structure pointed to by s.
*a.p a is a structure variable and p, a pointer, is a member. This expression dereferences the

value pointed to by p.
(*s).m s is a structure pointer and m is a member. The * operator dereferences s, causing the

expression to access the m member of the structure pointed to by s. This expression is
the same as s->m.

*s->p s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.
This expression accesses the value pointed to by p. (The -> operator dereferences s and
the * operator dereferences p.)

*(*s).p s is a structure pointer and p, a pointer, is a member of the structure pointed to by s.
This expression accesses the value pointed to by p. (*s) dereferences s and the
outermost * operator dereferences p. The expression *s->p is equivalent.

11.11 Unions 621

11.11 Unions

CONCEPT: A union is like a structure, except all the members occupy the same
memory area.

A union, in almost all regards, is just like a structure. The difference is that all the mem-
bers of a union use the same memory area, so only one member can be used at a time. A
union might be used in an application where the program needs to work with two or more
values (of different data types), but only needs to use one of the values at a time. Unions
conserve memory by storing all their members in the same memory location.

Unions are declared just like structures, except the key word union is used instead of
struct. Here is an example:

union PaySource
{
 short hours;
 float sales;
};

A union variable of the data type shown above can then be defined as

PaySource employee1;

The PaySource union variable defined here has two members: hours (a short), and
sales (a float). The entire variable will only take up as much memory as the largest
member (in this case, a float). The way this variable is stored on a typical PC is illus-
trated in Figure 11-5.

As shown in Figure 11-5, the union uses four bytes on a typical PC. It can store a short or
a float, depending on which member is used. When a value is stored in the sales mem-
ber, all four bytes are needed to hold the data. When a value is stored in the hours mem-
ber, however, only the first two bytes are used. Obviously, both members can’t hold values
at the same time. This union is demonstrated in Program 11-10.

Figure 11-5

employee1: a PaySource union variable

First two bytes are used
by hours, a short

All four bytes are used by sales, a float

622 Chapter 11 Structured Data

Program 11-10

 1 // This program demonstrates a union.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 union PaySource
 7 {
 8 int hours; // Hours worked
 9 float sales; // Amount of sales
10 };
11
12 int main()
13 {
14 PaySource employee1; // Define a union variable
15 char payType; // To hold the pay type
16 float payRate; // Hourly pay rate
17 float grossPay; // Gross pay
18
19 cout << fixed << showpoint << setprecision(2);
20 cout << "This program calculates either hourly wages or\n";
21 cout << "sales commission.\n";
22
23 // Get the pay type, hourly or commission.
24 cout << "Enter H for hourly wages or C for commission: ";
25 cin >> payType;
26
27 // Determine the gross pay, depending on the pay type.
28 if (payType == 'H' || payType == 'h')
29 {
30 // This is an hourly paid employee. Get the
31 // pay rate and hours worked.
32 cout << "What is the hourly pay rate? ";
33 cin >> payRate;
34 cout << "How many hours were worked? ";
35 cin >> employee1.hours;
36
37 // Calculate and display the gross pay.
38 grossPay = employee1.hours * payRate;
39 cout << "Gross pay: $" << grossPay << endl;
40 }
41 else if (payType == 'C' || payType == 'c')
42 {
43 // This is a commission-paid employee. Get the
44 // amount of sales.
45 cout << "What are the total sales for this employee? ";
46 cin >> employee1.sales;
47
48 // Calculate and display the gross pay.
49 grossPay = employee1.sales * 0.10;
50 cout << "Gross pay: $" << grossPay << endl;
51 }

11.11 Unions 623

Everything else you already know about structures applies to unions. For example, arrays
of unions may be defined. A union may be passed as an argument to a function or
returned from a function. Pointers to unions may be defined and the members of the union
referenced by the pointer can be accessed with the -> operator.

Anonymous Unions
The members of an anonymous union have names, but the union itself has no name. Here
is the general format of an anonymous union declaration:

An anonymous union declaration actually creates the member variables in memory, so
there is no need to separately define a union variable. Anonymous unions are simple to use
because the members may be accessed without the dot operator. Program 11-11, which is
a modification of Program 11-10, demonstrates the use of an anonymous union.

52 else
53 {
54 // The user made an invalid selection.
55 cout << payType << " is not a valid selection.\n";
56 }
57 return 0;
58 }

Program Output with Example Input Shown in Bold
This program calculates either hourly wages or
sales commission.
Enter H for hourly wages or C for commission: C [Enter]
What are the total sales for this employee? 5000 [Enter]
Gross pay: $500.00

Program Output with Different Example Input Shown in Bold
This program calculates either hourly wages or
sales commission.
Enter H for hourly wages or C for commission: H [Enter]
What is the hourly pay rate? 20 [Enter]
How many hours were worked? 40 [Enter]
Gross pay: $800.00

 union
 {

member declaration;
 ...
 };

Program 11-11

 1 // This program demonstrates an anonymous union.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;

(program continues)

624 Chapter 11 Structured Data

 5
 6 int main()
 7 {
 8 union // Anonymous union
 9 {
10 int hours;
11 float sales;
12 };
13
14 char payType; // To hold the pay type
15 float payRate; // Hourly pay rate
16 float grossPay; // Gross pay
17
18 cout << fixed << showpoint << setprecision(2);
19 cout << "This program calculates either hourly wages or\n";
20 cout << "sales commission.\n";
21
22 // Get the pay type, hourly or commission.
23 cout << "Enter H for hourly wages or C for commission: ";
24 cin >> payType;
25
26 // Determine the gross pay, depending on the pay type.
27 if (payType == 'H' || payType == 'h')
28 {
29 // This is an hourly paid employee. Get the
30 // pay rate and hours worked.
31 cout << "What is the hourly pay rate? ";
32 cin >> payRate;
33 cout << "How many hours were worked? ";
34 cin >> hours; // Anonymous union member
35
36 // Calculate and display the gross pay.
37 grossPay = hours * payRate;
38 cout << "Gross pay: $" << grossPay << endl;
39 }
40 else if (payType == 'C' || payType == 'c')
41 {
42 // This is a commission-paid employee. Get the
43 // amount of sales.
44 cout << "What are the total sales for this employee? ";
45 cin >> sales; // Anonymous union member
46
47 // Calculate and display the gross pay.
48 grossPay = sales * 0.10;
49 cout << "Gross pay: $" << grossPay << endl;
50 }
51 else
52 {
53 // The user made an invalid selection.
54 cout << payType << " is not a valid selection.\n";
55 }
56 return 0;
57 }

Program 11-11 (continued)

11.12 Enumerated Data Types 625

Checkpoint
11.16 Declare a union named ThreeTypes with the following members:

letter: A character
whole: An integer
real: A double

11.17 Write the definition for an array of 50 of the ThreeTypes structures you declared
in Question 11.16.

11.18 Write a loop that stores the floating point value 2.37 in all the elements of the
array you defined in Question 11.17.

11.19 Write a loop that stores the character ‘A’ in all the elements of the array you
defined in Question 11.17.

11.20 Write a loop that stores the integer 10 in all the elements of the array you defined
in Question 11.17.

11.12 Enumerated Data Types

CONCEPT: An enumerated data type is a programmer-defined data type. It consists of
values known as enumerators, which represent integer constants.

Using the enum key word you can create your own data type and specify the values that
belong to that type. Such a type is known as an enumerated data type. Here is an example
of an enumerated data type declaration:

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

An enumerated type declaration begins with the key word enum, followed by the name of
the type, followed by a list of identifiers inside braces, and is terminated with a semicolon.
The example declaration creates an enumerated data type named Day. The identifiers
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, and FRIDAY, which are listed inside the braces,

Program Output with Example Input Shown in Bold
This program calculates either hourly wages or
sales commission.
Enter H for hourly wages or C for commission: C [Enter]
What are the total sales for this employee? 12000 [Enter]
Gross pay: $1200.00

NOTE: Notice the anonymous union in Program 11-11 is declared inside function main.
If an anonymous union is declared globally (outside all functions), it must be declared
static. This means the word static must appear before the word union.

626 Chapter 11 Structured Data

are known as enumerators. They represent the values that belong to the Day data type.
Here is the general format of an enumerated type declaration:

Note that the enumerators are not enclosed in quotation marks, therefore they are not
strings. Enumerators must be legal C++ identifiers.

Once you have created an enumerated data type in your program, you can define variables
of that type. For example, the following statement defines workDay as a variable of the
Day type:

Day workDay;

Because workDay is a variable of the Day data type, we may assign any of the enumerators
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, or FRIDAY to it. For example, the following
statement assigns the value WEDNESDAY to the workDay variable.

Day workDay = WEDNESDAY;

So just what are these enumerators MONDAY, TUESDAY, WEDNESDAY, THURSDAY, and FRIDAY?
You can think of them as integer named constants. Internally, the compiler assigns integer
values to the enumerators, beginning with 0. The enumerator MONDAY is stored in memory
as the number 0, TUESDAY is stored in memory as the number 1, WEDNESDAY is stored in
memory as the number 2, and so forth. To prove this, look at the following code.

cout << MONDAY << endl << TUESDAY << endl
 << WEDNESDAY << endl << THURSDAY << endl
 << FRIDAY << endl;

This statement will produce the following output:

0
1
2
3
4

Assigning an Integer to an enum Variable
Even though the enumerators of an enumerated data type are stored in memory as inte-
gers, you cannot directly assign an integer value to an enum variable. For example, assum-
ing that workDay is a variable of the Day data type previously described, the following
assignment statement is illegal.

workDay = 3; // Error!

 enum TypeName { One or more enumerators };

NOTE: When making up names for enumerators, it is not required that they be written in
all uppercase letters. For example, we could have written the enumerators of the Days type as
monday, tuesday, etc. Because they represent constant values, however, many programmers
prefer to write them in all uppercase letters. This is strictly a preference of style.

11.12 Enumerated Data Types 627

Compiling this statement will produce an error message such as “Cannot convert int to
Day.” When assigning a value to an enum variable, you should use a valid enumerator.
However, if circumstances require that you store an integer value in an enum variable, you
can do so by casting the integer. Here is an example:

workDay = static_cast<Day>(3);

This statement will produce the same results as:

workDay = THURSDAY;

Assigning an Enumerator to an int Variable
Although you cannot directly assign an integer value to an enum variable, you can directly
assign an enumerator to an integer variable. For example, the following code will work
just fine.

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
int x;
x = THURSDAY;
cout << x << endl;

When this code runs it will display 3. You can also assign a variable of an enumerated
type to an integer variable, as shown here:

Day workDay = FRIDAY;
int x = workDay;
cout << x << endl;

When this code runs it will display 4.

Comparing Enumerator Values
Enumerator values can be compared using the relational operators. For example, using
the Day data type we have been discussing, the following expression is true.

FRIDAY > MONDAY

The expression is true because the enumerator FRIDAY is stored in memory as 4 and the
enumerator MONDAY is stored as 0. The following code will display the message “Friday is
greater than Monday.”

if (FRIDAY > MONDAY)
 cout << "Friday is greater than Monday.\n";

You can also compare enumerator values with integer values. For example, the following
code will display the message “Monday is equal to zero.”

if (MONDAY == 0)
 cout << "Monday is equal to zero.\n";

Let’s look at a complete program that uses much of what we have learned so far.
Program 11-12 uses the Day data type that we have been discussing.

628 Chapter 11 Structured Data

Anonymous Enumerated Types
Notice that Program 11-12 does not define a variable of the Day data type. Instead it uses
the Day data type’s enumerators in the for loops. The counter variable index is initialized
to MONDAY (which is 0), and the loop iterates as long as index is less than or equal to
FRIDAY (which is 4). When you do not need to define variables of an enumerated type,
you can actually make the type anonymous. An anonymous enumerated type is simply
one that does not have a name. For example, in Program 11-12 we could have declared
the enumerated type as:

enum { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };

Program 11-12

 1 // This program demonstrates an enumerated data type.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
 7
 8 int main()
 9 {
10 const int NUM_DAYS = 5; // The number of days
11 double sales[NUM_DAYS]; // To hold sales for each day
12 double total = 0.0; // Accumulator
13 int index; // Loop counter
14
15 // Get the sales for each day.
16 for (index = MONDAY; index <= FRIDAY; index++)
17 {
18 cout << "Enter the sales for day "
19 << index << ": ";
20 cin >> sales[index];
21 }
22
23 // Calculate the total sales.
24 for (index = MONDAY; index <= FRIDAY; index++)
25 total += sales[index];
26
27 // Display the total.
28 cout << "The total sales are $" << setprecision(2)
29 << fixed << total << endl;
30
31 return 0;
32 }

Program Output with Example Input Shown in Bold
Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day 1: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

11.12 Enumerated Data Types 629

This declaration still creates the enumerators. We just can’t use the data type to define
variables because the type does not have a name.

Using Math Operators to Change the Value
of an enum Variable
Even though enumerators are really integers, and enum variables really hold integer val-
ues, you can run into problems when trying to perform math operations with them. For
example, look at the following code.

Day day1, day2; // Defines two Day variables.
day1 = TUESDAY; // Assign TUESDAY to day1.
day2 = day1 + 1; // ERROR! This will not work!

The third statement causes a problem because the expression day1 + 1 results in the integer
value 2. The assignment operator then attempts to assign the integer value 2 to the enum
variable day2. Because C++ cannot implicitly convert an int to a Day, an error occurs. You
can fix this by using a cast to explicitly convert the result to Day, as shown here:

day2 = static_cast<Day>(day1 + 1); // This works.

Using an enum Variable to Step Through
an Array’s Elements
Because enumerators are stored in memory as integers, you can use them as array sub-
scripts. For example, look at the following code.

enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
const int NUM_DAYS = 5;
double sales[NUM_DAYS];
sales[MONDAY] = 1525.0; // Stores 1525.0 in sales[0].
sales[TUESDAY] = 1896.5; // Stores 1896.5 in sales[1].
sales[WEDNESDAY] = 1975.63; // Stores 1975.63 in sales[2].
sales[THURSDAY] = 1678.33; // Stores 1678.33 in sales[3].
sales[FRIDAY] = 1498.52; // Stores 1498.52 in sales[4].

This code stores values in all five elements of the sales array. Because enumerator values
can be used as array subscripts, you can use an enum variable in a loop to step through the
elements of an array. However, using an enum variable for this purpose is not as straight-
forward as using an int variable. This is because you cannot use the ++ or -- operators
directly on an enum variable. To understand what I mean, first look at the following code
taken from Program 11-12:

for (index = MONDAY; index <= FRIDAY; index++)
{
 cout << "Enter the sales for day "
 << index << ": ";
 cin >> sales[index];
}

In this code, index is an int variable used to step through each element of the array. It
is reasonable to expect that we could use a Day variable instead, as shown in the follow-
ing code.

630 Chapter 11 Structured Data

Day workDay; // Define a Day variable

// ERROR!!! This code will NOT work.
for (workDay = MONDAY; workDay <= FRIDAY; workDay++)
{
 cout << "Enter the sales for day "
 << workDay << ": ";
 cin >> sales[workDay];
}

Notice that the for loop’s update expression uses the ++ operator to increment workDay.
Although this works fine with an int variable, the ++ operator cannot be used with an
enum variable. Instead, you must convert workDay++ to an equivalent expression that will
work. The expression workDay++ attempts to do the same thing as:

workDay = workDay + 1; // Good idea, but still won't work.

However, this still will not work. We have to use a cast to explicitly convert the expression
workDay + 1 to the Day data type, like this:

 workDay = static_cast<Day>(workDay + 1);

This is the expression that we must use in the for loop instead of workDay++. The cor-
rected for loop looks like this:

for (workDay = MONDAY; workDay <= FRIDAY;
 workDay = static_cast<Day>(workDay + 1))
{
 cout << "Enter the sales for day "
 << workDay << ": ";
 cin >> sales[workDay];
}

Program 11-13 is a version of Program 11-12 that is modified to use a Day variable to step
through the elements of the sales array.

Program 11-13

 1 // This program demonstrates an enumerated data type.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
 7
 8 int main()
 9 {
10 const int NUM_DAYS = 5; // The number of days
11 double sales[NUM_DAYS]; // To hold sales for each day
12 double total = 0.0; // Accumulator
13 Day workDay; // Loop counter
14

11.12 Enumerated Data Types 631

Using Enumerators to Output Values
As you have already seen, sending an enumerator to cout causes the enumerator’s integer
value to be displayed. For example, assuming we are using the Day type previously
described, the following statement displays 0.

cout << MONDAY << endl;

If you wish to use the enumerator to display a string such as “Monday,” you’ll have to
write code that produces the desired string. For example, in the following code assume
that workDay is a Day variable that has been initialized to some value. The switch state-
ment displays the name of a day, based upon the value of the variable.

switch(workDay)
{
 case MONDAY : cout << "Monday";
 break;
 case TUESDAY : cout << "Tuesday";
 break;
 case WEDNESDAY : cout << "Wednesday";
 break;
 case THURSDAY : cout << "Thursday";
 break;
 case FRIDAY : cout << "Friday";
}

15 // Get the sales for each day.
16 for (workDay = MONDAY; workDay <= FRIDAY;
17 workDay = static_cast<Day>(workDay + 1))
18 {
19 cout << "Enter the sales for day "
20 << workDay << ": ";
21 cin >> sales[workDay];
22 }
23
24 // Calculate the total sales.
25 for (workDay = MONDAY; workDay <= FRIDAY;
26 workDay = static_cast<Day>(workDay + 1))
27 total += sales[workDay];
28
29 // Display the total.
30 cout << "The total sales are $" << setprecision(2)
31 << fixed << total << endl;
32
33 return 0;
34 }

Program Output with Example Input Shown in Bold
Enter the sales for day 0: 1525.00 [Enter]
Enter the sales for day 1: 1896.50 [Enter]
Enter the sales for day 2: 1975.63 [Enter]
Enter the sales for day 3: 1678.33 [Enter]
Enter the sales for day 4: 1498.52 [Enter]
The total sales are $8573.98

632 Chapter 11 Structured Data

Program 11-14 shows this type of code used in a function. Instead of asking the user to
enter the sales for day 0, day 1, and so forth, it displays the names of the days.

Program 11-14

 1 // This program demonstrates an enumerated data type.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
 7
 8 // Function prototype
 9 void displayDayName(Day);
10
11 int main()
12 {
13 const int NUM_DAYS = 5; // The number of days
14 double sales[NUM_DAYS]; // To hold sales for each day
15 double total = 0.0; // Accumulator
16 Day workDay; // Loop counter
17
18 // Get the sales for each day.
19 for (workDay = MONDAY; workDay <= FRIDAY;
20 workDay = static_cast<Day>(workDay + 1))
21 {
22 cout << "Enter the sales for day ";
23 displayDayName(workDay);
24 cout << ": ";
25 cin >> sales[workDay];
26 }
27
28 // Calculate the total sales.
29 for (workDay = MONDAY; workDay <= FRIDAY;
30 workDay = static_cast<Day>(workDay + 1))
31 total += sales[workDay];
32
33 // Display the total.
34 cout << "The total sales are $" << setprecision(2)
35 << fixed << total << endl;
36
37 return 0;
38 }
39
40 //**
41 // Definition of the displayDayName function *
42 // This function accepts an argument of the Day type and *
43 // displays the corresponding name of the day. *
44 //**
45

11.12 Enumerated Data Types 633

Specifying Integer Values for Enumerators
By default, the enumerators in an enumerated data type are assigned the integer values 0,
1, 2, and so forth. If this is not appropriate, you can specify the values to be assigned, as in
the following example.

enum Water { FREEZING = 32, BOILING = 212 };

In this example, the FREEZING enumerator is assigned the integer value 32 and the
BOILING enumerator is assigned the integer value 212. Program 11-15 demonstrates how
this enumerated type might be used.

46 void displayDayName(Day d)
47 {
48 switch(d)
49 {
50 case MONDAY : cout << "Monday";
51 break;
52 case TUESDAY : cout << "Tuesday";
53 break;
54 case WEDNESDAY : cout << "Wednesday";
55 break;
56 case THURSDAY : cout << "Thursday";
57 break;
58 case FRIDAY : cout << "Friday";
59 }
60 }

Program Output with Example Input Shown in Bold
Enter the sales for Monday: 1525.00 [Enter]
Enter the sales for Tuesday: 1896.50 [Enter]
Enter the sales for Wednesday: 1975.63 [Enter]
Enter the sales for Thursday: 1678.33 [Enter]
Enter the sales for Friday: 1498.52 [Enter]
The total sales are $8573.98

Program 11-15

 1 // This program demonstrates an enumerated data type.
 2 #include <iostream>
 3 #include <iomanip>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 enum Water { FREEZING = 32, BOILING = 212 };
 9 int waterTemp; // To hold the water temperature
10

(program continues)

634 Chapter 11 Structured Data

If you leave out the value assignment for one or more of the enumerators, it will be
assigned a default value. Here is an example:

enum Colors { RED, ORANGE, YELLOW = 9, GREEN, BLUE };

In this example the enumerator RED will be assigned the value 0, ORANGE will be assigned
the value 1, YELLOW will be assigned the value 9, GREEN will be assigned the value 10, and
BLUE will be assigned the value 11.

Enumerators Must Be Unique Within the Same Scope
Enumerators are identifiers just like variable names, named constants, and function
names. As with all identifiers, they must be unique within the same scope. For example, an
error will result if both of the following enumerated types are declared within the same
scope. The reason is that ROOSEVELT is declared twice.

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };
enum VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN }; // Error!

The following declarations will also cause an error if they appear within the same scope.

enum Status { OFF, ON };
const int OFF = 0; // Error!

11 cout << "Enter the current water temperature: ";
12 cin >> waterTemp;
13 if (waterTemp <= FREEZING)
14 cout << "The water is frozen.\n";
15 else if (waterTemp >= BOILING)
16 cout << "The water is boiling.\n";
17 else
18 cout << "The water is not frozen or boiling.\n";
19
20 return 0;
21 }

Program Output with Example Input Shown in Bold
Enter the current water temperature: 10 [Enter]
The water is frozen.

Program Output with Example Input Shown in Bold
Enter the current water temperature: 300 [Enter]
The water is boiling.

Program Output with Example Input Shown in Bold
Enter the current water temperature: 92 [Enter]
The water is not frozen or boiling.

Program 11-15 (continued)

11.12 Enumerated Data Types 635

Declaring the Type and Defining the Variables
in One Statement
The following code uses two lines to declare an enumerated data type and define a vari-
able of the type.

enum Car { PORSCHE, FERRARI, JAGUAR };
Car sportsCar;

C++ allows you to declare an enumerated data type and define one or more variables of
the type in the same statement. The previous code could be combined into the following
statement:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

The following statement declares the Car data type and defines two variables: myCar and
yourCar.

enum Car { PORSCHE, FERRARI, JAGUAR } myCar, yourCar;

See the High Adventure Travel Part 2 Case Study on the Student CD.

Checkpoint
11.21 Look at the following declaration.

enum Flower { ROSE, DAISY, PETUNIA };

In memory, what value will be stored for the enumerator ROSE? For DAISY? For
PETUNIA?

11.22 What will the following code display?
enum { HOBBIT, ELF = 7, DRAGON };
cout << HOBBIT << " " << ELF << " " << DRAGON << endl;

11.23 Does the enumerated data type declared in Checkpoint Question 11.22 have a
name, or is it anonymous?

11.24 What will the following code display?
enum Letters { Z, Y, X };
if (Z > X)
 cout << "Z is greater than X.\n";
else
 cout << "Z is not greater than X.\n";

11.25 Will the following code cause an error, or will it compile without any errors? If it
causes an error, rewrite it so it compiles.
enum Color { RED, GREEN, BLUE };
Color c;
c = 0;

11.26 Will the following code cause an error, or will it compile without any errors? If it
causes an error, rewrite it so it compiles.
enum Color { RED, GREEN, BLUE };
Color c = RED;
c++;

636 Chapter 11 Structured Data

Review Questions and Exercises

Short Answer
1. What is a primitive data type?

2. Does a structure declaration cause a structure variable to be created?

3. Both arrays and structures are capable of storing multiple values. What is the differ-
ence between an array and a structure?

4. Look at the following structure declaration.

struct Point
{
 int x;
 int y;
};

Write statements that
A) define a Point structure variable named center
B) assign 12 to the x member of center
C) assign 7 to the y member of center
D) display the contents of the x and y members of center

5. Look at the following structure declaration.

struct FullName
{
 char lastName[26];
 char middleName[26];
 char firstName[26];
};

Write statements that
A) Define a FullName structure variable named info
B) Assign your last, middle, and first name to the members of the info variable
C) Display the contents of the members of the info variable

6. Look at the following code.

struct PartData
{
 char partName[51];
 int idNumber;
};

PartData inventory[100];

Write a statement that displays the contents of the partName member of element 49
of the inventory array.

Review Questions and Exercises 637

7. Look at the following code.

struct Town
{
 char townName[51];
 char countyName[51];
 double population;
 double elevation;
};

Town t = { "Canton", "Haywood", 9478 };

A) What value is stored in t.townName?
B) What value is stored in t.countyName?
C) What value is stored in t.population?
D) What value is stored in t.elevation?

8. Look at the following code.

structure Rectangle
{
 int length;
 int width;
};

Rectangle *r;

Write statements that
A) Dynamically allocate a Rectangle structure variable and use r to point to it.
B) Assign 10 to the structure’s length member and 14 to the structure’s width mem-

ber.

9. What is the difference between a union and a structure?

10. Look at the following code.

union Values
{
 int ivalue;
 double dvalue;
};

Values v;

Assuming that an int uses four bytes and a double uses eight bytes, how much mem-
ory does the variable v use?

11. What will the following code display?

enum { POODLE, BOXER, TERRIER };
cout << POODLE << " " << BOXER << " " << TERRIER << endl;

638 Chapter 11 Structured Data

12. Look at the following declaration.

enum Person { BILL, JOHN, CLAIRE, BOB };
Person p;

Indicate whether each of the following statements or expressions is valid or invalid.
A) p = BOB;

B) p++;

C) BILL > BOB

D) p = 0;

E) int x = BILL;

F) p = static_cast<Person>(3);

G) cout << CLAIRE << endl;

Fill-in-the-Blank

13. Before a structure variable can be created, the structure must be _________.

14. The _________ is the name of the structure type.

15. The variables declared inside a structure declaration are called _________.

16. A(n) _________ is required after the closing brace of a structure declaration.

17. In the definition of a structure variable, the _________ is placed before the variable
name, just like the data type of a regular variable is placed before its name.

18. The _________ operator allows you to access structure members.

Algorithm Workbench

19. The structure Car is declared as follows:

struct Car
{

char carMake[20];
char carModel[20];
int yearModel;
double cost;

};

Write a definition statement that defines a Car structure variable initialized with the
following data:

Make: Ford
Model: Mustang
Year Model: 1997
Cost: $20,000

20. Define an array of 25 of the Car structure variables (the structure is declared in Ques-
tion 19).

21. Define an array of 35 of the Car structure variables. Initialize the first three elements
with the following data:

Make Model Year Cost
Ford Taurus 1997 $21,000
Honda Accord 1992 $11,000
Lamborghini Countach 1997 $200,000

Review Questions and Exercises 639

22. Write a loop that will step through the array you defined in Question 21, displaying
the contents of each element.

23. Declare a structure named TempScale, with the following members:

fahrenheit: a double
centigrade: a double

Next, declare a structure named Reading, with the following members:

windSpeed: an int
humidity: a double
temperature: a TempScale structure variable

Next define a Reading structure variable.

24. Write statements that will store the following data in the variable you defined in
Question 23.

Wind Speed: 37 mph
Humidity: 32%
Fahrenheit temperature: 32 degrees
Centigrade temperature: 0 degrees

25. Write a function called showReading. It should accept a Reading structure variable
(see Question 23) as its argument. The function should display the contents of the
variable on the screen.

26. Write a function called findReading. It should use a Reading structure reference
variable (see Question 23) as its parameter. The function should ask the user to enter
values for each member of the structure.

27. Write a function called getReading, which returns a Reading structure (see
Question 23). The function should ask the user to enter values for each member of a
Reading structure, then return the structure.

28. Write a function called recordReading. It should use a Reading structure pointer
variable (see Question 23) as its parameter. The function should ask the user to enter
values for each member of the structure pointed to by the parameter.

29. Rewrite the following statement using the structure pointer operator:

(*rptr).windSpeed = 50;

30. Rewrite the following statement using the structure pointer operator:

*(*strPtr).num = 10;

31. Write the declaration of a union called Items with the following members:

alpha a character
num an integer
bigNum a long integer
real a float

Next, write the definition of an Items union variable.

32. Write the declaration of an anonymous union with the same members as the union
you declared in Question 31.

33. Write a statement that stores the number 452 in the num member of the anonymous
union you declared in Question 32.

640 Chapter 11 Structured Data

34. Look at the following statement.

enum Color { RED, ORANGE, GREEN, BLUE };

A) What is the name of the data type declared by this statement?
B) What are the enumerators for this type?
C) Write a statement that defines a variable of this type and initializes it with a valid

value.

35. A pet store sells dogs, cats, birds, and hamsters. Write a declaration for an anony-
mous enumerated data type that can represent the types of pets the store sells.

True or False
36. T F A semicolon is required after the closing brace of a structure or union declara-

tion.

37. T F A structure declaration does not define a variable.

38. T F The contents of a structure variable can be displayed by passing the structure
variable to the cout object.

39. T F Structure variables may not be initialized.

40. T F In a structure variable’s initialization list, you do not have to provide initializers
for all the members.

41. T F You may skip members in a structure’s initialization list.

42. T F The following expression refers to the element 5 in the array carInfo:
carInfo.model[5]

43. T F An array of structures may be initialized.

44. T F A structure variable may not be a member of another structure.

45. T F A structure member variable may be passed to a function as an argument.

46. T F An entire structure may not be passed to a function as an argument.

47. T F A function may return a structure.

48. T F When a function returns a structure, it is always necessary for the function to
have a local structure variable to hold the member values that are to be
returned.

49. T F The indirection operator has higher precedence than the dot operator.

50. T F The structure pointer operator does not automatically dereference the structure
pointer on its left.

51. T F In a union, all the members are stored in different memory locations.

52. T F All the members of a union may be used simultaneously.

53. T F You may define arrays of unions.

54. T F You may not define pointers to unions.

55. T F An anonymous union has no name.

56. T F If an anonymous union is defined globally (outside all functions), it must be
declared static.

Review Questions and Exercises 641

Find the Errors

Each of the following declarations, programs, and program segments has errors. Locate as
many as you can.

57. struct
{
 int x;
 float y;
};

58. struct Values
{
 char name[30];
 int age;
}

59. struct TwoVals
{
 int a, b;
};
int main ()
{
 TwoVals.a = 10;
 TwoVals.b = 20;
 return 0;
}

60. #include <iostream>
using namespace std;

struct ThreeVals
{
 int a, b, c;
};
int main()
{
 ThreeVals vals = {1, 2, 3};
 cout << vals << endl;
 return 0;
}

61. #include <iostream>
using namespace std;

struct names
{
 char first[20];
 char last[20];
};
int main ()
{
 names customer = "Smith", "Orley";
 cout << names.first << endl;
 cout << names.last << endl;
 return 0;
}

642 Chapter 11 Structured Data

62. struct FourVals
{
 int a, b, c, d;
};
int main ()
{
 FourVals nums = {1, 2, , 4};
 return 0;
}

63. #include <iostream>
using namespace std;

struct TwoVals
{
 int a = 5;
 int b = 10;
};
int main()
{
 TwoVals v;

 cout << v.a << " " << v.b;
 return 0;
}

64. struct TwoVals
{
 int a = 5;
 int b = 10;
};

int main()
{
 TwoVals varray[10];

 varray.a[0] = 1;
 return 0;
}

65. struct TwoVals
{
 int a;
 int b;
};
TwoVals getVals()
{
 TwoVals.a = TwoVals.b = 0;
}

66. struct ThreeVals
{
 int a, b, c;
};

int main ()
{
 TwoVals s, *sptr;

Review Questions and Exercises 643

 sptr = &s;
 *sptr.a = 1;
 return 0;
}

67. #include <iostream>
using namespace std;

union Compound
{
 int x;
 float y;
};

int main()
{
 Compound u;
 u.x = 1000;
 cout << u.y << endl;
 return 0;
}

Programming Challenges
1. Movie Data

Write a program that uses a structure named MovieData to store the following infor-
mation about a movie:

Title
Director
Year Released
Running Time (in minutes)

The program should create two MovieData variables, store values in their members,
and pass each one, in turn, to a function that displays the information about the
movie in a clearly formatted manner.

2. Movie Profit

Modify the Movie Data program written for Programming Challenge 1 to include
two additional members that hold the movie’s production costs and first-year reve-
nues. Modify the function that displays the movie data to display the title, director,
release year, running time, and first year’s profit or loss.

3. Corporate Sales Data

Write a program that uses a structure to store the following data on a company division:

Division Name (such as East, West, North, or South)
First-Quarter Sales
Second-Quarter Sales
Third-Quarter Sales
Fourth-Quarter Sales
Total Annual Sales
Average Quarterly Sales

644 Chapter 11 Structured Data

The program should use four variables of this structure. Each variable should rep-
resent one of the following corporate divisions: East, West, North, and South. The
user should be asked for the four quarters’ sales figures for each division. Each
division’s total and average sales should be calculated and stored in the appropri-
ate member of each structure variable. These figures should then be displayed on
the screen.

Input Validation: Do not accept negative numbers for any sales figures.

4. Weather Statistics

Write a program that uses a structure to store the following weather data for a partic-
ular month:

Total Rainfall
High Temperature
Low Temperature
Average Temperature

The program should have an array of 12 structures to hold weather data for an
entire year. When the program runs, it should ask the user to enter data for each
month. (The average temperature should be calculated.) Once the data are entered
for all the months, the program should calculate and display the average monthly
rainfall, the total rainfall for the year, the highest and lowest temperatures for the
year (and the months they occurred in), and the average of all the monthly average
temperatures.

Input Validation: Only accept temperatures within the range between –100 and +140
degrees Fahrenheit.

5. Weather Statistics Modification

Modify the program that you wrote for Programming Challenge 4 so it defines an enu-
merated data type with enumerators for the months (JANUARY, FEBRUARY, etc.). The
program should use the enumerated type to step through the elements of the array.

6. Soccer Scores

Write a program that stores the following data about a soccer player in a structure:

Player’s Name
Player’s Number
Points Scored by Player

The program should keep an array of 12 of these structures. Each element is for a dif-
ferent player on a team. When the program runs it should ask the user to enter the
data for each player. It should then show a table that lists each player’s number, name,
and points scored. The program should also calculate and display the total points
earned by the team. The number and name of the player who has earned the most
points should also be displayed.

Input Validation: Do not accept negative values for players’ numbers or points scored.

Solving the
Weather
Statistics
Problem

Review Questions and Exercises 645

7. Customer Accounts

Write a program that uses a structure to store the following data about a customer
account:

Name
Address
City, State, and ZIP
Telephone Number
Account Balance
Date of Last Payment

The program should use an array of at least 20 structures. It should let the user enter
data into the array, change the contents of any element, and display all the data stored
in the array. The program should have a menu-driven user interface.

Input Validation: When the data for a new account is entered, be sure the user enters
data for all the fields. No negative account balances should be entered.

8. Search Function for Customer Accounts Program

Add a function to Programming Challenge 7 that allows the user to search the struc-
ture array for a particular customer’s account. It should accept part of the customer’s
name as an argument and then search for an account with a name that matches it. All
accounts that match should be displayed. If no account matches, a message saying so
should be displayed.

9. Speakers’ Bureau

Write a program that keeps track of a speakers’ bureau. The program should use a
structure to store the following data about a speaker:

Name
Telephone Number
Speaking Topic
Fee Required

The program should use an array of at least 10 structures. It should let the user enter
data into the array, change the contents of any element, and display all the data stored
in the array. The program should have a menu-driven user interface.

Input Validation: When the data for a new speaker is entered, be sure the user enters
data for all the fields. No negative amounts should be entered for a speaker’s fee.

10. Search Function for the Speakers’ Bureau Program

Add a function to Programming Challenge 9 that allows the user to search for a
speaker on a particular topic. It should accept a key word as an argument and then
search the array for a structure with that key word in the Speaking Topic field. All
structures that match should be displayed. If no structure matches, a message saying
so should be displayed.

646 Chapter 11 Structured Data

11. Monthly Budget

A student has established the following monthly budget:

Housing 500.00
Utilities 150.00
Household Expenses 65.00
Transportation 50.00
Food 250.00
Medical 30.00
Insurance 100.00
Entertainment 150.00
Clothing 75.00
Miscellaneous 50.00

Write a program that has a MonthlyBudget structure designed to hold each of these
expense categories. The program should pass the structure to a function that asks the
user to enter the amounts spent in each budget category during a month. The program
should then pass the structure to a function that displays a report indicating the
amount over or under in each category, as well as the amount over or under for the
entire monthly budget.

12. Course Grade

Write a program that uses a structure to store the following data:

The program should keep a list of test scores for a group of students. It should ask the
user how many test scores there are to be and how many students there are. It should
then dynamically allocate an array of structures. Each structure’s Tests member
should point to a dynamically allocated array that will hold the test scores.

After the arrays have been dynamically allocated, the program should ask for the ID
number and all the test scores for each student. The average test score should be cal-
culated and stored in the average member of each structure. The course grade should
be computed on the basis of the following grading scale:

Member Name Description

Name Student name

Idnum Student ID number

Tests Pointer to an array of test scores

Average Average test score

Grade Course grade

Average Test Grade Course Grade

91–100 A

81–90 B

71–80 C

61–70 D

60 or below F

Review Questions and Exercises 647

The course grade should then be stored in the Grade member of each structure. Once
all this data is calculated, a table should be displayed on the screen listing each stu-
dent’s name, ID number, average test score, and course grade.

Input Validation: Be sure all the data for each student is entered. Do not accept nega-
tive numbers for any test score.

13. Drink Machine Simulator

Write a program that simulates a soft drink machine. The program should use a struc-
ture that stores the following data:

Drink Name
Drink Cost
Number of Drinks in Machine

The program should create an array of five structures. The elements should be initial-
ized with the following data:

Each time the program runs, it should enter a loop that performs the following
steps: A list of drinks is displayed on the screen. The user should be allowed to
either quit the program or pick a drink. If the user selects a drink, he or she will
next enter the amount of money that is to be inserted into the drink machine. The
program should display the amount of change that would be returned and subtract
one from the number of that drink left in the machine. If the user selects a drink that
has sold out, a message should be displayed. The loop then repeats. When the user
chooses to quit the program it should display the total amount of money the
machine earned.

Input Validation: When the user enters an amount of money, do not accept negative
values, or values greater than $1.00.

14. Inventory Bins

Write a program that simulates inventory bins in a warehouse. Each bin holds a num-
ber of the same type of parts. The program should use a structure that keeps the fol-
lowing data:

Description of the part kept in the bin
Number of parts in the bin

Drink Name Cost Number in Machine

Cola .75 20

Root Beer .75 20

Lemon-Lime .75 20

Grape Soda .80 20

Cream Soda .80 20

648 Chapter 11 Structured Data

The program should have an array of 10 bins, initialized with the following data:

The program should have the following functions:

AddParts: a function that increases a specific bin’s part count by a specified number.

RemoveParts: a function that decreases a specific bin’s part count by a specified number.

When the program runs, it should repeat a loop that performs the following steps:
The user should see a list of what each bin holds and how many parts are in each bin.
The user can choose to either quit the program or select a bin. When a bin is selected,
the user can either add parts to it or remove parts from it. The loop then repeats,
showing the updated bin data on the screen.

Input Validation: No bin can hold more than 30 parts, so don’t let the user add more
than a bin can hold. Also, don’t accept negative values for the number of parts being
added or removed.

15. Multipurpose Payroll

Write a program that calculates pay for either an hourly paid worker or a salaried
worker. Hourly paid workers are paid their hourly pay rate times the number of
hours worked. Salaried workers are paid their regular salary plus any bonus they
may have earned. The program should declare two structures for the following
data:

Hourly Paid:
HoursWorked
HourlyRate

Salaried:
Salary
Bonus

The program should also declare a union with two members. Each member should be
a structure variable: one for the hourly paid worker and another for the salaried
worker.

Part Description Number of Parts in the Bin

Valve 10

Bearing 5

Bushing 15

Coupling 21

Flange 7

Gear 5

Gear Housing 5

Vacuum Gripper 25

Cable 18

Rod 12

Review Questions and Exercises 649

The program should ask the user whether he or she is calculating the pay for an
hourly paid worker or a salaried worker. Regardless of which the user selects, the
appropriate members of the union will be used to store the data that will be used to
calculate the pay.

Input Validation: Do not accept negative numbers. Do not accept values greater than
80 for HoursWorked.

This page intentionally left blank

651

C
H

A
P

T
E

R

12 Advanced
File Operations

12.1 File Operations

CONCEPT: A file is a collection of data that is usually stored on a computer’s disk.
Data can be saved to files and then later reused.

Almost all real-world programs use files to store and retrieve data. Here are a few exam-
ples of familiar software packages that use files extensively.

• Word Processors: Word processing programs are used to write letters, memos,
reports, and other documents. The documents are then saved in files so they can
be edited and reprinted.

• Database Management Systems: DBMSs are used to create and maintain data-
bases. Databases are files that contain large collections of data, such as payroll
records, inventories, sales statistics, and customer records.

• Spreadsheets: Spreadsheet programs are used to work with numerical data. Num-
bers and mathematical formulas can be inserted into the rows and columns of the
spreadsheet. The spreadsheet can then be saved to a file for use later.

TOPICS

12.1 File Operations
12.2 File Output Formatting
12.3 Passing File Stream Objects

to Functions
12.4 More Detailed Error Testing
12.5 Member Functions for Reading

and Writing Files

12.6 Focus on Software Engineering:
Working with Multiple Files

12.7 Binary Files
12.8 Creating Records with Structures
12.9 Random-Access Files
12.10 Opening a File for Both Input

and Output

652 Chapter 12 Advanced File Operations

• Compilers: Compilers translate the source code of a program, which is saved in a
file, into an executable file. Throughout the previous chapters of this book you
have created many C++ source files and compiled them to executable files.

Chapter 3 introduced you to file operations using the ifstream and ofstream data types.
You saw how to open a file for input with an ifstream object, and how to open a file for
output with an ofstream object. That chapter also explained that the stream extraction
operator (>>) may be used with an ifstream object to read data from a file, and that the
stream insertion operator (<<) may be used with an ofstream object to write data to a
file. Chapter 4 discussed how to test for errors when a file is opened, and Chapter 5
explained how to detect whether the end of a file has been encountered. That chapter also
demonstrated techniques for using loops with files.

Chapters 3, 4, and 5 provided enough information for you to write programs that per-
form simple file operations. This chapter covers more advanced file operations, and
focuses primarily on the fstream data type. As a review, Table 12-1 compares the
ifstream, ofstream, and fstream data types. All of these data types require the
fstream header file.

Using the fstream Data Type
You define an fstream object just as you define objects of other data types. The following
statement defines an fstream object named dataFile.

fstream dataFile;

As with ifstream and ofstream objects, you use an fstream object’s open function to
open a file. An fstream object’s open function requires two arguments, however. The first
argument is a string containing the name of the file. The second argument is a file access
flag that indicates the mode in which you wish to open the file. Here is an example.

dataFile.open("info.txt", ios::out);

The first argument in this function call is the name of the file, info.txt. The second argu-
ment is the file access flag ios::out. This tells C++ to open the file in output mode. Out-
put mode allows data to be written to a file. The following statement uses the ios::in
access flag to open a file in input mode, which allows data to be read from the file.

dataFile.open("info.txt", ios::in);

There are many file access flags, as listed in Table 12-2.

Table 12-1 File Stream

Data Type Description
ifstream Input File Stream. This data type can be used only to read data from files into memory.
ofstream Output File Stream. This data type can be used to create files and write data to them.
fstream File Stream. This data type can be used to create files, write data to them, and read

data from them.

12.1 File Operations 653

Several flags may be used together if they are connected with the | operator. For example,
assume dataFile is an fstream object in the following statement:

dataFile.open("info.txt", ios::in | ios::out);

This statement opens the file info.txt in both input and output modes. This means data
may be written to and read from the file.

The following statement opens the file in such a way that data will only be written to its end:

dataFile.open("info.txt", ios::out | ios::app);

By using different combinations of access flags, you can open files in many possible modes.

Program 12-1 uses an fstream object to open a file for output, and then writes data to the file.

Table 12-2

File Access Flag Meaning
ios::app Append mode. If the file already exists, its contents are preserved and all output

is written to the end of the file. By default, this flag causes the file to be created if
it does not exist.

ios::ate If the file already exists, the program goes directly to the end of it. Output may
be written anywhere in the file.

ios::binary Binary mode. When a file is opened in binary mode, data are written to or read
from it in pure binary format. (The default mode is text.)

ios::in Input mode. Data will be read from the file. If the file does not exist, it will not be
created and the open function will fail.

ios::out Output mode. Data will be written to the file. By default, the file’s contents will
be deleted if it already exists.

ios::trunc If the file already exists, its contents will be deleted (truncated). This is the
default mode used by ios::out.

NOTE: When used by itself, the ios::out flag causes the file’s contents to be deleted if
the file already exists. When used with the ios::in flag, however, the file’s existing
contents are preserved. If the file does not already exist, it will be created.

Program 12-1

1 // This program uses an fstream object to write data to a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 fstream dataFile;
 9

(program continues)

654 Chapter 12 Advanced File Operations

The file output is shown for Program 12-1 the way it would appear if the file contents were
displayed on the screen. The \n characters cause each name to appear on a separate line.
The actual file contents, however, appear as a stream of characters as shown in Figure 12-1.

As you can see from the figure, \n characters are written to the file along with all the other
characters. The characters are added to the file sequentially, in the order they are written
by the program. The very last character is an end-of-file marker. It is a character that
marks the end of the file and is automatically written when the file is closed. (The actual
character used to mark the end of a file depends upon the operating system being used. It
is always a nonprinting character. For example, some systems use control-Z.)

Program 12-2 is a modification of Program 12-1 that further illustrates the sequential
nature of files. The file is opened, two names are written to it, and it is closed. The file is
then reopened by the program in append mode (with the ios::app access flag). When a
file is opened in append mode, its contents are preserved and all subsequent output is
appended to the file’s end. Two more names are added to the file before it is closed and the
program terminates.

10 cout << "Opening file...\n";
11 dataFile.open("demofile.txt", ios::out); // Open for output
12 cout << "Now writing data to the file.\n";
13 dataFile << "Jones\n"; // Write line 1
14 dataFile << "Smith\n"; // Write line 2
15 dataFile << "Willis\n"; // Write line 3
16 dataFile << "Davis\n"; // Write line 4
17 dataFile.close(); // Close the file
18 cout << "Done.\n";
19 return 0;
20 }

Program Output
Opening file...
Now writing data to the file.
Done.

Output to File demofile.txt
Jones
Smith
Willis
Davis

Figure 12-1

Program 12-1 (continued)

J o n e s \n m i t h \n W i lS

l i s \n D a v i s \n <EOF>

12.1 File Operations 655

The first time the file is opened, the names are written as shown in Figure 12-2.

The file is closed and an end-of-file character is automatically written. When the file is
reopened, the new output is appended to the end of the file, as shown in Figure 12-3.

Program 12-2

1 // This program writes data to a file, closes the file,
2 // then reopens the file and appends more data.
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()
8 {
9 ofstream dataFile;
10
11 cout << "Opening file...\n";
12 // Open the file in output mode.
13 dataFile.open("demofile.txt", ios::out);
14 cout << "Now writing data to the file.\n";
15 dataFile << "Jones\n"; // Write line 1
16 dataFile << "Smith\n"; // Write line 2
17 cout << "Now closing the file.\n";
18 dataFile.close(); // Close the file
19
20 cout << "Opening the file again...\n";
21 // Open the file in append mode.
22 dataFile.open("demofile.txt", ios::out | ios::app);
23 cout << "Writing more data to the file.\n";
24 dataFile << "Willis\n"; // Write line 3
25 dataFile << "Davis\n"; // Write line 4
26 cout << "Now closing the file.\n";
27 dataFile.close(); // Close the file

 28
29 cout << "Done.\n";
30 return 0;
31 }

Output to File demofile.txt
Jones
Smith
Willis
Davis

Figure 12-2

Figure 12-3

J o n e s \n m i t h \n <EOF>S

J o n e s \n m i t h \n W i lS

l i s \n D a v i s \n <EOF>

656 Chapter 12 Advanced File Operations

File Open Modes with ifstream and ofstream Objects
The ifstream and ofstream data types each have a default mode in which they open
files. This mode determines the operations that may be performed on the file, and what
happens if the file that is being opened already exists. Table 12-3 describes each data type’s
default open mode.

You cannot change the fact that ifstream files may only be read from, and ofstream files
may only be written to. You can, however, vary the way operations are carried out on
these files by providing a file access flag as an optional second argument to the open func-
tion. The following code shows an example using an ofstream object.

ofstream outputFile;
outputFile.open("values.txt", ios::out|ios::app);

The ios::app flag specifies that data written to the values.txt file should be appended
to its existing contents.

Checking for a File’s Existence Before Opening It
Sometimes you want to determine whether a file already exists before opening it for out-
put. You can do this by first attempting to open the file for input. If the file does not exist,
the open operation will fail. In that case, you can create the file by opening it for output.
The following code gives an example.

fstream dataFile;
dataFile.open("values.txt", ios::in);
if (dataFile.fail())
{
 // The file does not exist, so create it.
 dataFile.open("values.txt", ios::out);
 //
 // Continue to process the file...
 //
}

NOTE: If the ios::out flag had been alone, without ios::app the second time the file
was opened, the file’s contents would have been deleted. If this had been the case, the
names Jones and Smith would have been erased and the file would only have contained
the names Willis and Davis.

Table 12-3

File Type Default Open Mode
ofstream The file is opened for output only. Data may be written to the file, but not read from the

file. If the file does not exist, it is created. If the file already exists, its contents are
deleted (the file is truncated).

ifstream The file is opened for input only. Data may be read from the file, but not written to it.
The file’s contents will be read from its beginning. If the file does not exist, the open
function fails.

12.1 File Operations 657

else // The file already exists.
{
 dataFile.close();
 cout << "The file values.txt already exists.\n";
}

Opening a File with the File Stream Object Definition
Statement
An alternative to using the open member function is to use the file stream object definition
statement to open the file. Here is an example:

fstream dataFile("names.txt", ios::in | ios::out);

This statement defines an fstream object named dataFile and uses it to open the file
names.txt. The file is opened in both input and output modes. This technique eliminates
the need to call the open function when your program knows the name and access mode
of the file at the time the object is defined. You may also use this technique with ifstream
and ofstream objects, as shown in the following examples.

ifstream inputFile("info.txt");
ofstream outputFile("addresses.txt");
ofstream dataFile("customers.txt", ios::out|ios::app);

You may also test for errors after you have opened a file with this technique. The follow-
ing code shows an example.

ifstream inputFile("SalesData.txt");
if (!inputFile)
 cout << "Error opening SalesData.txt.\n";

More About File Names
Each operating system has its own rules for naming files. Most systems allow long file
names such as

SalesInfoFrom1997
CorpSalesReport
VehicleRegistrations

Some systems only allow shorter file names. The older MS-DOS operating system, for
example, allowed file names of no more than eight characters with an optional three char-
acter extension.

Extensions are commonly used with file names. The name and extension are separated by
a period, known as a “dot.” While the file name identifies the file’s purpose, the extension
usually identifies the type of data contained in the file. For example, the .txt extension
identifies a text file that may be opened with a text editor such as Notepad. The .cpp
extension identifies a C++ program. The file name payroll.cpp would identify a payroll
program written in C++. Table 12-4 lists other example file names and the types of data
they contain.

658 Chapter 12 Advanced File Operations

Checkpoint
12.1 Which file access flag would you use if you want all output to be written to the

end of an existing file?

12.2 How do you use more than one file access flag?

12.3 Assuming that diskInfo is an fstream object, write a statement that opens the
file names.dat for output.

12.4 Assuming that diskInfo is an fstream object, write a statement that opens the file
customers.txt for output, where all output will be written to the end of the file.

12.5 Assuming that diskInfo is an fstream object, write a statement that opens the
file payable.txt for both input and output.

12.6 Write a statement that defines an fstream object named dataFile and opens a
file named salesfigures.txt for input. (Note: The file should be opened with
the definition statement, not an open function call.)

12.2 File Output Formatting

CONCEPT: File output may be formatted in the same way that screen output is
formatted.

The same output formatting techniques that are used with cout, which are covered in
Chapter 3, may also be used with file stream objects. For example, the setprecision and
fixed manipulators may be called to establish the number of digits of precision that float-
ing point values are rounded to. Program 12-3 demonstrates this.

Table 12-4

File Name and Extension File Contents
myprog.bas BASIC program
menu.bat Windows batch file
install.doc Microsoft Word document
crunch.exe Executable file
bob.html HTML (Hypertext Markup Language) file
3dmodel.java Java program or applet
vacation.jpg JPEG image file
invent.obj Object file
instructions.pdf Adobe Portable Document Format file
prog1.prj Borland C++ project file
ansi.sys System device driver
readme.txt Text file

12.2 File Output Formatting 659

Notice the file output is formatted just as cout would format screen output. Program 12-4
shows the setw stream manipulator being used to format file output into columns.

Program 12-3

 1 // This program uses the setprecision and fixed
 2 // manipulators to format file output.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include <fstream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 fstream dataFile;
11 double num = 17.816392;
12
13 dataFile.open("numfile.txt", ios::out); // Open in output mode
14
15 dataFile << fixed; // Format for fixed-point notation
16 dataFile << num << endl; // Write the number
17
18 dataFile << setprecision(4); // Format for 4 decimal places
19 dataFile << num << endl; // Write the number
20
21 dataFile << setprecision(3); // Format for 3 decimal places
22 dataFile << num << endl; // Write the number
23
24 dataFile << setprecision(2); // Format for 2 decimal places
25 dataFile << num << endl; // Write the number
26
27 dataFile << setprecision(1); // Format for 1 decimal place
28 dataFile << num << endl; // Write the number
29
30 cout << "Done.\n";
31 dataFile.close(); // Close the file
32 return 0;
33 }

Contents of File numfile.txt
 17.816392
 17.8164
 17.816
 17.82
 17.8

Program 12-4

 1 // This program writes three rows of numbers to a file.
 2 #include <iostream>
 3 #include <fstream>
 4 #include <iomanip>
 5 using namespace std;

(program continues)

660 Chapter 12 Advanced File Operations

Figure 12-4 shows the way the characters appear in the file.

 6
 7 int main()
 8 {
 9 const int ROWS = 3; // Rows to write
10 const int COLS = 3; // Columns to write
11 int nums[ROWS][COLS] = { 2897, 5, 837,
12 34, 7, 1623,
13 390, 3456, 12 };
14 fstream outFile("table.txt", ios::out);
15
16 // Write the three rows of numbers with each
17 // number in a field of 8 character spaces.
18 for (int row = 0; row < ROWS; row++)
19 {
20 for (int col = 0; col < COLS; col++)
21 {
22 outFile << setw(8) << nums[row][col];
23 }
24 outFile << endl;
25 }
26 outFile.close();
27 cout << "Done.\n";
28 return 0;
29 }

Contents of File table.txt
 2897 5 837
 34 7 1623
 390 3456 12

Figure 12-4

Program 12-4 (continued)

2 8 9 7 5 8 3 7 \n

3 4 7 \n 1 6 2 3

3 9 0 1 2 \n 3 4 5 6

<EOF>

12.3 Passing File Stream Objects to Functions 661

12.3 Passing File Stream Objects to Functions

CONCEPT: File stream objects may be passed by reference to functions.

When writing actual programs, you’ll want to create modularized code for handling file
operations. File stream objects may be passed to functions, but they should always be
passed by reference. The openFile function shown below uses an fstream reference
object parameter:

bool openFileIn(fstream &file, char *name)
{
 bool status;

 file.open(name, ios::in);
 if (file.fail())
 status = false;
 else
 status = true;
 return status;
}

The internal state of file stream objects changes with most every operation. They should
always be passed to functions by reference to ensure internal consistency. Program 12-5
shows an example of how file stream objects may be passed as arguments to functions.

Program 12-5

 1 // This program demonstrates how file stream objects may
 2 // be passed by reference to functions.
 3 #include <iostream>
 4 #include <fstream>
 5 using namespace std;
 6
 7 // Maximum amount to read from a line in the file
 8 const int MAX_LINE_SIZE = 81;
 9
10 // Function prototypes
11 bool openFileIn(fstream &, char *);
12 void showContents(fstream &);
13
14 int main()
15 {
16 fstream dataFile;
17
18 if (!openFileIn(dataFile,"demofile.txt"))
19 {
20 cout << "File open error!" << endl;
21 return 0; // Exit the program on error.
22 }

(program continues)

Passing
File Stream
Objects to
Functions

662 Chapter 12 Advanced File Operations

23 cout << "File opened successfully.\n";
24 cout << "Now reading data from the file.\n\n";
25 showContents(dataFile);
26 dataFile.close();
27 cout << "\nDone.\n";
28 return 0;
29 }
30
31 //***
32 // Definition of function openFileIn. Accepts a reference *
33 // to an fstream object as its argument. The file is opened *
34 // for input. The function returns true upon success, false *
35 // upon failure. *
36 //***
37
38 bool openFileIn(fstream &file, char *name)
39 {
40 file.open(name, ios::in);
41 if (file.fail())
42 return false;
43 else
44 return true;
45 }
46
47 //***
48 // Definition of function showContents. Accepts an fstream *
49 // reference as its argument. Uses a loop to read each name *
50 // from the file and displays it on the screen. *
51 //***
52
53 void showContents(fstream &file)
54 {
55 char line[MAX_LINE_SIZE];

 56
57 while (file >> line)
58 {
59 cout << line << endl;
60 }
61 }

Program Output
File opened successfully.
Now reading data from the file.

Jones
Smith
Willis
Davis

Done.

Program 12-5 (continued)

12.4 More Detailed Error Testing 663

12.4 More Detailed Error Testing

CONCEPT: All stream objects have error state bits that indicate the
condition of the stream.

All stream objects contain a set of bits that act as flags. These flags indicate the current
state of the stream. Table 12-5 lists these bits.

These bits can be tested by the member functions listed in Table 12-6. (You’ve already
learned about the fail() function.) One of the functions listed in the table, clear(), can
be used to set a status bit.

The function showState, shown here, accepts a file stream reference as its argument. It
shows the state of the file by displaying the return values of the eof(), fail(), bad(),
and good() member functions:

void showState(fstream &file)
{
 cout << "File Status:\n";
 cout << " eof bit: " << file.eof() << endl;
 cout << " fail bit: " << file.fail() << endl;
 cout << " bad bit: " << file.bad() << endl;
 cout << " good bit: " << file.good() << endl;
 file.clear(); // Clear any bad bits
}

Program 12-6 uses the showState function to display testFile’s status after various
operations. First, the file is created and the integer value 10 is stored in it. The file is then
closed and reopened for input. The integer is read from the file, and then a second read

Table 12-5

Bit Description
ios::eofbit Set when the end of an input stream is encountered.
ios::failbit Set when an attempted operation has failed.
ios::hardfail Set when an unrecoverable error has occurred.
ios::badbit Set when an invalid operation has been attempted.
ios::goodbit Set when all the flags above are not set. Indicates the stream is in good condition.

Table 12-6

Function Description
eof() Returns true (nonzero) if the eofbit flag is set, otherwise returns false.
fail() Returns true (nonzero) if the failbit or hardfail flags are set, otherwise returns false.
bad() Returns true (nonzero) if the badbit flag is set, otherwise returns false.
good() Returns true (nonzero) if the goodbit flag is set, otherwise returns false.
clear() When called with no arguments, clears all the flags listed above. Can also be called

with a specific flag as an argument.

664 Chapter 12 Advanced File Operations

operation is performed. Because there is only one item in the file, the second read opera-
tion will result in an error.

Program 12-6

 1 // This program demonstrates the return value of the stream
 2 // object error testing member functions.
 3 #include <iostream>
 4 #include <fstream>
 5 using namespace std;
 6
 7 // Function prototype
 8 void showState(fstream &);
 9
10 int main()
11 {
12 int num = 10;

 13
14 // Open the file for output.
15 fstream testFile("stuff.dat", ios::out);
16 if (testFile.fail())
17 {
18 cout << "ERROR: Cannot open the file.\n";
19 return 0;
20 }

 21
22 // Write a value to the file.
23 cout << "Writing the value " << num << " to the file.\n";
24 testFile << num;
25
26 // Show the bit states.
27 showState(testFile);
28
29 // Close the file.
30 testFile.close();

 31
32 // Reopen the file for input.
33 testFile.open("stuff.dat", ios::in);
34 if (testFile.fail())
35 {
36 cout << "ERROR: Cannot open the file.\n";
37 return 0;
38 }

 39
40 // Read the only value from the file.
41 cout << "Reading from the file.\n";
42 testFile >> num;
43 cout << "The value " << num << " was read.\n";
44
45 // Show the bit states.
46 showState(testFile);
47

12.4 More Detailed Error Testing 665

48 // No more data in the file, but force an invalid read operation.
49 cout << "Forcing a bad read operation.\n";
50 testFile >> num;
51
52 // Show the bit states.
53 showState(testFile);
54
55 // Close the file.
56 testFile.close();
57 return 0;
58 }

 59
60 //***
61 // Definition of function showState. This function uses *
62 // an fstream reference as its parameter. The return values of *
63 // the eof(), fail(), bad(), and good() member functions are *
64 // displayed. The clear() function is called before the function *
65 // returns. *
66 //***

 67
68 void showState(fstream &file)
69 {
70 cout << "File Status:\n";
71 cout << " eof bit: " << file.eof() << endl;
72 cout << " fail bit: " << file.fail() << endl;
73 cout << " bad bit: " << file.bad() << endl;
74 cout << " good bit: " << file.good() << endl;
75 file.clear(); // Clear any bad bits
76 }

Program Output
Writing the value 10 to the file.
File Status:
 eof bit: 0
 fail bit: 0
 bad bit: 0
 good bit: 1
Reading from the file.
The value 10 was read.
File Status:
 eof bit: 1
 fail bit: 0
 bad bit: 0
 good bit: 1
Forcing a bad read operation.
File Status:
 eof bit: 1
 fail bit: 1
 bad bit: 0
 good bit: 0

666 Chapter 12 Advanced File Operations

12.5 Member Functions for Reading and Writing Files

CONCEPT: File stream objects have member functions for more specialized file
reading and writing.

If whitespace characters are part of the data in a file, a problem arises when the file is read
by the >> operator. Because the operator considers whitespace characters as delimiters, it
does not read them. For example, consider the file murphy.txt, which contains the fol-
lowing data:

Jayne Murphy
47 Jones Circle
Almond, NC 28702

Figure 12-5 shows the way the data is recorded in the file.

The problem that arises from the use of the >> operator is evident in the output of
Program 12-7.

Figure 12-5

Program 12-7

 1 // This program demonstrates how the >> operator should not
 2 // be used to read data that contain whitespace characters
 3 // from a file.
 4 #include <iostream>
 5 #include <fstream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const int SIZE = 81; // Size of input array
11 char input[SIZE]; // To hold file input
12 fstream nameFile; // File stream object

 13

J a y n e u r p h y \n 4 7M

J o n e s C i r c l e \n A

l m o n d , N C 2 8 7 0

2 \n <EOF>

12.5 Member Functions for Reading and Writing Files 667

The getline Member Function
The problem with Program 12-7 can be solved by using the file stream object’s getline
member function. The function reads a “line” of data, including whitespace characters.
Here is an example of the function call:

dataFile.getline(str, 81, '\n');

The three arguments in this statement are explained as follows:

str This is the name of a character array, or a pointer to a section of mem-
ory. The data read from the file will be stored here.

81 This number is one greater than the maximum number of characters to
be read. In this example, a maximum of 80 characters will be read.

'\n' This is a delimiter character of your choice. If this delimiter is encoun-
tered, it will cause the function to stop reading before it has read the
maximum number of characters. (This argument is optional. If it’s left
out, '\n' is the default.)

The statement is an instruction to read a line of characters from the file. The function will
read until it has read 80 characters or encounters a \n, whichever happens first. The line
of characters will be stored in the str array.

Program 12-8 is a modification of Program 12-7. It uses the getline member function to
read whole lines of data from the file.

14 // Open the file in input mode.
15 nameFile.open("murphy.txt", ios::in);
16 if (!nameFile)
17 {
18 cout << "ERROR: Cannot open file.\n";
19 return 0;
20 }

 21
22 // Read the file contents.
23 while (nameFile >> input)
24 {
25 cout << input;
26 }
27
28 // Close the file.
29 nameFile.close();
30 return 0;
31 }

Program Output
JayneMurphy47JonesCircleAlmond,NC28702

668 Chapter 12 Advanced File Operations

Because the third argument of the getline function was left out in Program 12-8, its
default value is \n. Sometimes you might want to specify another delimiter. For example,
consider a file that contains multiple names and addresses, and that is internally formatted
in the following manner:

 Contents of names2.txt
Jayne Murphy$47 Jones Circle$Almond, NC 28702\n$Bobbie Smith$
217 Halifax Drive$Canton, NC 28716\n$Bill Hammet$PO Box 121$
Springfield, NC 28357\n$

Think of this file as consisting of three records. A record is a complete set of data about a
single item. Also, the records in the file above are made of three fields. The first field is the
person’s name. The second field is the person’s street address or PO box number. The third
field contains the person’s city, state, and ZIP code. Notice that each field ends with a $

Program 12-8

 1 // This program uses the file stream object's getline member
 2 // function to read a line of data from the file.
 3 #include <iostream>
 4 #include <fstream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 81; // Size of input array
10 char input[SIZE]; // To hold file input
11 fstream nameFile; // File stream object

 12
13 // Open the file in input mode.
14 nameFile.open("murphy.txt", ios::in);
15 if (!nameFile)
16 {
17 cout << "ERROR: Cannot open file.\n";
18 return 0;
19 }

 20
21 // Read the file contents.
22 nameFile.getline(input, SIZE); // Use \n as a delimiter.
23 while (!nameFile.eof())
24 {
25 cout << input << endl;
26 nameFile.getline(input, SIZE); // Use \n as a delimiter.
27 }
28
29 // Close the file.
30 nameFile.close();
31 return 0;
32 }

Program Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

12.5 Member Functions for Reading and Writing Files 669

character, and each record ends with a \n character. Program 12-9 demonstrates how a
getline function can be used to detect the $ characters.

Notice that the \n characters, which mark the end of each record, are also part of the out-
put. They cause an extra blank line to be printed on the screen, separating the records.

Program 12-9

 1 // This file demonstrates the getline function with a user-
 2 // specified delimiter.
 3 #include <iostream>
 4 #include <fstream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 81; // Size of input array
10 char input[SIZE]; // To hold file input
11
12 // Open the file for input.
13 fstream dataFile("names2.txt", ios::in);

 14
15 // Read items from the file using $ as a delimiter.
16 dataFile.getline(input, SIZE, '$');
17 while (!dataFile.eof())
18 {
19 cout << input << endl;
20 dataFile.getline(input, SIZE, '$');
21 }
22
23 // Close the file.
24 dataFile.close();
25 return 0;
26 }

Program Output
Jayne Murphy
47 Jones Circle
Almond, NC 28702

Bobbie Smith
217 Halifax Drive
Canton, NC 28716

Bill Hammet
PO Box 121
Springfield, NC 28357

NOTE: When using a printable character, such as $, to delimit data in a file, be sure to
select a character that will not actually appear in the data itself. Since it’s doubtful that
anyone’s name or address contains a $ character, it’s an acceptable delimiter. If the file
contained dollar amounts, however, another delimiter would have been chosen.

670 Chapter 12 Advanced File Operations

The get Member Function
Another useful member function is get. It reads a single character from the file. Here is an
example of its usage:

inFile.get(ch);

In this example, ch is a char variable. A character will be read from the file and stored in
ch. Program 12-10 shows the function used in a complete program. The user is asked for
the name of a file. The file is opened and the get function is used in a loop to read the file’s
contents, one character at a time.

Program 12-10

 1 // This program asks the user for a file name. The file is
 2 // opened and its contents are displayed on the screen.
 3 #include <iostream>
 4 #include <fstream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const int SIZE = 51; // Array size for file name
10 char fileName[SIZE]; // To hold the file name
11 char ch; // To hold a character
12 fstream file; // File stream object

 13
14 // Get the file name.
15 cout << "Enter a file name: ";
16 cin >> fileName;
17
18 // Open the file.
19 file.open(fileName, ios::in);
20 if (!file)
21 {
22 cout << fileName << " could not be opened.\n";
23 return 0;
24 }
25
26 // Get each character from the file and display them.
27 file.get(ch);
28 while (!file.eof())
29 {
30 cout << ch;
31 file.get(ch);
32 }
33
34 // Close the file.
35 file.close();
36 return 0;
37 }

12.5 Member Functions for Reading and Writing Files 671

Program 12-10 will display the contents of any file. The get function even reads
whitespaces, so all the characters will be shown exactly as they appear in the file.

The put Member Function
The put member function writes a single character to the file. Here is an example of its usage:

outFile.put(ch);

In this statement, the variable ch is assumed to be a char variable. Its contents will be
written to the file associated with the file stream object outFile. Program 12-11 demon-
strates the put function.

Program 12-11

 1 // This program demonstrates the put member function.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char ch; // To hold a character
 9
10 // Open the file for output.
11 fstream dataFile("sentence.txt", ios::out);

 12
13 cout << "Type a sentence and be sure to end it with a ";
14 cout << "period.\n";

 15
16 // Get a sentence from the user one character at a time
17 // and write each character to the file.
18 cin.get(ch);
19 while (ch != '.')
20 {
21 dataFile.put(ch);
22 cin.get(ch);
23 }
24 dataFile.put(ch); // Write the period.

 25
26 // Close the file.
27 dataFile.close();
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Type a sentence and be sure to end it with a period.
I am on my way to becoming a great programmer. [Enter]

Resulting Contents of the File sentence.txt:
I am on my way to becoming a great programmer.

672 Chapter 12 Advanced File Operations

Checkpoint
12.7 Assume the file input.txt contains the following characters:

What will the following program display on the screen?

#include <iostream>
#include <fstream>
using namespace std;

int main()
{
 const int SIZE = 81;
 fstream inFile("input.txt", ios::in);
 char item[SIZE];

 inFile >> item;
 while (!inFile.eof())
 {
 cout << item << endl;
 inFile >> item;
 }
 inFile.close();
 return 0;
}

12.8 Describe the difference between reading a file with the >> operator and the
getline member function.

12.9 What will be stored in the file out.txt after the following program runs?

include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;

int main()
{
 const int SIZE = 5;
 ofstream outFile("out.txt");
 double nums[SIZE] = {100.279, 1.719, 8.602, 7.777, 5.099};

 outFile << fixed << setprecision(2);
 for (int count = 0; count < 5; count++)
 {
 outFile << setw(8) << nums[count];
 }
 outFile.close();
 return 0;
}

R u n S p t r u n \n S eo

e S p o t r u n \n <EOF>

12.6 Focus on Software Engineering: Working with Multiple Files 673

12.6
Focus on Software Engineering:
Working with Multiple Files

CONCEPT: It’s possible to have more than one file open at once in a program.

Quite often you will need to have multiple files open at once. In many real-world applica-
tions, data about a single item are categorized and written to several different files. For
example, a payroll system might keep the following files:

emp.dat A file that contains the following data about each employee: name, job
title, address, telephone number, employee number, and the date hired.

pay.dat A file that contains the following data about each employee: employee
number, hourly pay rate, overtime rate, and number of hours worked
in the current pay cycle.

withold.dat A file that contains the following data about each employee: employee
number, dependents, and extra withholdings.

When the system is writing paychecks, you can see that it will need to open each of the
files listed above and read data from them. (Notice that each file contains the employee
number. This is how the program can locate a specific employee’s data.)

In C++, you open multiple files by defining multiple file stream objects. For example, if
you need to read from three files, you can define three file stream objects, such as:

ifstream file1, file2, file3;

Sometimes you will need to open one file for input and another file for output. For exam-
ple, Program 12-12 asks the user for a file name. The file is opened and read. Each charac-
ter is converted to uppercase and written to a second file called out.txt. This type of
program can be considered a filter. Filters read the input of one file, changing the data in
some fashion, and write it out to a second file. The second file is a modified version of the
first file.

Program 12-12

 1 // This program demonstrates reading from one file and writing
 2 // to a second file.
 3 #include <iostream>
 4 #include <fstream>
 5 #include <cctype> // Needed for the toupper function.
 6 using namespace std;
 7
 8 int main()
 9 {
10 const int SIZE = 51; // Array size for file name
11 char fileName[SIZE]; // To hold the file name
12 char ch; // To hold a character
13 ifstream inFile; // Input file
14

(program continues)

Working with
Multiple Files

674 Chapter 12 Advanced File Operations

12.7 Binary Files

CONCEPT: Binary files contain data that is not necessarily stored as ASCII text.

All the files you’ve been working with so far have been text files. That means the data stored
in the files has been formatted as ASCII text. Even a number, when stored in a file with the
<< operator, is converted to text. For example, consider the following program segment:

15 // Open a file for output.
16 ofstream outFile("out.txt");

 17
18 // Get the input file name.
19 cout << "Enter a file name: ";
20 cin >> fileName;
21
22 // Open the file for input.
23 inFile.open(fileName);
24 if (!inFile)
25 {
26 cout << "Cannot open " << fileName << endl;
27 return 0;
28 }
29
30 // Process the files.
31 inFile.get(ch); // Get a char from file 1
32 while (!inFile.eof()) // Test for end of file
33 {
34 outFile.put(toupper(ch)); // Write uppercase char to file 2
35 inFile.get(ch); // Get another char from file 1
36 }
37
38 // Close the files.
39 inFile.close();
40 outFile.close();
41 cout << "File conversion done.\n";
42 return 0;
43 }

Program Output with Example Input Shown in Bold
Enter a file name: hownow.txt [Enter]
File conversion done.

Contents of hownow.txt
how now brown cow.
How Now?

Resulting Contents of out.txt
HOW NOW BROWN COW.
HOW NOW?

Program 12-12 (continued)

12.7 Binary Files 675

ofstream file("num.dat");
short x = 1297;
file << x;

The last statement writes the contents of x to the file. When the number is written, however,
it is stored as the characters '1', '2', '9', and '7'. This is illustrated in Figure 12-6.

The number 1297 isn’t stored in memory (in the variable x) in the fashion depicted in the
figure above, however. It is formatted as a binary number, occupying two bytes on a typi-
cal PC. Figure 12-7 shows how the number is represented in memory, using binary or
hexadecimal.

The representation of the number shown in Figure 12-7 is the way the “raw” data is
stored in memory. Data can be stored in a file in its pure, binary format. The first step is to
open the file in binary mode. This is accomplished by using the ios::binary flag. Here is
an example:

file.open("stuff.dat", ios::out | ios::binary);

Notice the ios::out and ios::binary flags are joined in the statement with the | opera-
tor. This causes the file to be opened in both output and binary modes.

The write and read Member Functions
The file stream object’s write member function is used to write binary data to a file. The
general format of the write member function is

Figure 12-6

Figure 12-7

NOTE: By default, files are opened in text mode.

fileObject.write(address, size);

'1'

1297 expressed in ASCII

'2' '9' '7' <EOF>

49 50 57 55 <EOF>

00000101

1297 as a short integer, in binary

1297 as a short integer, in hexadecimal

00010001

05 11

676 Chapter 12 Advanced File Operations

Let’s look at the parts of this function call format.

• fileObject is the name of a file stream object.
• address is the starting address of the section of memory that is to be written to

the file. This argument is expected to be the address of a char (or a pointer to a
char).

• size is the number of bytes of memory to write. This argument must be an inte-
ger value.

For example, the following code uses a file stream object named file to write a character
to a binary file.

char letter = 'A';
file.write(&letter, sizeof(letter));

The first argument passed to the write function is the address of the letter variable. This
tells the write function where the data that is to be written to the file is located. The second
argument is the size of the letter variable, which is returned from the sizeof operator.
This tells the write function the number of bytes of data to write to the file. Because the
sizes of data types can vary among systems, it is best to use the sizeof operator to deter-
mine the number of bytes to write. After this function call executes, the contents of the
letter variable will be written to the binary file associated with the file object.

The following code shows another example. This code writes an entire char array to a
binary file.

char data[] = {'A', 'B', 'C', 'D'};
file.write(data, sizeof(data));

In this code, the first argument is the name of the data array. By passing the name of the
array we are passing a pointer to the beginning of the array. Because data is an array of
char values, the name of the array is a pointer to a char. The second argument passes the
name of the array to the sizeof operator. When the name of an array is passed to the
sizeof operator, the operator returns the number of bytes allocated to the array. After
this function call executes, the contents of the data array will be written to the binary file
associated with the file object.

The read member function is used to read binary data from a file into memory. The gen-
eral format of the read member function is

Here are the parts of this function call format:

• fileObject is the name of a file stream object.
• address is the starting address of the section of memory where the data being

read from the file is to be stored. This is expected to be the address of a char (or
a pointer to a char).

• size is the number of bytes of memory to read from the file. This argument must
be an integer value.

For example, suppose we want to read a single character from a binary file and store that
character in the letter variable. The following code uses a file stream object named file
to do just that.

fileObject.read(address, size);

12.7 Binary Files 677

char letter;
file.read(&letter, sizeof(letter));

The first argument passed to the read function is the address of the letter variable. This
tells the read function where to store the value that is read from the file. The second argu-
ment is the size of the letter variable. This tells the read function the number of bytes to
read from the file. After this function executes, the letter variable will contain a charac-
ter that was read from the file.

The following code shows another example. This code reads enough data from a binary
file to fill an entire char array.

char data[4];
file.read(data, sizeof(data));

In this code, the first argument is the address of the data array. The second argument is
the number of bytes allocated to the array. On a system that uses 1-byte characters, this
function will read four bytes from the file and store them in the data array.

Program 12-13 demonstrates writing a char array to a file and then reading the data from
the file back into memory.

Program 12-13

 1 // This program uses the write and read functions.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 4;
 9 char data[SIZE] = {'A', 'B', 'C', 'D'};
10 fstream file;

 11
12 // Open the file for output in binary mode.
13 file.open("test.dat", ios::out | ios::binary);

 14
15 // Write the contents of the array to the file.
16 cout << "Writing the characters to the file.\n";
17 file.write(data, sizeof(data));

 18
19 // Close the file.
20 file.close();

 21
22 // Open the file for input in binary mode.
23 file.open("test.dat", ios::in | ios::binary);

 24
25 // Read the contents of the file into the array.
26 cout << "Now reading the data back into memory.\n";
27 file.read(data, sizeof(data));

 28
(program continues)

678 Chapter 12 Advanced File Operations

Writing Data Other Than char to Binary Files
Because the write and read member functions expect their first argument to be a pointer
to a char, you must use a type cast when writing and reading items that are of other data
types. To convert a pointer from one type to another you should use the
reinterpret_cast type cast. The general format of the type cast is

reinterpret_cast<dataType>(value)

where dataType is the data type that you are converting to, and value is the value that
you are converting. For example, the following code uses the type cast to store the address
of an int in a char pointer variable.

int x = 65;
char *ptr;
ptr = reinterpret_cast<char *>(&x);

The following code shows how to use the type cast to pass the address of an integer as the
first argument to the write member function.

int x = 27;
file.write(reinterpret_cast<char *>(&x), sizeof(x));

After the function executes, the contents of the variable x will be written to the binary file
associated with the file object. The following code shows an int array being written to
a binary file.

const int SIZE = 10;
int numbers[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
file.write(reinterpret_cast<char *>(numbers), sizeof(numbers));

After this function call executes, the contents of the numbers array will be written to the
binary file. The following code shows values being read from the file and stored into the
numbers array.

29 // Display the contents of the array.
30 for (int count = 0; count < SIZE; count++)
31 cout << data[count] << " ";
32 cout << endl;

 33
34 // Close the file.
35 file.close();
36 return 0;
37 }

Program Output
Writing the characters to the file.
Now reading the data back into memory.
A B C D

Program 12-13 (continued)

12.7 Binary Files 679

const int SIZE = 10;
int numbers[SIZE];
file.read(reinterpret_cast<char *>(numbers), sizeof(numbers));

Program 12-14 demonstrates writing an int array to a file and then reading the data from
the file back into memory.

Program 12-14

 1 // This program uses the write and read functions.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 10;
 9 fstream file;
10 int numbers[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 11
12 // Open the file for output in binary mode.
13 file.open("numbers.dat", ios::out | ios::binary);

 14
15 // Write the contents of the array to the file.
16 cout << "Writing the data to the file.\n";
17 file.write(reinterpret_cast<char *>(numbers), sizeof(numbers));

 18
19 // Close the file.
20 file.close();

 21
22 // Open the file for input in binary mode.
23 file.open("numbers.dat", ios::in | ios::binary);

 24
25 // Read the contents of the file into the array.
26 cout << "Now reading the data back into memory.\n";
27 file.read(reinterpret_cast<char *>(numbers), sizeof(numbers));

 28
29 // Display the contents of the array.
30 for (int count = 0; count < SIZE; count++)
31 cout << numbers[count] << " ";
32 cout << endl;

 33
34 // Close the file.
35 file.close();
36 return 0;
37 }

Program Output
Writing the data to the file.
Now reading the data back into memory.
1 2 3 4 5 6 7 8 9 10

680 Chapter 12 Advanced File Operations

12.8 Creating Records with Structures

CONCEPT: Structures may be used to store fixed-length records to a file.

Earlier in this chapter the concept of fields and records was introduced. A field is an indi-
vidual piece of data pertaining to a single item. A record is made up of fields and is a com-
plete set of data about a single item. For example, a set of fields might be a person’s name,
age, address, and phone number. Together, all those fields that pertain to one person make
up a record.

In C++, structures provide a convenient way to organize data into fields and records. For
example, the following code could be used to create a record containing data about a person.

const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

struct Info
{
 char name[NAME_SIZE];
 int age;
 char address1[ADDR_SIZE];
 char address2[ADDR_SIZE];
 char phone[PHONE_SIZE];
};

Besides providing an organizational structure for data, structures also package data into a
single unit. For example, assume the structure variable person is defined as

Info person;

Once the members (or fields) of person are filled with data, the entire variable may be
written to a file using the write function:

file.write(reinterpret_cast<char *>(&person), sizeof(person));

The first argument is the address of the person variable. The reinterpret_cast opera-
tor is used to convert the address to a char pointer. The second argument is the sizeof
operator with person as its argument. This returns the number of bytes used by the
person structure. Program 12-15 demonstrates this technique.

NOTE: Because structures can contain a mixture of data types, you should always use
the ios::binary mode when opening a file to store them.

Program 12-15

 1 // This program uses a structure variable to store a record to a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5

12.8 Creating Records with Structures 681

 6 // Array sizes
 7 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;

 8
 9 // Declare a structure for the record.
10 struct Info
11 {
12 char name[NAME_SIZE];
13 int age;
14 char address1[ADDR_SIZE];
15 char address2[ADDR_SIZE];
16 char phone[PHONE_SIZE];
17 };

 18
19 int main()
20 {
21 Info person; // To hold info about a person
22 char again; // To hold Y or N
23
24 // Open a file for binary output.
25 fstream people("people.dat", ios::out | ios::binary);

 26
27 do
28 {
29 // Get data about a person.
30 cout << "Enter the following data about a "
31 << "person:\n";
32 cout << "Name: ";
33 cin.getline(person.name, NAME_SIZE);
34 cout << "Age: ";
35 cin >> person.age;
36 cin.ignore(); // Skip over the remaining newline.
37 cout << "Address line 1: ";
38 cin.getline(person.address1, ADDR_SIZE);
39 cout << "Address line 2: ";
40 cin.getline(person.address2, ADDR_SIZE);
41 cout << "Phone: ";
42 cin.getline(person.phone, PHONE_SIZE);

 43
44 // Write the contents of the person structure to the file.
45 people.write(reinterpret_cast<char *>(&person),
46 sizeof(person));
47
48 // Determine whether the user wants to write another record.
49 cout << "Do you want to enter another record? ";
50 cin >> again;
51 cin.ignore(); // Skip over the remaining newline.
52 } while (again == 'Y' || again == 'y');
53
54 // Close the file.
55 people.close();
56 return 0;
57 }

(program output continues)

682 Chapter 12 Advanced File Operations

Program 12-15 allows you to build a file by filling the members of the person variable,
and then writing the variable to the file. Program 12-16 opens the file and reads each
record into the person variable, then displays the data on the screen.

Program 12-15 (continued)

Program Output with Example Input Shown in Bold
Enter the following data about a person:
Name: Charlie Baxter [Enter]
Age: 42 [Enter]
Address line 1: 67 Kennedy Bvd. [Enter]
Address line 2: Perth, SC 38754 [Enter]
Phone: (803)555-1234 [Enter]
Do you want to enter another record? Y [Enter]
Enter the following data about a person:
Name: Merideth Murney [Enter]
Age: 22 [Enter]
Address line 1: 487 Lindsay Lane [Enter]
Address line 2: Hazelwood, NC 28737 [Enter]
Phone: (828)555-9999 [Enter]
Do you want to enter another record? N [Enter]

Program 12-16

 1 // This program uses a structure variable to read a record from a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
 7
 8 // Declare a structure for the record.
 9 struct Info
10 {
11 char name[NAME_SIZE];
12 int age;
13 char address1[ADDR_SIZE];
14 char address2[ADDR_SIZE];
15 char phone[PHONE_SIZE];
16 };

 17
18 int main()
19 {
20 Info person; // To hold info about a person
21 char again; // To hold Y or N
22 fstream people; // File stream object

 23
24 // Open the file for input in binary mode.
25 people.open("people.dat", ios::in | ios::binary);

 26

12.8 Creating Records with Structures 683

27 // Test for errors.
28 if (!people)
29 {
30 cout << "Error opening file. Program aborting.\n";
31 return 0;
32 }

 33
 34
35 cout << "Here are the people in the file:\n\n";
36 // Read the first record from the file.
37 people.read(reinterpret_cast<char *>(&person),
38 sizeof(person));

 39
40 // While not at the end of the file, display
41 // the records.
42 while (!people.eof())
43 {
44 // Display the record.
45 cout << "Name: ";
46 cout << person.name << endl;
47 cout << "Age: ";
48 cout << person.age << endl;
49 cout << "Address line 1: ";
50 cout << person.address1 << endl;
51 cout << "Address line 2: ";
52 cout << person.address2 << endl;
53 cout << "Phone: ";
54 cout << person.phone << endl;

 55
56 // Wait for the user to press the Enter key.
57 cout << "\nPress the Enter key to see the next record.\n";
58 cin.get(again);

 59
60 // Read the next record from the file.
61 people.read(reinterpret_cast<char *>(&person),
62 sizeof(person));
63 }

 64
65 cout << "That's all the data in the file!\n";
66 people.close();
67 return 0;
68 }

Program Output (Using the same file created by Program 12-15 as input)
Here are the people in the file:

Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

(program output continues)

684 Chapter 12 Advanced File Operations

12.9 Random-Access Files

CONCEPT: Random Access means nonsequentially accessing data in a file.

All of the programs created so far in this chapter have performed sequential file access.
When a file is opened, the position where reading and/or writing will occur is at the file’s
beginning (unless the ios::app mode is used, which causes data to be written to the end
of the file). If the file is opened for output, bytes are written to it one after the other. If the
file is opened for input, data is read beginning at the first byte. As the reading or writing
continues, the file stream object’s read/write position advances sequentially through the
file’s contents.

The problem with sequential file access is that in order to read a specific byte from the file,
all the bytes that precede it must be read first. For instance, if a program needs data stored
at the hundredth byte of a file, it will have to read the first 99 bytes to reach it. If you’ve
ever listened to a cassette tape player, you understand sequential access. To listen to a song
at the end of the tape, you have to listen to all the songs that come before it, or fast-
forward over them. There is no way to immediately jump to that particular song.

Although sequential file access is useful in many circumstances, it can slow a program
down tremendously. If the file is very large, locating data buried deep inside it can take a
long time. Alternatively, C++ allows a program to perform random file access. In random
file access, a program may immediately jump to any byte in the file without first reading
the preceding bytes. The difference between sequential and random file access is like the
difference between a cassette tape and a compact disc. When listening to a CD, there is no
need to listen to or fast forward over unwanted songs. You simply jump to the track that
you want to listen to. This is illustrated in Figure 12-8.

The seekp and seekg Member Functions
File stream objects have two member functions that are used to move the read/write posi-
tion to any byte in the file. They are seekp and seekg. The seekp function is used with
files opened for output and seekg is used with files opened for input. (It makes sense if

Program 12-16 (continued)

Press the Enter key to see the next record.

Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (828)555-9999

Press the Enter key to see the next record.

That's all the data in the file!

12.9 Random-Access Files 685

you remember that “p” stands for “put” and “g” stands for “get.” seekp is used with
files that you put data into, and seekg is used with files you get data out of.)

Here is an example of seekp’s usage:

file.seekp(20L, ios::beg);

The first argument is a long integer representing an offset into the file. This is the number
of the byte you wish to move to. In this example, 20L is used. (Remember, the L suffix
forces the compiler to treat the number as a long integer.) This statement moves the file’s
write position to byte number 20. (All numbering starts at 0, so byte number 20 is actu-
ally the twenty-first byte.)

The second argument is called the mode, and it designates where to calculate the offset
from. The flag ios::beg means the offset is calculated from the beginning of the file.
Alternatively, the offset can be calculated from the end of the file or the current position in
the file. Table 12-7 lists the flags for all three of the random-access modes.

Table 12-8 shows examples of seekp and seekg using the various mode flags.

Notice that some of the examples in Table 12-8 use a negative offset. Negative offsets
result in the read or write position being moved backward in the file, while positive offsets
result in a forward movement.

Assume the file letters.txt contains the following data:

abcdefghijklmnopqrstuvwxyz

Program 12-17 uses the seekg function to jump around to different locations in the file,
retrieving a character after each stop.

Figure 12-8

Table 12-7

Mode Flag Description
ios::beg The offset is calculated from the beginning of the file.
ios::end The offset is calculated from the end of the file.
ios::cur The offset is calculated from the current position.

Sequential Access

Random Access

686 Chapter 12 Advanced File Operations

Table 12-8

Statement How It Affects the Read/Write Position
file.seekp(32L, ios::beg); Sets the write position to the 33rd byte (byte 32) from the

beginning of the file.
file.seekp(-10L, ios::end); Sets the write position to the 10th byte from the end of the file.
file.seekp(120L, ios::cur); Sets the write position to the 121st byte (byte 120) from the current

position.
file.seekg(2L, ios::beg); Sets the read position to the 3rd byte (byte 2) from the beginning of

the file.
file.seekg(-100L, ios::end); Sets the read position to the 100th byte from the end of the file.
file.seekg(40L, ios::cur); Sets the read position to the 41st byte (byte 40) from the current

position.
file.seekg(0L, ios::end); Sets the read position to the end of the file.

Program 12-17

 1 // This program demonstrates the seekg function.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 char ch; // To hold a character
 9
10 // Open the file for input.
11 fstream file("letters.txt", ios::in);

 12
13 // Move to byte 5 from the beginning of the file
14 // (the 6th byte) and read the character there.
15 file.seekg(5L, ios::beg);
16 file.get(ch);
17 cout << "Byte 5 from beginning: " << ch << endl;

 18
19 // Move to the 10th byte from the end of the file
20 // and read the character there.
21 file.seekg(-10L, ios::end);
22 file.get(ch);
23 cout << "10th byte from end: " << ch << endl;

 24
25 // Move to byte 3 from the current position
26 // (the 4th byte) and read the character there.
27 file.seekg(3L, ios::cur);
28 file.get(ch);
29 cout << "Byte 3 from current: " << ch << endl;

 30
31 file.close();
32 return 0;
33 }

12.9 Random-Access Files 687

Program 12-18 shows a more robust example of the seekg function. It opens the
people.dat file created by Program 12-15. The file contains two records. Program 12-18
displays record 1 (the second record) first, then displays record 0.

The program has two important functions other than main. The first, byteNum, takes a
record number as its argument and returns that record’s starting byte. It calculates the
record’s starting byte by multiplying the record number by the size of the Info structure.
This returns the offset of that record from the beginning of the file. The second function,
showRec, accepts an Info structure as its argument and displays its contents on the screen.

Program Screen Output
Byte 5 from beginning: f
10th byte from end: q
Byte 3 from current: u

Program 12-18

 1 // This program randomly reads a record of data from a file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 const int NAME_SIZE = 51, ADDR_SIZE = 51, PHONE_SIZE = 14;
 7
 8 // Declare a structure for the record.
 9 struct Info
10 {
11 char name[NAME_SIZE];
12 int age;
13 char address1[ADDR_SIZE];
14 char address2[ADDR_SIZE];
15 char phone[PHONE_SIZE];
16 };

 17
18 // Function Prototypes
19 long byteNum(int);
20 void showRec(Info);

 21
22 int main()
23 {
24 Info person; // To hold info about a person
25 fstream people; // File stream object

 26
27 // Open the file for input in binary mode.
28 people.open("people.dat", ios::in | ios::binary);

 29
(program continues)

688 Chapter 12 Advanced File Operations

30 // Test for errors.
31 if (!people)
32 {
33 cout << "Error opening file. Program aborting.\n";
34 return 0;
35 }

 36
37 // Read and display record 1 (the second record).
38 cout << "Here is record 1:\n";
39 people.seekg(byteNum(1), ios::beg);
40 people.read(reinterpret_cast<char *>(&person), sizeof(person));
41 showRec(person);

 42
43 // Read and display record 0 (the first record).
44 cout << "\nHere is record 0:\n";
45 people.seekg(byteNum(0), ios::beg);
46 people.read(reinterpret_cast<char *>(&person), sizeof(person));
47 showRec(person);

 48
49 // Close the file.
50 people.close();
51 return 0;
52 }

 53
54 //**
55 // Definition of function byteNum. Accepts an integer as *
56 // its argument. Returns the byte number in the file of the *
57 // record whose number is passed as the argument. *
58 //**

 59
60 long byteNum(int recNum)
61 {
62 return sizeof(Info) * recNum;
63 }

 64
65 //**
66 // Definition of function showRec. Accepts an Info structure *
67 // as its argument, and displays the structure's contents. *
68 //**

 69
70 void showRec(Info record)
71 {
72 cout << "Name: ";
73 cout << record.name << endl;
74 cout << "Age: ";
75 cout << record.age << endl;
76 cout << "Address line 1: ";
77 cout << record.address1 << endl;
78 cout << "Address line 2: ";
79 cout << record.address2 << endl;

Program 12-18 (continued)

12.9 Random-Access Files 689

The tellp and tellg Member Functions
File stream objects have two more member functions that may be used for random file
access: tellp and tellg. Their purpose is to return, as a long integer, the current byte
number of a file’s read and write position. As you can guess, tellp returns the write posi-
tion and tellg returns the read position. Assuming pos is a long integer, here is an exam-
ple of the functions’ usage:

pos = outFile.tellp();
pos = inFile.tellg();

One application of these functions is to determine the number of bytes that a file contains.
The following example demonstrates how to do this using the tellg function.

file.seekg(0L, ios::end);
numBytes = file.tellg();
cout << "The file has " << numBytes << " bytes.\n";

First the seekg member function is used to move the read position to the last byte in the
file. Then the tellg function is used to get the current byte number of the read position.

Program 12-19 demonstrates the tellg function. It opens the letters.txt file, which
was also used in Program 12-17. The file contains the following characters:

abcdefghijklmnopqrstuvwxyz

80 cout << "Phone: ";
81 cout << record.phone << endl;
82 }

Program Output (Using the same file created by Program 12–19 as input)
Here is record 1:
Name: Merideth Murney
Age: 22
Address line 1: 487 Lindsay Lane
Address line 2: Hazelwood, NC 28737
Phone: (828)555-9999

Here is record 0:
Name: Charlie Baxter
Age: 42
Address line 1: 67 Kennedy Bvd.
Address line 2: Perth, SC 38754
Phone: (803)555-1234

WARNING! If a program has read to the end of a file, you must call the file stream
object’s clear member function before calling seekg or seekp. This clears the file stream
object’s eof flag. Otherwise, the seekg or seekp function will not work.

690 Chapter 12 Advanced File Operations

Program 12-19

 1 // This program demonstrates the tellg function.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;

 5
 6 int main()
 7 {
 8 long offset; // To hold an offset amount
 9 long numBytes; // To hold the file size
10 char ch; // To hold a character
11 char again; // To hold Y or N
12
13 // Open the file for input.
14 fstream file("letters.txt", ios::in);
15
16 // Determine the number of bytes in the file.
17 file.seekg(0L, ios::end);
18 numBytes = file.tellg();
19 cout << "The file has " << numBytes << " bytes.\n";

 20
21 // Go back to the beginning of the file.
22 file.seekg(0L, ios::beg);

 23
24 // Let the user move around within the file.
25 do
26 {
27 // Display the current read position.
28 cout << "Currently at position " << file.tellg() << endl;

 29
30 // Get a byte number from the user.
31 cout << "Enter an offset from the beginning of the file: ";
32 cin >> offset;

 33
34 // Move the read position to that byte, read the
35 // character there, and display it.
36 if (offset >= numBytes) // Past the end of the file?
37 cout << "Cannot read past the end of the file.\n";
38 else
39 {
40 file.seekg(offset, ios::beg);
41 file.get(ch);
42 cout << "Character read: " << ch << endl;
43 }

 44
45 // Does the user want to try this again?
46 cout << "Do it again? ";
47 cin >> again;
48 } while (again == 'Y' || again == 'y');

 49
50 // Close the file.
51 file.close();
52 return 0;
53 }

12.9 Random-Access Files 691

Rewinding a Sequential-Access File with seekg
Sometimes when processing a sequential file, it is necessary for a program to read the con-
tents of the file more than one time. For example, suppose a program searches a file for an
item specified by the user. The program must open the file, read its contents, and deter-
mine if the specified item is in the file. If the user needs to search the file again for another
item, the program must read the file’s contents again.

One simple approach for reading a file’s contents more than once is to close and reopen
the file, as shown in the following code example.

dataFile.open("file.txt", ios::in); // Open the file.

//
// Read and process the file's contents.
//

dataFile.close(); // Close the file.
dataFile.open("file.txt", ios::in); // Open the file again.

//
// Read and process the file's contents again.
//

dataFile.close(); // Close the file.

Each time the file is reopened, its read position is located at the beginning of the file. The
read position is the byte in the file that will be read with the next read operation.

Another approach is to “rewind” the file. This means moving the read position to the
beginning of the file without closing and reopening it. This is accomplished with the file
stream object’s seekg member function to move the read position back to the beginning
of the file. The following example code demonstrates.

dataFile.open("file.txt", ios::in); // Open the file.

//
// Read and process the file's contents.
//

Program 12-19

Program Output with Example Input Shown in Bold
The file has 26 bytes.
Currently at position 0
Enter an offset from the beginning of the file: 5 [Enter]
Character read: f
Do it again? y [Enter]
Currently at position 6
Enter an offset from the beginning of the file: 0 [Enter]
Character read: a
Do it again? y [Enter]
Currently at position 1
Enter an offset from the beginning of the file: 26 [Enter]
Cannot read past the end of the file.
Do it again? n [Enter]

692 Chapter 12 Advanced File Operations

dataFile.clear(); // Clear the eof flag.
dataFile.seekg(0L, ios::beg); // Rewind the read position.

//
// Read and process the file's contents again.
//

dataFile.close(); // Close the file.

Notice that prior to calling the seekg member function, the clear member function is
called. As previously mentioned this clears the file object’s eof flag and is necessary only if
the program has read to the end of the file. This approach eliminates the need to close and
reopen the file each time the file’s contents are processed.

12.10 Opening a File for Both Input and Output

CONCEPT: You may perform input and output on an fstream file without closing it
and reopening it.

Sometimes you’ll need to perform both input and output on a file without closing and
reopening it. For example, consider a program that allows you to search for a record in a
file and then make changes to it. A read operation is necessary to copy the data from the
file to memory. After the desired changes have been made to the data in memory, a write
operation is necessary to replace the old data in the file with the new data in memory.

Such operations are possible with fstream objects. The ios::in and ios::out file access
flags may be joined with the | operator, as shown in the following statement.

fstream file("data.dat", ios::in | ios::out)

The same operation may be accomplished with the open member function:

file.open("data.dat", ios::in | ios::out);

You may also specify the ios::binary flag if binary data is to be written to the file. Here
is an example:

file.open("data.dat", ios::in | ios::out | ios::binary);

When an fstream file is opened with both the ios::in and ios::out flags, the file’s cur-
rent contents are preserved and the read/write position is initially placed at the beginning
of the file. If the file does not exist, it is created.

Programs 12-20, 12-21, and 12-22 demonstrate many of the techniques we have discussed.
Program 12-20 sets up a file with five blank inventory records. Each record is a structure
with members for holding a part description, quantity on hand, and price. Program 12-21
displays the contents of the file on the screen. Program 12-22 opens the file in both input
and output modes, and allows the user to change the contents of a specific record.

12.10 Opening a File for Both Input and Output 693

Program 12-21 simply displays the contents of the inventory file on the screen. It can be
used to verify that Program 12-20 successfully created the blank records, and that
Program 12-22 correctly modified the designated record.

Program 12-20

 1 // This program sets up a file of blank inventory records.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 // Constants
 7 const int DESC_SIZE = 31; // Description size
 8 const int NUM_RECORDS = 5; // Number of records
 9
10 // Declaration of InventoryItem structure
11 struct InventoryItem
12 {
13 char desc[DESC_SIZE];
14 int qty;
15 double price;
16 };

 17
18 int main()
19 {
20 // Create an empty InventoryItem structure.
21 InventoryItem record = { "", 0, 0.0 };
22
23 // Open the file for binary output.
24 fstream inventory("Inventory.dat", ios::out | ios::binary);

 25
26 // Write the blank records
27 for (int count = 0; count < NUM_RECORDS; count++)
28 {
29 cout << "Now writing record " << count << endl;
30 inventory.write(reinterpret_cast<char *>(&record),
31 sizeof(record));
32 }

 33
34 // Close the file.
35 inventory.close();
36 return 0;
37 }

Program Output
Now writing record 0
Now writing record 1
Now writing record 2
Now writing record 3
Now writing record 4

694 Chapter 12 Advanced File Operations

Here is the screen output of Program 12-21 if it is run immediately after Program 12-20
sets up the file of blank records.

Program 12-21

 1 // This program displays the contents of the inventory file.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 const int DESC_SIZE = 31; // Description size
 7
 8 // Declaration of InventoryItem structure
 9 struct InventoryItem
10 {
11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };

 15
16 int main()
17 {
18 InventoryItem record; // To hold an inventory record
19
20 // Open the file for binary input.
21 fstream inventory("Inventory.dat", ios::in | ios::binary);

 22
23 // Now read and display the records
24 inventory.read(reinterpret_cast<char *>(&record),
25 sizeof(record));
26 while (!inventory.eof())
27 {
28 cout << "Description: ";
29 cout << record.desc << endl;
30 cout << "Quantity: ";
31 cout << record.qty << endl;
32 cout << "Price: ";
33 cout << record.price << endl << endl;
34 inventory.read(reinterpret_cast<char *>(&record),
35 sizeof(record));
36 }

 37
38 // Close the file.
39 inventory.close();
40 return 0;
41 }

Program 12-21

Program Output
Description:
Quantity: 0
Price: 0.0

12.10 Opening a File for Both Input and Output 695

Program 12-22 allows the user to change the contents of an individual record in the inven-
tory file.

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Description:
Quantity: 0
Price: 0.0

Program 12-22

 1 // This program allows the user to edit a specific record.
 2 #include <iostream>
 3 #include <fstream>
 4 using namespace std;
 5
 6 const int DESC_SIZE = 31; // Description size
 7
 8 // Declaration of InventoryItem structure
 9 struct InventoryItem
10 {
11 char desc[DESC_SIZE];
12 int qty;
13 double price;
14 };

 15
16 int main()
17 {
18 InventoryItem record; // To hold an inventory record
19 long recNum; // To hold a record number

 20
21 // Open the file in binary mode for input and output
22 fstream inventory("Inventory.dat",
23 ios::in | ios::out | ios::binary);

 24
25 // Get the record number of the desired record.
26 cout << "Which record do you want to edit? ";
27 cin >> recNum;

 28
29 // Move to the record and read it.
30 inventory.seekg(recNum * sizeof(record), ios::beg);
31 inventory.read(reinterpret_cast<char *>(&record),
32 sizeof(record));

(program continues)

696 Chapter 12 Advanced File Operations

Checkpoint
12.10 Describe the difference between the seekg and the seekp functions.

12.11 Describe the difference between the tellg and the tellp functions.

12.12 Describe the meaning of the following file access flags:
ios::beg
ios::end
ios::cur

12.13 What is the number of the first byte in a file?

 33
34 // Display the record contents.
35 cout << "Description: ";
36 cout << record.desc << endl;
37 cout << "Quantity: ";
38 cout << record.qty << endl;
39 cout << "Price: ";
40 cout << record.price << endl;

 41
42 // Get the new record data.
43 cout << "Enter the new data:\n";
44 cout << "Description: ";
45 cin.ignore();
46 cin.getline(record.desc, DESC_SIZE);
47 cout << "Quantity: ";
48 cin >> record.qty;
49 cout << "Price: ";
50 cin >> record.price;

 51
52 // Move back to the beginning of this record's position.
53 inventory.seekp(recNum * sizeof(record), ios::beg);

 54
55 // Write the new record over the current record.
56 inventory.write(reinterpret_cast<char *>(&record),
57 sizeof(record));

 58
59 // Close the file.
60 inventory.close();
61 return 0;
62 }

Program Output with Example Input Shown in Bold
Which record do you want to edit? 2 [Enter]
Description:
Quantity: 0
Price: 0.0
Enter the new data:
Description: Wrench [Enter]
Quantity: 10 [Enter]
Price: 4.67 [Enter]

Program 12-22 (continued)

Review Questions and Exercises 697

12.14 Briefly describe what each of the following statements does:
file.seekp(100L, ios::beg);
file.seekp(-10L, ios::end);
file.seekg(-25L, ios::cur);
file.seekg(30L, ios::cur);

12.15 Describe the mode that each of the following statements causes a file to be opened in:
file.open("info.dat", ios::in | ios::out);
file.open("info.dat", ios::in | ios::app);
file.open("info.dat", ios::in | ios::out | ios::ate);
file.open("info.dat", ios::in | ios::out | ios::binary);

See the Student CD for the High Adventure Travel Part 3 Case Study.

Review Questions and Exercises

Short Answer
1. What capability does the fstream data type provide that the ifstream and

ofstream data types do not?

2. Which file access flag do you use to open a file when you want all output written to
the end of the file’s existing contents?

3. Assume that the file data.txt already exists, and the following statement executes.
What happens to the file?

fstream file("data.txt", ios::out);

4. How do you combine multiple file access flags when opening a file?

5. Should file stream objects be passed to functions by value or by reference? Why?

6. Under what circumstances is a file stream object’s ios::hardfail bit set? What
member function reports the state of this bit?

7. Under what circumstances is a file stream object’s ios::eofbit bit set? What mem-
ber function reports the state of this bit?

8. Under what circumstances is a file stream object’s ios::badbit bit set? What mem-
ber function reports the state of this bit?

9. How do you read the contents of a text file that contains whitespace characters as
part of its data?

10. What arguments do you pass to a file stream object’s write member function?

11. What arguments do you pass to a file stream object’s read member function?

12. What type cast do you use to convert a pointer from one type to another?

13. What is the difference between the seekg and seekp member functions?

14. How do you get the byte number of a file’s current read position? How do you get
the byte number of a file’s current write position?

15. If a program has read to the end of a file, what must you do before using either the
seekg or seekp member functions?

16. How do you determine the number of bytes that a file contains?

17. How do you rewind a sequential-access file?

698 Chapter 12 Advanced File Operations

Fill-in-the-Blank

18. The __________ file stream data type is for output files, input files, or files that per-
form both input and output.

19. If a file fails to open, the file stream object will be set to __________.

20. The same formatting techniques used with __________ may also be used when writing
data to a file.

21. The __________ member function reads a line of text from a file.

22. The __________ member function reads a single character from a file.

23. The __________ member function writes a single character to a file.

24. __________ files contain data that is unformatted and not necessarily stored as ASCII
text.

25. __________ files contain data formatted as __________.

26. A(n) __________ is a complete set of data about a single item and is made up
of __________.

27. In C++, __________ provide a convenient way to organize data into fields and records.

28. The __________ member function writes “raw” binary data to a file.

29. The __________ member function reads “raw” binary data from a file.

30. The __________ operator is necessary if you pass anything other than a pointer-to-
char as the first argument of the two functions mentioned in questions 26 and 27.

31. In __________ file access, the contents of the file are read in the order they appear in
the file, from the file’s start to its end.

32. In __________ file access, the contents of a file may be read in any order.

33. The __________ member function moves a file’s read position to a specified byte in the
file.

34. The __________ member function moves a file’s write position to a specified byte in
the file.

35. The __________ member function returns a file’s current read position.

36. The __________ member function returns a file’s current write position.

37. The __________ mode flag causes an offset to be calculated from the beginning of a file.

38. The __________ mode flag causes an offset to be calculated from the end of a file.

39. The __________ mode flag causes an offset to be calculated from the current position
in the file.

40. A negative offset causes the file’s read or write position to be moved __________ in
the file from the position specified by the mode.

Algorithm Workbench

41. Write a statement that defines a file stream object named places. The object will be
used for both output and input.

Review Questions and Exercises 699

42. Write two statements that use a file stream object named people to open a file named
people.dat. (Show how to open the file with a member function and at the defini-
tion of the file stream object.) The file should be opened for output.

43. Write two statements that use a file stream object named pets to open a file named
pets.dat. (Show how to open the file with a member function and at the definition
of the file stream object.) The file should be opened for input.

44. Write two statements that use a file stream object named places to open a file named
places.dat. (Show how to open the file with a member function and at the defini-
tion of the file stream object.) The file should be opened for both input and output.

45. Write a program segment that defines a file stream object named employees. The file
should be opened for both input and output (in binary mode). If the file fails to open,
the program segment should display an error message.

46. Write code that opens the file data.txt for both input and output, but first deter-
mines if the file exists. If the file does not exist, the code should create it, then open it
for both input and output.

47. Write code that determines the number of bytes contained in the file associated with
the file stream object dataFile.

48. The infoFile file stream object is used to sequentially access data. The program has
already read to the end of the file. Write code that rewinds the file.

True or False
49. T F Different operating systems have different rules for naming files.

50. T F fstream objects are only capable of performing file output operations.

51. T F ofstream objects, by default, delete the contents of a file if it already exists
when opened.

52. T F ifstream objects, by default, create a file if it doesn’t exist when opened.

53. T F Several file access flags may be joined by using the | operator.

54. T F A file may be opened in the definition of the file stream object.

55. T F If a file is opened in the definition of the file stream object, no mode flags may
be specified.

56. T F A file stream object’s fail member function may be used to determine if the file
was successfully opened.

57. T F The same output formatting techniques used with cout may also be used with
file stream objects.

58. T F The >> operator expects data to be delimited by whitespace characters.

59. T F The getline member function can be used to read text that contains
whitespaces.

60. T F It is not possible to have more than one file open at once in a program.

61. T F Binary files contain unformatted data, not necessarily stored as text.

62. T F Binary is the default mode in which files are opened.

63. T F The tellp member function tells a file stream object which byte to move its
write position to.

64. T F It is possible to open a file for both input and output.

700 Chapter 12 Advanced File Operations

Find the Error

Each of the following programs or program segments has errors. Find as many as you can.

65. fstream file(ios::in | ios::out);
file.open("info.dat");
if (!file)
{
 cout << "Could not open file.\n";
}

66. ofstream file;
file.open("info.dat", ios::in);
if (file)
{
 cout << "Could not open file.\n";
}

67. fstream file("info.dat");
if (!file)
{
 cout << "Could not open file.\n";
}

68. fstream dataFile("info.dat", ios:in | ios:binary);
int x = 5;
dataFile << x;

69. fstream dataFile("info.dat", ios:in);
int x;
while (dataFile.eof())
{
 dataFile >> x;
 cout << x << endl;
}

70. fstream dataFile("info.dat", ios:in);
char line[81];
dataFile.getline(line);

71. fstream dataFile("info.dat", ios:in);
char stuff[81];
dataFile.get(stuff);

72. fstream dataFile("info.dat", ios:in);
char stuff[81] = "abcdefghijklmnopqrstuvwxyz";
dataFile.put(stuff);

73. fstream dataFile("info.dat", ios:out);
struct Date
{
 int month;
 int day;
 int year;
};
Date dt = { 4, 2, 98 };
dataFile.write(&dt, sizeof(int));

Review Questions and Exercises 701

74. fstream inFile("info.dat", ios:in);
int x;
inFile.seekp(5);
inFile >> x;

Programming Challenges
1. File Head Program

Write a program that asks the user for the name of a file. The program should display
the first 10 lines of the file on the screen (the “head” of the file). If the file has fewer
than 10 lines, the entire file should be displayed, with a message indicating the entire
file has been displayed.

2. File Display Program

Write a program that asks the user for the name of a file. The program should display
the contents of the file on the screen. If the file’s contents won’t fit on a single screen,
the program should display 24 lines of output at a time, and then pause. Each time the
program pauses, it should wait for the user to strike a key before the next 24 lines are
displayed.

3. Punch Line

Write a program that reads and prints a joke and its punch line from two different
files. The first file contains a joke, but not its punch line. The second file has the punch
line as its last line, preceded by “garbage.” The main function of your program should
open the two files and then call two functions, passing each one the file it needs. The
first function should read and display each line in the file it is passed (the joke file).
The second function should display only the last line of the file it is passed (the punch
line file). It should find this line by seeking to the end of the file and then backing up
to the beginning of the last line. Data to test your program can be found in the
joke.txt and punchline.txt files.

4. Tail Program

Write a program that asks the user for the name of a file. The program should display
the last 10 lines of the file on the screen (the “tail” of the file). If the file has fewer than
10 lines, the entire file should be displayed, with a message indicating the entire file
has been displayed.

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

702 Chapter 12 Advanced File Operations

5. Line Numbers

(This assignment could be done as a modification of the program in Programming
Challenge 2.) Write a program that asks the user for the name of a file. The program
should display the contents of the file on the screen. Each line of screen output should
be preceded with a line number, followed by a colon. The line numbering should start
at 1. Here is an example:

1:George Rolland
2:127 Academy Street
3:Brasstown, NC 28706

If the file’s contents won’t fit on a single screen, the program should display 24 lines of
output at a time, and then pause. Each time the program pauses, it should wait for the
user to strike a key before the next 24 lines are displayed.

6. String Search

Write a program that asks the user for a file name and a string to search for. The pro-
gram should search the file for every occurrence of a specified string. When the string
is found, the line that contains it should be displayed. After all the occurrences have
been located, the program should report the number of times the string appeared in
the file.

7. Sentence Filter

Write a program that asks the user for two file names. The first file will be opened for
input and the second file will be opened for output. (It will be assumed that the first file
contains sentences that end with a period.) The program will read the contents of the first
file and change all the letters to lowercase except the first letter of each sentence, which
should be made uppercase. The revised contents should be stored in the second file.

8. Array/File Functions

Write a function named arrayToFile. The function should accept three arguments:
the name of a file, a pointer to an int array, and the size of the array. The function
should open the specified file in binary mode, write the contents of the array to the
file, and then close the file.

Write another function named fileToArray. This function should accept three argu-
ments: the name of a file, a pointer to an int array, and the size of the array. The

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

NOTE: Using an editor, you should create a simple text file that can be used to test this
program.

Review Questions and Exercises 703

function should open the specified file in binary mode, read its contents into the array,
and then close the file.

Write a complete program that demonstrates these functions by using the arrayToFile
function to write an array to a file, and then using the fileToArray function to read
the data from the same file. After the data are read from the file into the array, display
the array’s contents on the screen.

9. File Encryption Filter

File encryption is the science of writing the contents of a file in a secret code. Your
encryption program should work like a filter, reading the contents of one file, modify-
ing the data into a code, and then writing the coded contents out to a second file. The
second file will be a version of the first file, but written in a secret code.

Although there are complex encryption techniques, you should come up with a simple
one of your own. For example, you could read the first file one character at a time,
and add 10 to the ASCII code of each character before it is written to the second file.

10. File Decryption Filter

Write a program that decrypts the file produced by the program in Programming
Challenge 9. The decryption program should read the contents of the coded file,
restore the data to its original state, and write it to another file.

11. Corporate Sales Data Output

Write a program that uses a structure to store the following data on a company
division:

Division Name (such as East, West, North, or South)
Quarter (1, 2, 3, or 4)
Quarterly Sales

The user should be asked for the four quarters’ sales figures for the East, West, North, and
South divisions. The data for each quarter for each division should be written to a file.

Input Validation: Do not accept negative numbers for any sales figures.

12. Corporate Sales Data Input

Write a program that reads the data in the file created by the program in Program-
ming Challenge 11. The program should calculate and display the following figures:

• Total corporate sales for each quarter
• Total yearly sales for each division
• Total yearly corporate sales
• Average quarterly sales for the divisions
• The highest and lowest quarters for the corporation

13. Inventory Program

Write a program that uses a structure to store the following inventory data in a file:

Item Description
Quantity on Hand
Wholesale Cost
Retail Cost
Date Added to Inventory

Solving
the File

Encryption
Filter Problem

704 Chapter 12 Advanced File Operations

The program should have a menu that allows the user to perform the following tasks:

• Add new records to the file.
• Display any record in the file.
• Change any record in the file.

Input Validation: The program should not accept quantities, or wholesale or retail
costs, less than 0. The program should not accept dates that the programmer deter-
mines are unreasonable.

14. Inventory Screen Report

Write a program that reads the data in the file created by the program in Program-
ming Challenge 13. The program should calculate and display the following data:

• The total wholesale value of the inventory
• The total retail value of the inventory
• The total quantity of all items in the inventory

15. Average Number of Words

On the student CD you will find a file named text.txt. The text that is in the file is
stored as one sentence per line. Write a program that reads the file’s contents and cal-
culates the average number of words per sentence.

Group Project

16. Customer Accounts

This program should be designed and written by a team of students. Here are some
suggestions:

• One student should design function main, which will call other program functions.
The remainder of the functions will be designed by other members of the team.

• The requirements of the program should be analyzed so each student is given
about the same workload.

Write a program that uses a structure to store the following data about a customer
account:

Name
Address
City, State, and ZIP
Telephone Number
Account Balance
Date of Last Payment

The structure should be used to store customer account records in a file. The program
should have a menu that lets the user perform the following operations:

• Enter new records into the file.
• Search for a particular customer’s record and display it.
• Search for a particular customer’s record and delete it.
• Search for a particular customer’s record and change it.
• Display the contents of the entire file.

Input Validation: When the data for a new account is entered, be sure the user enters
data for all the fields. No negative account balances should be entered.

705

C
H

A
P

T
E

R

13 Introduction
to Classes

13.1 Procedural and Object-Oriented Programming

CONCEPT: Procedural programming is a method of writing software. It is a
programming practice centered on the procedures or actions that take place
in a program. Object-oriented programming is centered around the object.
Objects are created from abstract data types that encapsulate data and
functions together.

There are two common programming methods in practice today: procedural program-
ming and object-oriented programming (or OOP). Up to this chapter, you have learned to
write procedural programs.

TOPICS

13.1 Procedural and Object-Oriented
Programming

13.2 Introduction to Classes
13.3 Defining an Instance of a Class
13.4 Why Have Private Members?
13.5 Focus on Software Engineering:

Separating Class Specification
from Implementation

13.6 Inline Member Functions
13.7 Constructors
13.8 Passing Arguments to Constructors
13.9 Destructors
13.10 Overloading Constructors
13.11 Private Member Functions

13.12 Arrays of Objects
13.13 Focus on Problem Solving

and Program Design: An OOP
 Case Study

13.14 Focus on Object-Oriented
Programming: Creating
an Abstract Array Data Type

13.15 Focus on Object-Oriented
Design: The Unified Modeling
Language (UML)

13.16 Focus on Object-Oriented
Design: Finding the Classes
and Their Reponsibilities

706 Chapter 13 Introduction to Classes

In a procedural program, you typically have data stored in a collection of variables and/or
structures, coupled with a set of functions that perform operations on the data. The data
and the functions are separate entities. For example, in a program that works with the
geometry of a rectangle you might have the variables in Table 13-1:

In addition to the variables listed in Table 13-1, you might also have the functions listed in
Table 13-2:

Usually the variables and data structures in a procedural program are passed to the func-
tions that perform the desired operations. As you might imagine, the focus of procedural
programming is on creating the functions that operate on the program’s data.

Procedural programming has worked well for software developers for many years. How-
ever, as programs become larger and more complex, the separation of a program’s data
and the code that operates on the data can lead to problems. For example, the data in a
procedural program are stored in variables, as well as more complex structures that are
created from variables. The procedures that operate on the data must be designed with
those variables and data structures in mind. But, what happens if the format of the data is
altered? Quite often, a program’s specifications change, resulting in redesigned data struc-
tures. When the structure of the data changes, the code that operates on the data must
also change to accept the new format. This results in additional work for programmers
and a greater opportunity for bugs to appear in the code.

This problem has helped influence the shift from procedural programming to object-oriented
programming (OOP). Whereas procedural programming is centered on creating procedures
or functions, object-oriented programming is centered on creating objects. An object is a
software entity that contains both data and procedures. The data that are contained in an
object are known as the object’s attributes. The procedures that an object performs are
called member functions. The object is, conceptually, a self-contained unit consisting of
attributes (data) and procedures (functions). This is illustrated in Figure 13-1.

OOP addresses the problems that can result from the separation of code and data through
encapsulation and data hiding. Encapsulation refers to the combining of data and code
into a single object. Data hiding refers to an object’s ability to hide its data from code that

Table 13-1

Variable Definition Description
double width; Holds the rectangle’s width
double length; Holds the rectangle’s length

Table 13-2

Function Name Description
setData() Stores values in width and length
displayWidth() Displays the rectangle’s width
displayLength() Displays the rectangle’s length
displayArea() Displays the rectangle’s area

13.1 Procedural and Object-Oriented Programming 707

is outside the object. Only the object’s member functions may directly access and make
changes to the object’s data. An object typically hides its data, but allows outside code to
access its member functions. As shown in Figure 13-2, the object’s member functions pro-
vide programming statements outside the object with indirect access to the object’s data.

Figure 13-1

NOTE: In other programming languages, the procedures that an object performs are
often called methods.

Figure 13-2

Functions That
Operate on the Data

Data (Attributes)

Object

Functions That
Operate on the Data

Data (Attributes)

Object

Code
Outside the

Object

708 Chapter 13 Introduction to Classes

When an object’s internal data are hidden from outside code, and access to that data is
restricted to the object’s member functions, the data are protected from accidental corrup-
tion. In addition, the programming code outside the object does not need to know about
the format or internal structure of the object’s data. The code only needs to interact with
the object’s functions. When a programmer changes the structure of an object’s internal
data, he or she also modifies the object’s member functions so they may properly operate
on the data. The way in which outside code interacts with the member functions, however,
does not change.

An everyday example of object-oriented technology is the automobile. It has a rather sim-
ple interface that consists of an ignition switch, steering wheel, gas pedal, brake pedal, and
a gear shift. Vehicles with manual transmissions also provide a clutch pedal. If you want
to drive an automobile (to become its user), you only have to learn to operate these ele-
ments of its interface. To start the motor, you simply turn the key in the ignition switch.
What happens internally is irrelevant to the user. If you want to steer the auto to the left,
you rotate the steering wheel left. The movements of all the linkages connecting the steer-
ing wheel to the front tires occur transparently.

Because automobiles have simple user interfaces, they can be driven by people who have
no mechanical knowledge. This is good for the makers of automobiles because it means
more people are likely to become customers. It’s good for the users of automobiles because
they can learn just a few simple procedures and operate almost any vehicle.

These are also valid concerns in software development. A real-world program is rarely
written by only one person. Even the programs you have created so far weren’t written
entirely by you. If you incorporated C++ library functions, or objects like cin and cout,
you used code written by someone else. In the world of professional software develop-
ment, programmers commonly work in teams, buy and sell their code, and collaborate on
projects. With OOP, programmers can create objects with powerful engines tucked away
“under the hood,” protected by simple interfaces that safeguard the object’s algorithms.

Object Reusability
In addition to solving the problems of code/data separation, the use of OOP has also been
encouraged by the trend of object reusability. An object is not a stand-alone program, but
is used by programs that need its service. For example, Sharon is a programmer who has
developed an object for rendering 3D images. She is a math whiz and knows a lot about
computer graphics, so her object is coded to perform all the necessary 3D mathematical
operations and handle the computer’s video hardware. Tom, who is writing a program for
an architectural firm, needs his application to display 3D images of buildings. Because he
is working under a tight deadline and does not possess a great deal of knowledge about
computer graphics, he can use Sharon’s object to perform the 3D rendering (for a small
fee, of course!).

Classes and Objects
Now let’s discuss how objects are created in software. Before an object can be created, it
must be designed by a programmer. The programmer determines the attributes and func-
tions that are necessary, and then creates a class. A class is code that specifies the attributes

13.1 Procedural and Object-Oriented Programming 709

and member functions that a particular type of object may have. Think of a class as a
“blueprint” that objects may be created from. It serves a similar purpose as the blueprint
for a house. The blueprint itself is not a house, but is a detailed description of a house.
When we use the blueprint to build an actual house, we could say we are building an
instance of the house described by the blueprint. If we so desire, we can build several iden-
tical houses from the same blueprint. Each house is a separate instance of the house
described by the blueprint. This idea is illustrated in Figure 13-3.

So, a class is not an object, but it is a description of an object. When the program is run-
ning, it uses the class to create, in memory, as many objects of a specific type as needed.
Each object that is created from a class is called an instance of the class.

For example, Jessica is an entomologist (someone who studies insects) and she also enjoys
writing computer programs. She designs a program to catalog different types of insects. As
part of the program, she creates a class named Insect, which specifies attributes and
member functions for holding and manipulating data common to all types of insects. The
Insect class is not an object, but a specification that objects may be created from. Next,
she writes programming statements that create a housefly object, which is an instance of
the Insect class. The housefly object is an entity that occupies computer memory and
stores data about a housefly. It has the attributes and member functions specified by the
Insect class. Then she writes programming statements that create a mosquito object.
The mosquito object is also an instance of the Insect class. It has its own area in mem-
ory, and stores data about a mosquito. Although the housefly and mosquito objects are
two separate entities in the computer’s memory, they were both created from the Insect
class. This means that each of the objects has the attributes and member functions
described by the Insect class. This is illustrated in Figure 13-4.

Figure 13-3

House Plan

Living Room

Bedroom

Blueprint that describes a house.

Instances of the house described by the blueprint.

710 Chapter 13 Introduction to Classes

At the beginning of this section we discussed how a procedural program that works with
rectangles might have variables to hold the rectangle’s width and length, and separate func-
tions to do things like store values in the variables and make calculations. The program
would pass the variables to the functions as needed. In an object-oriented program, we
would create a Rectangle class which would encapsulate the data (width and length) and
the functions that work with the data. Figure 13-5 shows a representation of such a class.

In the object-oriented approach, the variables and functions are all members of the
Rectangle class. When we need to work with a rectangle in our program, we create a
Rectangle object, which is an instance of the Rectangle class. When we need to per-
form an operation on the Rectangle object’s data, we use that object to call the appro-
priate member function. For example, if we need to get the area of the rectangle, we use
the object to call the getArea member function. The getArea member function would
be designed to calculate the area of that object’s rectangle, and return the value.

Figure 13-4

Figure 13-5

Insect
class

housefly
object

mosquito
object

The Insect class describes
the attributes and

functions that a particular
type of object may have.

The housefly object is an
instance of the Insect class. It

has the attributes and
functions described by

the Insect class.

The mosquito object is an
instance of the Insect class. It

has the attributes and
functions described by

the Insect class.

Member Variables
 double width;
 double length;

Member Functions
void setWidth(double w)

 { ... function code ...}

 void setLength(double len)
 { ... function code ...}

 double getWidth()
 { ... function code ...}

 double getLength()
 { ... function code ...}

 double getArea()
 { ... function code ...}

13.1 Procedural and Object-Oriented Programming 711

Using a Class You Already Know
Before we go any further, let’s review the basics of a class that you have already learned
something about. Chapter 10 introduced you to the string class, which allows you to
create string objects. First, recall that you must have the following #include directive in
any program that uses the string class:

#include <string>

This is necessary because the string class is declared in the string header file. Next, you
can define a string object with a statement such as

string cityName;

This creates a string object named cityName. The cityName object is an instance of the
string class.

Once a string object has been created, you can store data in it. Because the string class
is designed to work with the assignment operator, you can assign a C-string to a string
object. Here is an example:

cityName = "Charleston";

After this statement executes, the string "Charleston" will be stored in the cityName
object. "Charleston" will become the object’s data.

The string class specifies numerous member functions that perform operations on the
data that a string object holds. In Chapter 10 we discussed a member function named
length, which returns the length of the string stored in a string object. The following
code demonstrates:

string cityName; // Create a string object named cityName
int strSize; // To hold the length of a string
cityName = "Charleston"; // Assign "Charleston" to cityName
strSize = cityName.length(); // Store the string length in strSize

The last statement calls the length member function, which returns the length of a string.
The expression cityName.length() returns the length of the string stored in the
cityName object. After this statement executes, the strSize variable will contain the
value 10, which is the length of the string "Charleston".

The string class also specifies a member function named append, which appends an addi-
tional string onto the string already stored in an object. The following code demonstrates.

string cityName;
cityName = "Charleston";
cityName.append(" South Carolina");

In the second line, the string "Charleston" is assigned to the cityName object. In the
third line, the append member function is called and " South Carolina" is passed as an
argument. The argument is appended to the string that is already stored in cityName.
After this statement executes, the cityName object will contain the string "Charleston
South Carolina".

712 Chapter 13 Introduction to Classes

13.2 Introduction to Classes

CONCEPT: In C++, the class is the construct primarily used to create objects.

A class is similar to a structure. It is a data type defined by the programmer, consisting of
variables and functions. Here is the general format of a class declaration:

class ClassName
{
 declaration;
 // ... more declarations
 // may follow...
};

The declaration statements inside a class declaration are for the variables and functions
that are members of that class. For example, the following code declares a class named
Rectangle with two member variables: width and length.

class Rectangle
{
 double width;
 double length;
}; // Don't forget the semicolon.

There is a problem with this class, however. Unlike structures, the members of a class are
private by default. Private class members cannot be accessed by programming statements
outside the class. So, no statements outside this Rectangle class can access the width and
length members.

Recall from our earlier discussion on object-oriented programming that an object can per-
form data hiding, which means that critical data stored inside the object are protected from
code outside the object. In C++, a class’s private members are hidden, and can be accessed
only by functions that are members of the same class. A class’s public members may be
accessed by code outside the class.

Access Specifiers
C++ provides the key words private and public which you may use in class declara-
tions. These key words are known as access specifiers because they specify how class
members may be accessed. The following is the general format of a class declaration that
uses the private and public access specifiers.

class ClassName
{
 private:
 // Declarations of private
 // members appear here.
 public:
 // Declarations of public
 // members appear here.
};

Writing
a Class

13.2 Introduction to Classes 713

Notice that the access specifiers are followed by a colon (:), and then followed by one or
more member declarations. In this general format, the private access specifier is used
first. All of the declarations that follow it, up to the public access specifier, are for private
members. Then, all of the declarations that follow the public access specifier are for pub-
lic members.

Public Member Functions
To allow access to a class’s private member variables, you create public member functions
that work with the private member variables. For example, consider the Rectangle class.
To allow access to a Rectangle object’s width and length member variables, we will add
the member functions listed in Table 13-3.

For the moment we will not actually define the functions described in Table 13-3. We
leave that for later. For now we will only include declarations, or prototypes, for the func-
tions in the class declaration:

class Rectangle
{
 private:
 double width;
 double length;
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
};

In this declaration, the member variables width and length are declared as private,
which means they can be accessed only by the class’s member functions. The member
functions, however, are declared as public, which means they can be called from
statements outside the class. If code outside the class needs to store a width or a length in
a Rectangle object, it must do so by calling the object’s setWidth or setLength member
functions. Likewise, if code outside the class needs to retrieve a width or length stored in a
Rectangle object, it must do so with the object’s getWidth or getLength member
functions. These public functions provide an interface for code outside the class to use
Rectangle objects.

Table 13-3

Member Function Description
setWidth This function accepts an argument which is assigned to the width

member variable.
setLength This function accepts an argument which is assigned to the length

 member variable.
getWidth This function returns the value stored in the width member variable.
getLength This function returns the value stored in the length member variable.
getArea This function returns the product of the width member variable multiplied

by the length member variable. This value is the area of the rectangle.

714 Chapter 13 Introduction to Classes

Using const with Member Functions
Notice that the key word const appears in the declarations of the getWidth, getLength,
and getArea member functions, as shown here:

double getWidth() const;
double getLength() const;
double getArea() const;

When the key word const appears after the parentheses in a member function declara-
tion, it specifies that the function will not change any data stored in the calling object. If
you inadvertently write code in the function that changes the calling object’s data, the
compiler will generate an error. As you will see momentarily, the const key word must
also appear in the function header.

Placement of public and private Members
There is no rule requiring you to declare private members before public members. The
Rectangle class could be declared as follows:

class Rectangle
{
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
 private:
 double width;
 double length;
};

In addition, it is not required that all members of the same access specification be declared
in the same place. Here is yet another declaration of the Rectangle class.

class Rectangle
{
 private:
 double width;
 public:
 void setWidth(double);
 void setLength(double);
 double getWidth() const;
 double getLength() const;
 double getArea() const;
 private:
 double length;
};

NOTE: Even though the default access of a class is private, it’s still a good idea to use
the private key word to explicitly declare private members. This clearly documents the
access specification of all the members of the class.

13.2 Introduction to Classes 715

Although C++ gives you freedom in arranging class member declarations, you should
adopt a consistent standard. Most programmers choose to group member declarations of
the same access specification together.

Defining Member Functions
The Rectangle class declaration contains declarations or prototypes for five member
functions: setWidth, setLength, getWidth, getLength, and getArea. The definitions
of these functions are written outside the class declaration:

//***
// setWidth assigns its argument to the private member width. *
//***

void Rectangle::setWidth(double w)
{
 width = w;
}

//***
// setLength assigns its argument to the private member length. *
//***

void Rectangle::setLength(double len)
{
 length = len;
}

//**
// getWidth returns the value in the private member width. *
//**

double Rectangle::getWidth() const
{
 return width;
}

//**
// getLength returns the value in the private member length. *
//**

double Rectangle::getLength() const
{
 return length;
}

NOTE: Notice in our example that the first character of the class name is written in
uppercase. This is not required, but serves as a visual reminder that the class name is not a
variable name.

716 Chapter 13 Introduction to Classes

//***
// getArea returns the product of width times length. *
//***

double Rectangle::getArea() const
{
 return width * length;
}

In each function definition, the following precedes the name of each function:

Rectangle::

The two colons are called the scope resolution operator. When Rectangle:: appears
before the name of a function in a function header, it identifies the function as a member
of the Rectangle class.

Here is the general format of the function header of any member function defined outside
the declaration of a class:

In the general format, ReturnType is the function’s return type. ClassName is the name of
the class that the function is a member of. functionName is the name of the member func-
tion. ParameterList is an optional list of parameter variable declarations.

Accessors and Mutators
As mentioned earlier, it is a common practice to make all of a class’s member variables pri-
vate and to provide public member functions for accessing and changing them. This
ensures that the object owning the member variables is in control of all changes being
made to them. A member function that gets a value from a class’s member variable but
does not change it is known as an accessor. A member function that stores a value in mem-
ber variable or changes the value of member variable in some other way is known as a
mutator. In the Rectangle class, the member functions getLength and getWidth are
accessors, and the member functions setLength and setWidth are mutators.

Some programmers refer to mutators as setter functions because they set the value of an
attribute, and accessors as getter functions because they get the value of an attribute.

ReturnType ClassName::functionName(ParameterList)

WARNING! Remember, the class name and scope resolution operator extends the
name of the function. They must appear after the return type and immediately before the
function name in the function header. The following would be incorrect:

 Rectangle::double getArea() //Incorrect!

In addition, if you leave the class name and scope resolution operator out of a member
function’s header, the function will not become a member of the class.

 double getArea() // Not a member of the Rectangle class!

13.3 Defining an Instance of a Class 717

Using const with Accessors
Notice that the key word const appears in the headers of the getWidth, getLength, and
getArea member functions, as shown here:

double Rectangle::getWidth() const
double Rectangle::getLength() const
double Rectangle::getArea() const

Recall that these functions were also declared in the class with the const key word. When
you mark a member function as const, the const key word must appear in both the dec-
laration and the function header.

In essence, when you mark a member function as const, you are telling the compiler that
the calling object is a constant. The compiler will generate an error if you inadvertently write
code in the function that changes the calling object’s data. Because this decreases the chances
of having bugs in your code, it is a good practice to mark all accessor functions as const.

13.3 Defining an Instance of a Class

CONCEPT: Class objects must be defined after the class is declared.

Like structure variables, class objects are not created in memory until they are defined.
This is because a class declaration by itself does not create an object, but is merely the
description of an object. We can use it to create one or more objects, which are instances
of the class.

Class objects are created with simple definition statements, just like variables. Here is the
general format of a simple object definition statement:

In the general format, ClassName is the name of a class and objectName is the name we
are giving the object.

For example, the following statement defines box as an object of the Rectangle class:

Rectangle box;

Defining a class object is called the instantiation of a class. In this statement, box is an
instance of the Rectangle class.

Accessing an Object’s Members
The box object that we previously defined is an instance of the Rectangle class. Suppose
we want to change the value in the box object’s width variable. To do so, we must use the
box object to call the setWidth member function, as shown here:

box.setWidth(12.7);

Just as you use the dot operator to access a structure’s members, you use the dot operator
to call a class’s member functions. This statement uses the box object to call the setWidth

 ClassName objectName;

Defining
an Instance

of a Class

718 Chapter 13 Introduction to Classes

member function, passing 12.7 as an argument. As a result, the box object’s width vari-
able will be set to 12.7. Here are other examples of statements that use the box object to
call member functions:

box.setLength(4.8); // Set box's length to 4.8.
x = box.getWidth(); // Assign box's width to x.
cout << box.getLength(); // Display box's length.
cout << box.getArea(); // Display box's area.

A Class Demonstration Program
Program 13-1 is a complete program that demonstrates the Rectangle class.

NOTE: Notice that inside the Rectangle class’s member functions, the dot operator is
not used to access any of the class’s member variables. When an object is used to call a
member function, the member function has direct access to that object’s member
variables.

Program 13-1

 1 // This program demonstrates a simple class.
 2 #include <iostream>
 3 using namespace std;
 4
 5 // Rectangle class declaration.
 6 class Rectangle
 7 {
 8 private:
 9 double width;
10 double length;
11 public:
12 void setWidth(double);
13 void setLength(double);
14 double getWidth() const;
15 double getLength() const;
16 double getArea() const;
17 };
18
19 //**
20 // setWidth assigns a value to the width member. *
21 //**
22
23 void Rectangle::setWidth(double w)
24 {
25 width = w;
26 }
27
28 //**
29 // setLength assigns a value to the length member. *
30 //**
31

13.3 Defining an Instance of a Class 719

32 void Rectangle::setLength(double len)
33 {
34 length = len;
35 }
36
37 //**
38 // getWidth returns the value in the width member. *
39 //**
40
41 double Rectangle::getWidth() const
42 {
43 return width;
44 }
45
46 //**
47 // getLength returns the value in the length member. *
48 //**
49
50 double Rectangle::getLength() const
51 {
52 return length;
53 }
54
55 //***
56 // getArea returns the product of width times length. *
57 //***
58
59 double Rectangle::getArea() const
60 {
61 return width * length;
62 }
63
64 //***
65 // Function main *
66 //***
67
68 int main()
69 {
70 Rectangle box; // Define an instance of the Rectangle class
71 double rectWidth; // Local variable for width
72 double rectLength; // Local variable for length
73
74 // Get the rectangle's width and length from the user.
75 cout << "This program will calculate the area of a\n";
76 cout << "rectangle. What is the width? ";
77 cin >> rectWidth;
78 cout << "What is the length? ";
79 cin >> rectLength;
80
81 // Store the width and length of the rectangle
82 // in the box object.
83 box.setWidth(rectWidth);
84 box.setLength(rectLength);

(program continues)

720 Chapter 13 Introduction to Classes

The Rectangle class declaration, along with the class’s member functions, appears in
lines 6 through 62. Inside the main function, in line 70, the following statement creates a
Rectangle object named box.

Rectangle box;

The box object is illustrated in Figure 13-6. Notice that the width and length member
variables do not yet hold meaningful values. An object’s member variables are not auto-
matically initialized to 0. When an object’s member variable is first created, it holds what-
ever random value happens to exist at the variable’s memory location. We commonly refer
to such a random value as “garbage.”

In lines 75 through 79 the program prompts the user to enter the width and length of a
rectangle. The width that is entered is stored in the rectWidth variable, and the length
that is entered is stored in the rectLength variable. In line 83 the following statement
uses the box object to call the setWidth member function, passing the value of the
rectWidth variable as an argument:

box.setWidth(rectWidth);

This sets box’s width member variable to the value in rectWidth. Assuming rectWidth
holds the value 10, Figure 13-7 shows the state of the box object after this statement
executes.

Program 13-1 (continued)

85
86 // Display the rectangle's data.
87 cout << "Here is the rectangle's data:\n";
88 cout << "Width: " << box.getWidth() << endl;
89 cout << "Length: " << box.getLength() << endl;
90 cout << "Area: " << box.getArea() << endl;
91 return 0;
92 }

Program Output with Example Input Shown in Bold
This program will calculate the area of a
rectangle. What is the width? 10 [Enter]
What is the length? 5 [Enter]
Here is the rectangle's data:
Width: 10
Length: 5
Area: 50

Figure 13-6

The box object when first created

?

width:

length:

?

13.3 Defining an Instance of a Class 721

In line 84 the following statement uses the box object to call the setLength member func-
tion, passing the value of the rectLength variable as an argument.

 box.setLength(rectLength);

This sets box’s length member variable to the value in rectLength. Assuming
rectLength holds the value 5, Figure 13-8 shows the state of the box object after this
statement executes.

Lines 88, 89, and 90 use the box object to call the getWidth, getLength, and getArea
member functions, displaying their return values on the screen.

Program 13-1 creates only one Rectangle object. It is possible to create many instances
of the same class, each with its own data. For example, Program 13-2 creates three
Rectangle objects, named kitchen, bedroom, and den. Note that lines 6 through 62
have been left out of the listing because they contain the Rectangle class declaration and
the definitions for the class’s member functions. These lines are identical to those same
lines in Program 13-1.

Figure 13-7

Figure 13-8

NOTE: Figures 13-6 through 13-8 show the state of the box object at various times
during the execution of the program. An object’s state is simply the data that is stored in
the object’s attributes at any given moment.

Program 13-2

1 // This program creates three instances of the Rectangle class.
2 #include <iostream>
3 using namespace std;
4
5 // Rectangle class declaration.

Lines 6 through 62 have been left out.

(program continues)

The box object with width set to 10

?

width:

length:

10

The box object with width set to 10
and length set to 5

5

width:

length:

10

722 Chapter 13 Introduction to Classes

 63
 64 //***
 65 // Function main *
 66 //***
 67
 68 int main()
 69 {
 70 double number; // To hold a number
 71 double totalArea; // The total area
 72 Rectangle kitchen; // To hold kitchen dimensions
 73 Rectangle bedroom; // To hold bedroom dimensions
 74 Rectangle den; // To hold den dimensions
 75
 76 // Get the kitchen dimensions.
 77 cout << "What is the kitchen's length? ";
 78 cin >> number; // Get the length
 79 kitchen.setLength(number); // Store in kitchen object
 80 cout << "What is the kitchen's width? ";
 81 cin >> number; // Get the width
 82 kitchen.setWidth(number); // Store in kitchen object
 83
 84 // Get the bedroom dimensions.
 85 cout << "What is the bedroom's length? ";
 86 cin >> number; // Get the length
 87 bedroom.setLength(number); // Store in bedroom object
 88 cout << "What is the bedroom's width? ";
 89 cin >> number; // Get the width
 90 bedroom.setWidth(number); // Store in bedroom object
 91
 92 // Get the den dimensions.
 93 cout << "What is the den's length? ";
 94 cin >> number; // Get the length
 95 den.setLength(number); // Store in den object
 96 cout << "What is the den's width? ";
 97 cin >> number; // Get the width
 98 den.setWidth(number); // Store in den object
 99
100 // Calculate the total area of the three rooms.
101 totalArea = kitchen.getArea() + bedroom.getArea()
102 + den.getArea();
103
104 // Display the total area of the three rooms.
105 cout << "The total area of the three rooms is "
106 << totalArea << endl;
107
108 return 0;
109 }

Program 13-2 (continued)

13.3 Defining an Instance of a Class 723

In lines 72, 73, and 74, the following code defines three Rectangle variables. This creates
three objects, each an instance of the Rectangle class:

Rectangle kitchen; // To hold kitchen dimensions
Rectangle bedroom; // To hold bedroom dimensions
Rectangle den; // To hold den dimensions

In the example output, the user enters 10 and 14 as the length and width of the kitchen, 15
and 12 as the length and width of the bedroom, and 20 and 30 as the length and width of
the den. Figure 13-9 shows the states of the objects after these values are stored in them.

Notice from Figure 13-9 that each instance of the Rectangle class has its own length
and width variables. Every instance of a class has its own set of member variables that can
hold their own values. The class’s member functions can perform operations on specific
instances of the class. For example, look at the following statement in line 79 of
Program 13-2:

kitchen.setLength(number);

This statement calls the setLength member function, which stores a value in the kitchen
object’s length variable. Now look at the following statement in line 87:

bedroom.setLength(number);

This statement also calls the setLength member function, but this time it stores a value in
the bedroom object’s length variable. Likewise, the following statement in line 95 calls
the setLength member function to store a value in the den object’s length variable:

den.setLength(number);

The setLength member function stores a value in a specific instance of the Rectangle
class. All of the other Rectangle class member functions work in a similar way. They
access one or more member variables of a specific Rectangle object.

Program Output with Example Input Shown in Bold
What is the kitchen's length? 10 [Enter]
What is the kitchen's width? 14 [Enter]
What is the bedroom's length? 15 [Enter]
What is the bedroom's width? 12 [Enter]
What is the den's length? 20 [Enter]
What is the den's width? 30 [Enter]
The total area of the three rooms is 920

Figure 13-9

The kitchen object

width: 14.0

length: 10.0

The bedroom object

width: 12.0

length: 15.0

The den object

width: 30.0

length: 20.0

724 Chapter 13 Introduction to Classes

Avoiding Stale Data
In the Rectangle class, the getLength and getWidth member functions return the values
stored in member variables, but the getArea member function returns the result of a cal-
culation. You might be wondering why the area of the rectangle is not stored in a member
variable, like the length and the width. The area is not stored in a member variable
because it could potentially become stale. When the value of an item is dependent on other
data and that item is not updated when the other data are changed, it is said that the item
has become stale. If the area of the rectangle were stored in a member variable, the value
of the member variable would become incorrect as soon as either the length or width
member variables changed.

When designing a class, you should take care not to store in a member variable calculated
data that could potentially become stale. Instead, provide a member function that returns
the result of the calculation.

Pointers to Objects
You can also define pointers to class objects. For example, the following statement defines
a pointer variable named rectPtr:

Rectangle *rectPtr;

The rectPtr variable is not an object, but it can hold the address of a Rectangle object.
The following code shows an example.

Rectangle myRectangle; // A Rectangle object
Rectangle *rectPtr; // A Rectangle pointer
rectPtr = &myRectangle; // rectPtr now points to myRectangle

The first statement creates a Rectangle object named myRectangle. The second statement
creates a Rectangle pointer named rectPtr. The third statement stores the address of the
myRectangle object in the rectPtr pointer. This is illustrated in Figure 13-10.

The rectPtr pointer can then be used to call member functions by using the -> operator.
The following statements show examples.

rectPtr->setWidth(12.5);
rectPtr->setLength(4.8);

The first statement calls the setWidth member function, passing 12.5 as an argument.
Because rectPtr points to the myRectangle object, this will cause 12.5 to be stored in
the myRectangle object’s width variable. The second statement calls the setLength
member function, passing 4.8 as an argument. This will cause 4.8 to be stored in the

Figure 13-10

The myRectangle object

The rectPtr pointer variable
holds the address of the
myRectangle object

?

width:

length:

?
address

13.3 Defining an Instance of a Class 725

myRectangle object’s length variable. Figure 13-11 shows the state of the myRectangle
object after these statements have executed.

Class object pointers can be used to dynamically allocate objects. The following code
shows an example.

 1 // Define a Rectangle pointer.
 2 Rectangle *rectPtr;
 3
 4 // Dynamically allocate a Rectangle object.
 5 rectPtr = new Rectangle;
 6
 7 // Store values in the object's width and length.
 8 rectPtr->setWidth(10.0);
 9 rectPtr->setLength(15.0);
10
11 // Delete the object from memory.
12 delete rectPtr;
13 rectPtr = 0;

Line 2 defines rectPtr as a Rectangle pointer. Line 5 uses the new operator to dynami-
cally allocate a Rectangle object and assign its address to rectPtr. Lines 8 and 9 store
values in the dynamically allocated object’s width and length variables. Figure 13-12
shows the state of the dynamically allocated object after these statements have executed.

Line 12 deletes the object from memory and line 13 stores the address 0 in rectPtr.
Recall from Chapter 9 that this prevents code from inadvertently using the pointer to
access the area of memory that has been freed. It also prevents errors from occurring if
delete is accidentally called on the pointer again.

Program 13-3 is a modification of Program 13-2. In this program, kitchen, bedroom, and
den are Rectangle pointers. They are used to dynamically allocate Rectangle objects.
The output is the same as Program 13-2.

Figure 13-11

Figure 13-12

The myRectangle object

The rectPtr pointer variable
holds the address of the
myRectangle object

4.8

width:

length:

12.5
address

A Rectangle object

The rectPtr pointer variable
holds the address of a dynamically

allocated Rectangle object

15.0

width:

length:

10.0
address

726 Chapter 13 Introduction to Classes

Program 13-3

1 // This program creates three instances of the Rectangle class.
2 #include <iostream>
3 using namespace std;
4
5 // Rectangle class declaration.

Lines 6 through 62 have been left out.

 63
 64 //***
 65 // Function main *
 66 //***
 67
 68 int main()
 69 {
 70 double number; // To hold a number
 71 double totalArea; // The total area
 72 Rectangle *kitchen; // To point to kitchen dimensions
 73 Rectangle *bedroom; // To point to bedroom dimensions
 74 Rectangle *den; // To point to den dimensions
 75
 76 // Dynamically allocate the objects.
 77 kitchen = new Rectangle;
 78 bedroom = new Rectangle;
 79 den = new Rectangle;
 80
 81 // Get the kitchen dimensions.
 82 cout << "What is the kitchen's length? ";
 83 cin >> number; // Get the length
 84 kitchen->setLength(number); // Store in kitchen object
 85 cout << "What is the kitchen's width? ";
 86 cin >> number; // Get the width
 87 kitchen->setWidth(number); // Store in kitchen object
 88
 89 // Get the bedroom dimensions.
 90 cout << "What is the bedroom's length? ";
 91 cin >> number; // Get the length
 92 bedroom->setLength(number); // Store in bedroom object
 93 cout << "What is the bedroom's width? ";
 94 cin >> number; // Get the width
 95 bedroom->setWidth(number); // Store in bedroom object
 96
 97 // Get the den dimensions.
 98 cout << "What is the den's length? ";
 99 cin >> number; // Get the length
100 den->setLength(number); // Store in den object
101 cout << "What is the den's width? ";
102 cin >> number; // Get the width
103 den->setWidth(number); // Store in den object
104
105 // Calculate the total area of the three rooms.
106 totalArea = kitchen->getArea() + bedroom->getArea()
107 + den->getArea();

 108

13.3 Defining an Instance of a Class 727

Checkpoint
13.1 True or False: You must declare all private members of a class before the public

members.

13.2 Assume that RetailItem is the name of a class, and the class has a void member
function named setPrice which accepts a double argument. Which of the fol-
lowing shows the correct use of the scope resolution operator in the member
function definition?
A) RetailItem::void setPrice(double p)

B) void RetailItem::setPrice(double p)

13.3 An object’s private member variables are accessed from outside the object by
A) public member functions
B) any function
C) the dot operator
D) the scope resolution operator

13.4 Assume that RetailItem is the name of a class, and the class has a void member
function named setPrice which accepts a double argument. If soap is an
instance of the RetailItem class, which of the following statements properly uses
the soap object to call the setPrice member function?
A) RetailItem::setPrice(1.49);

B) soap::setPrice(1.49);

C) soap.setPrice(1.49);

D) soap:setPrice(1.49);

13.5 Complete the following code skeleton to declare a class named Date. The class
should contain variables and functions to store and retrieve a date in the form
4/2/2010.

class Date
{
 private:

 public:

}

109 // Display the total area of the three rooms.
110 cout << "The total area of the three rooms is "
111 << totalArea << endl;
112
113 // Delete the objects from memory.
114 delete kitchen;
115 delete bedroom;
116 delete den;
117 kitchen = 0; // Make kitchen point to null.
118 bedroom = 0; // Make bedroom point to null.
119 den = 0; // Make den point to null.
120
121 return 0;
122 }

728 Chapter 13 Introduction to Classes

13.4 Why Have Private Members?

CONCEPT: In object-oriented programming, an object should protect its important data
by making it private and providing a public interface to access that data.

You might be questioning the rationale behind making the member variables in the
Rectangle class private. You might also be questioning why member functions were
defined for such simple tasks as setting variables and getting their contents. After all, if the
member variables were declared as public, the member functions wouldn’t be needed.

As mentioned earlier in this chapter, classes usually have variables and functions that are
meant only to be used internally. They are not intended to be accessed by statements out-
side the class. This protects critical data from being accidentally modified or used in a way
that might adversely affect the state of the object. When a member variable is declared as
private, the only way for an application to store values in the variable is through a pub-
lic member function. Likewise, the only way for an application to retrieve the contents of
a private member variable is through a public member function. In essence, the public
members become an interface to the object. They are the only members that may be
accessed by any application that uses the object.

In the Rectangle class, the width and length member variables hold critical data.
Therefore they are declared as private and an interface is constructed with public mem-
ber functions. If a program creates a Rectangle object, the program must use the
setWidth and getWidth member functions to access the object’s width member. To
access the object’s length member, the program must use the setLength and getLength
member functions. This idea is illustrated in Figure 13-13.

The public member functions can be written to filter out invalid data. For example, look
at the following version of the setWidth member function.

void Rectangle::setWidth(double w)
{
 if (w >= 0)
 width = w;

Figure 13-13

Rectangle Class

Code
Outside the

Class

width length

setWidth
getWidth

setLength
getLength

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 729

 else
 {
 cout << "Invalid width\n";
 exit(EXIT_FAILURE);
 }

}

Notice that this version of the function doesn’t just assign the parameter value to the
width variable. It first tests the parameter to make sure it is 0 or greater. If a negative
number was passed to the function, an error message is displayed and then the standard
library function exit is called to abort the program. The setLength function could be
written in a similar way:

void Rectangle::setLength(double len)
{
 if (len >= 0)
 length = len;
 else
 {
 cout << "Invalid length\n";
 exit(EXIT_FAILURE);
 }
}

The point being made here is that mutator functions can do much more than simply store
values in attributes. They can also validate those values to ensure that only acceptable
data is stored in the object’s attributes. Keep in mind, however, that calling the exit func-
tion, as we have done in these examples, is not the best way to deal with invalid data.
There are more advanced techniques that professional programmers use for handling
these types of errors, but those techniques are beyond the scope of this book. Because you
are just starting to learn about classes and OOP, we will keep our code simple by using
only rudimentary data validation techniques.

13.5
Focus on Software Engineering: Separating Class
Specification from Implementation

CONCEPT: Usually class declarations are stored in their own header files. Member
function definitions are stored in their own .cpp files.

In the programs we’ve looked at so far, the class declaration, member function definitions,
and application program are all stored in one file. A more conventional way of designing
C++ programs is to store class declarations and member function definitions in their own
separate files. Typically, program components are stored in the following fashion:

• Class declarations are stored in their own header files. A header file that contains
a class declaration is called a class specification file. The name of the class specifi-
cation file is usually the same as the name of the class, with a .h extension. For
example, the Rectangle class would be declared in the file Rectangle.h.

730 Chapter 13 Introduction to Classes

• The member function definitions for a class are stored in a separate .cpp file
called the class implementation file. The file usually has the same name as the
class, with the .cpp extension. For example, the Rectangle class’s member func-
tions would be defined in the file Rectangle.cpp.

• Any program that uses the class should #include the class’s header file. The
class’s .cpp file (that which contains the member function definitions) should be
compiled and linked with the main program. This process can be automated with
a project or make utility. Integrated development environments such as Visual
Studio also provide the means to create the multi-file projects.

Let’s see how we could rewrite Program 13-1 using this design approach. First, the
Rectangle class declaration would be stored in the following Rectangle.h file. (This file
is stored in the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Contents of Rectangle.h (Version 1)

 1 // Specification file for the Rectangle class.
 2 #ifndef RECTANGLE_H
 3 #define RECTANGLE_H
 4
 5 // Rectangle class declaration.
 6
 7 class Rectangle
 8 {
 9 private:
10 double width;
11 double length;
12 public:
13 void setWidth(double);
14 void setLength(double);
15 double getWidth() const;
16 double getLength() const;
17 double getArea() const;
18 };
19
20 #endif

This is the specification file for the Rectangle class. It contains only the declaration of the
Rectangle class. It does not contain any member function definitions. When we write
other programs that use the Rectangle class, we can have an #include directive that
includes this file. That way, we won’t have to write the class declaration in every program
that uses the Rectangle class.

This file also introduces two new preprocessor directives: #ifndef and #endif. The
#ifndef directive that appears in line 2 is called an include guard. It prevents the header
file from accidentally being included more than once. When your main program file has an
#include directive for a header file, there is always the possibility that the header file will
have an #include directive for a second header file. If your main program file also has an
#include directive for the second header file, then the preprocessor will include the sec-
ond header file twice. Unless an include guard has been written into the second header file,
an error will occur because the compiler will process the declarations in the second header
file twice. Let’s see how an include guard works.

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 731

The word ifndef stands for “if not defined.” It is used to determine whether a specific
constant has not been defined with a #define directive. When the Rectangle.h file is
being compiled, the #ifndef directive checks for the existence of a constant named
RECTANGLE_H. If the constant has not been defined, it is immediately defined in line 3 and
the rest of the file is included. If the constant has been defined, it means that the file has
already been included. In that case, everything between the #ifndef and #endif direc-
tives is skipped. This is illustrated in Figure 13-14.

Next we need an implementation file that contains the class’s member function definitions.
The implementation file for the Rectangle class is Rectangle.cpp. (This file is stored in
the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Contents of Rectangle.cpp (Version 1)

1 // Implementation file for the Rectangle class.
2 #include "Rectangle.h" // Needed for the Rectangle class
3 #include <iostream> // Needed for cout
4 #include <cstdlib> // Needed for the exit function
5 using namespace std;
6
7 //***
8 // setWidth sets the value of the member variable width. *
9 //***
10

Figure 13-14

#ifndef RECTANGLE_H

#endif

#define RECTANGLE_H

class Rectangle
{
 // Member declarations
 // appear here.
 };

This directive tells the preprocessor to
see if a constant named RECTANGLE_H
has not been previously created with a
#define directive.

If the RECTANGLE_H constant has not
been defined, these lines are included
in the program. Otherwise, these lines
are not included in the program.

#ifndef RECTANGLE_H

#endif

#define RECTANGLE_H

class Rectangle
{
 // Member declarations
 // appear here.
 };

The first included line defines the
RECTANGLE_H constant. If this file
is included again, the include guard
will skip its contents.

732 Chapter 13 Introduction to Classes

11 void Rectangle::setWidth(double w)
12 {
13 if (w >= 0)
14 width = w;
15 else
16 {
17 cout << "Invalid width\n";
18 exit(EXIT_FAILURE);
19 }
20 }
21
22 //***
23 // setLength sets the value of the member variable length. *
24 //***
25
26 void Rectangle::setLength(double len)
27 {
28 if (len >= 0)
29 length = len;
30 else
31 {
32 cout << "Invalid length\n";
33 exit(EXIT_FAILURE);
34 }
35 }
36
37 //***
38 // getWidth returns the value in the member variable width. *
39 //***
40
41 double Rectangle::getWidth() const
42 {
43 return width;
44 }
45
46 //***
47 // getLength returns the value in the member variable length. *
48 //***
49
50 double Rectangle::getLength() const
51 {
52 return length;
53 }
54
55 //**
56 // getArea returns the product of width times length. *
57 //**
58
59 double Rectangle::getArea() const
60 {
61 return width * length;
62 }

13.5 Focus on Software Engineering: Separating Class Specification from Implementation 733

Look at line 2, which has the following #include directive:

#include "Rectangle.h"

This directive includes the Rectangle.h file, which contains the Rectangle class declara-
tion. Notice that the name of the header file is enclosed in double-quote characters (" ")
instead of angled brackets (< >). When you are including a C++ system header file, such as
iostream, you enclose the name of the file in angled brackets. This indicates that the file
is located in the compiler’s include file directory. The include file directory is the directory
or folder where all of the standard C++ header files are located. When you are including a
header file that you have written, such as a class specification file, you enclose the name of
the file in double-quote marks. This indicates that the file is located in the current project
directory.

Any file that uses the Rectangle class must have an #include directive for the Rectangle.h
file. We need to include Rectangle.h in the class specification file because the functions
in this file belong to the Rectangle class. Before the compiler can process a function
with Rectangle:: in its name, it must have already processed the Rectangle class
declaration.

Now that we have the Rectangle class stored in its own specification and implementation
files, we can see how to use them in a program. Program 13-4 shows a modified version of
Program 13-1. This version of the program does not contain the Rectangle class declara-
tion, or the definitions of any of the class’s member functions. Instead, it is designed to be
compiled and linked with the class specification and implementation files. (This file is
stored in the Student Source Code Folder Chapter 13\Rectangle Version 1.)

Program 13-4

1 // This program uses the Rectangle class, which is declared in
2 // the Rectangle.h file. The member Rectangle class's member
3 // functions are defined in the Rectangle.cpp file. This program
4 // should be compiled with those files in a project.
5 #include <iostream>
6 #include "Rectangle.h" // Needed for Rectangle class
7 using namespace std;
8
9 int main()
10 {
11 Rectangle box; // Define an instance of the Rectangle class
12 double rectWidth; // Local variable for width
13 double rectLength; // Local variable for length
14
15 // Get the rectangle's width and length from the user.
16 cout << "This program will calculate the area of a\n";
17 cout << "rectangle. What is the width? ";
18 cin >> rectWidth;
19 cout << "What is the length? ";
20 cin >> rectLength;
21

(program continues)

734 Chapter 13 Introduction to Classes

Notice that Program 13-4 has an #include directive for the Rectangle.h file in line 6.
This causes the declaration for the Rectangle class to be included in the file. To create an
executable program from this file, the following steps must be taken:

• The implementation file, Rectangle.cpp, must be compiled. Rectangle.cpp is
not a complete program, so you cannot create an executable file from it alone.
Instead, you compile Rectangle.cpp to an object file which contains the com-
piled code for the Rectangle class. This file would typically be named
Rectangle.obj.

• The main program file, Pr13-4.cpp, must be compiled. This file is not a com-
plete program either, because it does not contain any of the implementation code
for the Rectangle class. So, you compile this file to an object file such as
Pr13-4.obj.

• The object files, Pr13-4.obj and Rectangle.obj, are linked together to create
an executable file, which would be named something like Pr13-4.exe.

This process is illustrated in Figure 13-15.

The exact details on how these steps take place are different for each C++ development
system. Fortunately, most systems perform all of these steps automatically for you. For
example, in Microsoft Visual C++ you create a project, and then you simply add all of the
files to the project. When you compile the project, the steps are taken care of for you and
an executable file is generated.

Separating a class into a specification file and an implementation file provides a great deal of
flexibility. First, if you wish to give your class to another programmer, you don’t have to
share all of your source code with that programmer. You can give him or her the specifica-
tion file and the compiled object file for the class’s implementation. The other programmer
simply inserts the necessary #include directive into his or her program, compiles it, and
links it with your class’s object file. This prevents the other programmer, who might not
know all the details of your code, from making changes that will introduce bugs.

22 // Store the width and length of the rectangle
23 // in the box object.
24 box.setWidth(rectWidth);
25 box.setLength(rectLength);
26
27 // Display the rectangle's data.
28 cout << "Here is the rectangle's data:\n";
29 cout << "Width: " << box.getWidth() << endl;
30 cout << "Length: " << box.getLength() << endl;
31 cout << "Area: " << box.getArea() << endl;
32 return 0;
33 }

NOTE: Appendix L on the Student CD gives step-by-step instructions for creating multi-file
projects in Microsoft Visual C++ 2008 Express Edition.

Program 13-4 (continued)

13.6 Inline Member Functions 735

Separating a class into specification and implementation files also makes things easier
when the class’s member functions must be modified. It is only necessary to modify the
implementation file and recompile it to a new object file. Programs that use the class don’t
have to be completely recompiled, just linked with the new object file.

13.6 Inline Member Functions

CONCEPT: When the body of a member function is written inside a class declaration,
it is declared inline.

When the body of a member function is small, it is usually more convenient to place the func-
tion’s definition, instead of its prototype, in the class declaration. For example, in the
Rectangle class the member functions getWidth, getLength, and getArea each have only
one statement. The Rectangle class could be revised as shown in the following listing. (This
file is stored in the Student Source Code Folder Chapter 13\Rectangle Version 2.)

Contents of Rectangle.h (Version 2)

 1 // Specification file for the Rectangle class
2 // This version uses some inline member functions.
3 #ifndef RECTANGLE_H
4 #define RECTANGLE_H
5
6 class Rectangle
7 {
8 private:
9 double width;
10 double length;

Figure 13-15

Rectangle.h
(Specification File)

Rectangle.cpp
(Implementation

File)

Rectangle.h is
included in

Rectangle.cpp Pr13-4.cpp
(Main Program

File)

Rectangle.h is
included in
Pr13-4.cpp

Rectangle.obj
(Object File)

Pr13-4.obj
(Object File)

Rectangle.cpp is compiled
and Rectangle.obj is created

Pr13-4.cpp is compiled
and Pr13-4.obj is created

Pr13-4.exe
(Executable File)

Rectangle.obj and Pr13-4.obj
are linked and Pr13-4.exe

is created

736 Chapter 13 Introduction to Classes

11 public:
12 void setWidth(double);
13 void setLength(double);
14
15 double getWidth() const
16 { return width; }
17
18 double getLength() const
19 { return length; }
20
21 double getArea() const
22 { return width * length; }
23 };
24 #endif

When a member function is defined in the declaration of a class, it is called an inline func-
tion. Notice that because the function definitions are part of the class, there is no need to
use the scope resolution operator and class name in the function header.

Notice that the getWidth, getLength, and getArea functions are declared inline, but the
setWidth and setLength functions are not. They are still defined outside the class
declaration. The following listing shows the implementation file for the revised
Rectangle class. (This file is also stored in the Student Source Code Folder Chapter 13\
Rectangle Version 2.)

Contents of Rectangle.cpp (Version 2)

 1 // Implementation file for the Rectangle class.
2 // In this version of the class, the getWidth, getLength,
3 // and getArea functions are written inline in Rectangle.h.
4 #include "Rectangle.h" // Needed for the Rectangle class
5 #include <iostream> // Needed for cout
6 #include <cstdlib> // Needed for the exit function
7 using namespace std;
8
9 //***
10 // setWidth sets the value of the member variable width. *
11 //***
12
13 void Rectangle::setWidth(double w)
14 {
15 if (w >= 0)
16 width = w;
17 else
18 {
19 cout << "Invalid width\n";
20 exit(EXIT_FAILURE);
21 }
22 }
23
24 //***
25 // setLength sets the value of the member variable length. *
26 //***
27

13.6 Inline Member Functions 737

28 void Rectangle::setLength(double len)
29 {
30 if (len >= 0)
31 length = len;
32 else
33 {
34 cout << "Invalid length\n";
35 exit(EXIT_FAILURE);
36 }
37 }

Inline Functions and Performance
A lot goes on “behind the scenes” each time a function is called. A number of special
items, such as the function’s return address in the program and the values of arguments,
are stored in a section of memory called the stack. In addition, local variables are created
and a location is reserved for the function’s return value. All this overhead, which sets the
stage for a function call, takes precious CPU time. Although the time needed is minuscule,
it can add up if a function is called many times, as in a loop.

Inline functions are compiled differently than other functions. In the executable code,
inline functions aren’t “called” in the conventional sense. In a process known as inline
expansion, the compiler replaces the call to an inline function with the code of the func-
tion itself. This means that the overhead needed for a conventional function call isn’t nec-
essary for an inline function, and can result in improved performance.* Because the inline
function’s code can appear multiple times in the executable program, however, the size of
the program can increase.†

Checkpoint
13.6 Why would you declare a class's member variables private?

13.7 When a class's member variables are declared private, how does code outside
the class store values in, or retrieve values from, the member variables?

13.8 What is a class specification file? What is a class implementation file?

13.9 What is the purpose of an include guard?

13.10 Assume the following class components exist in a program:
BasePay class declaration
BasePay member function definitions
Overtime class declaration
Overtime member function definitions
In what files would you store each of these components?

13.11 What is an inline member function?

* Because inline functions cause code to increase in size, they can decrease performance on sys-
tems that use paging.
† Writing a function inline is a request to the compiler. The compiler will ignore the request if
inline expansion is not possible or practical.

738 Chapter 13 Introduction to Classes

13.7 Constructors

CONCEPT: A constructor is a member function that is automatically called when a
class object is created.

A constructor is a member function that has the same name as the class. It is automatically
called when the object is created in memory, or instantiated. It is helpful to think of con-
structors as initialization routines. They are very useful for initializing member variables
or performing other setup operations.

To illustrate how constructors work, look at this Demo class declaration:

class Demo
{
public:
 Demo(); // Constructor
};

Demo::Demo()
{

cout << "Welcome to the constructor!\n";
}

The class Demo only has one member: a function also named Demo. This function is the
constructor. When an instance of this class is defined, the function Demo is automatically
called. This is illustrated in Program 13-5.

Program 13-5

1 // This program demonstrates a constructor.
2 #include <iostream>
3 using namespace std;
4
5 // Demo class declaration.
6
7 class Demo
8 {
9 public:
10 Demo(); // Constructor
11 };
12
13 Demo::Demo()
14 {
15 cout << "Welcome to the constructor!\n";
16 }
17

13.7 Constructors 739

Notice that the constructor’s function header looks different than that of a regular mem-
ber function. There is no return type—not even void. This is because constructors are not
executed by explicit function calls and cannot return a value. The function header of a
constructor’s external definition takes the following form:

In the general format, ClassName is the name of the class and ParameterList is an
optional list of parameter variable declarations.

In Program 13-5, demoObject’s constructor executes automatically when the object is
defined. Because the object is defined before the cout statements in function main, the
constructor displays its message first. Suppose we had defined the Demo object between
two cout statements, as shown here.

cout << "This is displayed before the object is created.\n";
Demo demoObject;// Define a Demo object.
cout << "\nThis is displayed after the object is created.\n";

This code would produce the following output:

This is displayed before the object is created.
Welcome to the constructor!
This is displayed after the object is created.

This simple Demo example illustrates when a constructor executes. More importantly, you
should understand why a class should have a constructor. A constructor’s purpose is to
initialize an object’s attributes. Because the constructor executes as soon as the object is
created, it can initialize the object’s data members to valid values before those members
are used by other code. It is a good practice to always write a constructor for every class.

18 //***
19 // Function main. *
20 //***
21
22 int main()
23 {
24 Demo demoObject; // Define a Demo object;
25
26 cout << "This program demonstrates an object\n";
27 cout << "with a constructor.\n";
28 return 0;
29 }

Program Output
Welcome to the constructor!
This program demonstrates an object
with a constructor.

ClassName::ClassName(ParameterList)

740 Chapter 13 Introduction to Classes

For example, the Rectangle class that we looked at earlier could benefit from having a
constructor. A program could define a Rectangle object and then use that object to call
the getArea function before any values were stored in width and length. Because the
width and length member variables are not initialized, the function would return gar-
bage. The following code shows a better version of the Rectangle class, equipped with a
constructor. The constructor initializes both width and length to 0.0. (These files are
stored in the Student Source Code Folder Chapter 13\Rectangle Version 3.)

Contents of Rectangle.h (Version 3)

1 // Specification file for the Rectangle class
2 // This version has a constructor.
3 #ifndef RECTANGLE_H
4 #define RECTANGLE_H
5
6 class Rectangle
7 {
8 private:
9 double width;
10 double length;
11 public:
12 Rectangle(); // Constructor
13 void setWidth(double);
14 void setLength(double);
15
16 double getWidth() const
17 { return width; }
18
19 double getLength() const
20 { return length; }
21
22 double getArea() const
23 { return width * length; }
24 };
25 #endif

Contents of Rectangle.cpp (Version 3)

1 // Implementation file for the Rectangle class.
2 // This version has a constructor.
3 #include "Rectangle.h" // Needed for the Rectangle class
4 #include <iostream> // Needed for cout
5 #include <cstdlib> // Needed for the exit function
6 using namespace std;
7
8 //***
9 // The constructor initializes width and length to 0.0. *
10 //***
11
12 Rectangle::Rectangle()
13 {
14 width = 0.0;
15 length = 0.0;
16 }

13.7 Constructors 741

17
18 //***
19 // setWidth sets the value of the member variable width. *
20 //***
21
22 void Rectangle::setWidth(double w)
23 {
24 if (w >= 0)
25 width = w;
26 else
27 {
28 cout << "Invalid width\n";
29 exit(EXIT_FAILURE);
30 }
31 }
32
33 //***
34 // setLength sets the value of the member variable length. *
35 //***
36
37 void Rectangle::setLength(double len)
38 {
39 if (len >= 0)
40 length = len;
41 else
42 {
43 cout << "Invalid length\n";
44 exit(EXIT_FAILURE);
45 }
46 }

Program 13-6 demonstrates this new version of the class. It creates a Rectangle object and
then displays the values returned by the getWidth, getLength, and getArea member func-
tions. (This file is also stored in the Student Source Code Folder Chapter 13\Rectangle
Version 3.)

Program 13-6

1 // This program uses the Rectangle class's constructor.
2 #include <iostream>
3 #include "Rectangle.h" // Needed for Rectangle class
4 using namespace std;
5
6 int main()
7 {
8 Rectangle box; // Define an instance of the Rectangle class
9
10 // Display the rectangle's data.
11 cout << "Here is the rectangle's data:\n";
12 cout << "Width: " << box.getWidth() << endl;
13 cout << "Length: " << box.getLength() << endl;
14 cout << "Area: " << box.getArea() << endl;
15 return 0;
16 }

(program output continues)

742 Chapter 13 Introduction to Classes

The Default Constructor
All of the examples we have looked at in this section demonstrate default constructors. A
default constructor is a constructor that takes no arguments. Like regular functions, con-
structors may accept arguments, have default arguments, be declared inline, and be over-
loaded. We will see examples of these as we progress through the chapter.

If you write a class with no constructor whatsoever, when the class is compiled C++ will
automatically write a default constructor that does nothing. For example, the first version
of the Rectangle class had no constructor; so, when the class was compiled C++ gener-
ated the following constructor:

Rectangle::Rectangle()
{ }

Default Constructors and Dynamically Allocated Objects
Earlier we discussed how class objects may be dynamically allocated in memory. For
example, assume the following pointer is defined in a program:

Rectangle *rectPtr;

This statement defines rectPtr as a Rectangle pointer. It can hold the address of any
Rectangle object. But because this statement does not actually create a Rectangle
object, the constructor does not execute. Suppose we use the pointer in a statement that
dynamically allocates a Rectangle object, as shown in the following code.

rectPtr = new Rectangle;

This statement creates a Rectangle object. When the Rectangle object is created by the
new operator, its default constructor is automatically executed.

13.8 Passing Arguments to Constructors

CONCEPT: A constructor can have parameters, and can accept arguments when an object
is created.

Constructors may accept arguments in the same way as other functions. When a class has
a constructor that accepts arguments, you can pass initialization values to the constructor
when you create an object. For example, the following code shows yet another version of
the Rectangle class. This version has a constructor that accepts arguments for the rectan-
gle’s width and length. (These files are stored in the Student Source Code Folder Chapter
13\Rectangle Version 4.)

Program Output
Here is the rectangle's data:
Width: 0
Length: 0
Area: 0

Program 13-6 (continued)

13.8 Passing Arguments to Constructors 743

Contents of Rectangle.h (Version 4)
1 // Specification file for the Rectangle class
2 // This version has a constructor.
3 #ifndef RECTANGLE_H
4 #define RECTANGLE_H
5
6 class Rectangle
7 {
8 private:
9 double width;
10 double length;
11 public:
12 Rectangle(double, double); // Constructor
13 void setWidth(double);
14 void setLength(double);
15
16 double getWidth() const
17 { return width; }
18
19 double getLength() const
20 { return length; }
21
22 double getArea() const
23 { return width * length; }
24 };
25 #endif

Contents of Rectangle.cpp (Version 4)

1 // Implementation file for the Rectangle class.
2 // This version has a constructor that accepts arguments.
3 #include "Rectangle.h" // Needed for the Rectangle class
4 #include <iostream> // Needed for cout
5 #include <cstdlib> // Needed for the exit function
6 using namespace std;
7
8 //***
9 // The constructor accepts arguments for width and length. *
10 //***
11
12 Rectangle::Rectangle(double w, double len)
13 {
14 width = w;
15 length = len;
16 }
17
18 //***
19 // setWidth sets the value of the member variable width. *
20 //***
21
22 void Rectangle::setWidth(double w)
23 {
24 if (w >= 0)
25 width = w;

744 Chapter 13 Introduction to Classes

26 else
27 {
28 cout << "Invalid width\n";
29 exit(EXIT_FAILURE);
30 }
31 }
32
33 //***
34 // setLength sets the value of the member variable length. *
35 //***
36
37 void Rectangle::setLength(double len)
38 {
39 if (len >= 0)
40 length = len;
41 else
42 {
43 cout << "Invalid length\n";
44 exit(EXIT_FAILURE);
45 }
46 }

The constructor, which appears in lines 12 through 16 of Rectangle.cpp, accepts two
arguments, which are passed into the w and len parameters. The parameters are assigned
to the width and length member variables. Because the constructor is automatically
called when a Rectangle object is created, the arguments are passed to the constructor as
part of the object definition. Here is an example:

Rectangle box(10.0, 12.0);

This statement defines box as an instance of the Rectangle class. The constructor is
called with the value 10.0 passed into the w parameter and 12.0 passed into the len
parameter. As a result, the object’s width member variable will be assigned 10.0 and the
length member variable will be assigned 12.0. This is illustrated in Figure 13-16.

Program 13-7 demonstrates the class. (This file is also stored in the Student Source Code
Folder Chapter 13\Rectangle Version 4.)

Figure 13-16

The box object is initialized
with width set to 10.0 and

length set to 12.0

width:

length:

10.0

12.0
Rectangle box(10.0, 12.0);

13.8 Passing Arguments to Constructors 745

The statement in line 21 creates a Rectangle object, passing the values in houseWidth
and houseLength as arguments.

The following code shows another example: the Sale class. This class might be used in a
retail environment where sales transactions take place. An object of the Sale class repre-
sents the sale of an item. (This file is stored in the Student Source Code Folder Chapter 13\
Sale Version 1.)

Program 13-7

1 // This program calls the Rectangle class constructor.
2 #include <iostream>
3 #include <iomanip>
4 #include "Rectangle.h"
5 using namespace std;
6
7 int main()
8 {
9 double houseWidth, // To hold the room width
10 houseLength; // To hold the room length
11
12 // Get the width of the house.
13 cout << "In feet, how wide is your house? ";
14 cin >> houseWidth;
15
16 // Get the length of the house.
17 cout << "In feet, how long is your house? ";
18 cin >> houseLength;
19
20 // Create a Rectangle object.
21 Rectangle house(houseWidth, houseLength);
22
23 // Display the house's width, length, and area.
24 cout << setprecision(2) << fixed;
25 cout << "The house is " << house.getWidth()
26 << " feet wide.\n";
27 cout << "The house is " << house.getLength()
28 << " feet long.\n";
29 cout << "The house is " << house.getArea()
30 << " square feet in area.\n";
31 return 0;
32 }

Program Output with Example Input Shown in Bold
In feet, how wide is your house? 30 [Enter]
In feet, how long is your house? 60 [Enter]
The house is 30.00 feet wide.
The house is 60.00 feet long.
The house is 1800.00 square feet in area.

746 Chapter 13 Introduction to Classes

Contents of Sale.h (Version 1)

1 // Specification file for the Sale class.
2 #ifndef SALE_H
3 #define SALE_H
4
5 class Sale
6 {
7 private:
8 double itemCost; // Cost of the item
9 double taxRate; // Sales tax rate
10 public:
11 Sale(double cost, double rate)
12 { itemCost = cost;
13 taxRate = rate; }
14
15 double getItemCost() const
16 { return itemCost; }
17
18 double getTaxRate() const
19 { return taxRate; }
20
21 double getTax() const
22 { return (itemCost * taxRate); }
23
24 double getTotal() const
25 { return (itemCost + getTax()); }
26 };
27 #endif

The itemCost member variable, declared in line 8, holds the selling price of the item. The
taxRate member variable, declared in line 9, holds the sales tax rate. The constructor
appears in lines 11 through 13. Notice that the constructor is written inline. It accepts two
arguments, the item cost and the sales tax rate. These arguments are used to initialize the
itemCost and taxRate member variables. The getItemCost member function, in lines
15 through 16, returns the value in itemCost, and the getTaxRate member function, in
lines 18 through 19, returns the value in taxRate. The getTax member function, in lines
21 through 22, calculates and returns the amount of sales tax for the purchase. The
getTotal member function, in lines 24 through 25, calculates and returns the total of the
sale. The total is the item cost plus the sales tax. Program 13-8 demonstrates the class.
(This file is stored in the Student Source Code Folder Chapter 13\Sale Version 1.)

Program 13-8

1 // This program demonstrates passing an argument to a constructor.
2 #include <iostream>
3 #include <iomanip>
4 #include "Sale.h"
5 using namespace std;
6

13.8 Passing Arguments to Constructors 747

In the example run of the program the user enters 10.00 as the cost of the item. This value
is stored in the local variable cost. In line 17 the itemSale object is created. The values
of the cost variable and the TAX_RATE constant are passed as arguments to the construc-
tor. As a result, the object’s cost member variable is initialized with the value 10.0 and the
rate member variable is initialized with the value 0.06. This is illustrated in Figure 13-17.

7 int main()
8 {
9 const double TAX_RATE = 0.06; // 6 percent sales tax rate
10 double cost; // To hold the item cost
11
12 // Get the cost of the item.
13 cout << "Enter the cost of the item: ";
14 cin >> cost;
15
16 // Create a Sale object for this transaction.
17 Sale itemSale(cost, TAX_RATE);
18
19 // Set numeric output formatting.
20 cout << fixed << showpoint << setprecision(2);
21
22 // Display the sales tax and total.
23 cout << "The amount of sales tax is $"
24 << itemSale.getTax() << endl;
25 cout << "The total of the sale is $";
26 cout << itemSale.getTotal() << endl;
27 return 0;
28 }

Program Output with Example Input Shown in Bold
Enter the cost of the item: 10.00 [Enter]
The amount of sales tax is $0.60
The total of the sale is $10.60

Figure 13-17

The itemSale object is initialized
with the cost member set to 10.0
and the rate member set to 0.06

cost:

rate:

10.0

0.06

Sale itemSale(cost, TAX_RATE);

The local variable
cost is set to 10.0.

The constant TAX_RATE
is set to 0.06.

748 Chapter 13 Introduction to Classes

Using Default Arguments with Constructors
Like other functions, constructors may have default arguments. Recall from Chapter 6
that default arguments are passed to parameters automatically if no argument is provided
in the function call. The default value is listed in the parameter list of the function’s decla-
ration or the function header. The following code shows a modified version of the Sale
class. This version’s constructor uses a default argument for the tax rate. (This file is
stored in the Student Source Code Folder Chapter 13\Sale Version 2.)

Contents of Sale.h (Version 2)

1 // This version of the Sale class uses a default argument
2 // in the constructor.
3 #ifndef SALE_H
4 #define SALE_H
5
6 class Sale
7 {
8 private:
9 double itemCost; // Cost of the item
10 double taxRate; // Sales tax rate
11 public:
12 Sale(double cost, double rate = 0.05)
13 { itemCost = cost;
14 taxRate = rate; }
15
16 double getItemCost() const
17 { return itemCost; }
18
19 double getTaxRate() const
20 { return taxRate; }
21
22 double getTax() const
23 { return (itemCost * taxRate); }
24
25 double getTotal() const
26 { return (itemCost + getTax()); }
27 };
28 #endif

If an object of this Sale class is defined with only one argument (for the cost parameter)
passed to the constructor, the default argument 0.05 will be provided for the rate param-
eter. This is demonstrated in Program 13-9. (This file is stored in the Student Source Code
Folder Chapter 13\Sale Version 2.)

Program 13-9

1 // This program uses a constructor's default argument.
2 #include <iostream>
3 #include <iomanip>
4 #include "Sale.h"
5 using namespace std;
6

13.8 Passing Arguments to Constructors 749

More About the Default Constructor
It was mentioned earlier that when a constructor doesn’t accept arguments, it is known as
the default constructor. If a constructor has default arguments for all its parameters, it can
be called with no explicit arguments. It then becomes the default constructor. For exam-
ple, suppose the constructor for the Sale class had been written as the following:

Sale(double cost = 0.0, double rate = 0.05)
 { itemCost = cost;
 taxRate = rate; }

This constructor has default arguments for each of its parameters. As a result, the con-
structor can be called with no arguments, as shown here:

Sale itemSale;

This statement defines a Sale object. No arguments were passed to the constructor, so the
default arguments for both parameters are used. Because this constructor can be called
with no arguments, it is the default constructor.

7 int main()
8 {
9 double cost; // To hold the item cost
10
11 // Get the cost of the item.
12 cout << "Enter the cost of the item: ";
13 cin >> cost;
14
15 // Create a Sale object for this transaction.
16 // Specify the item cost, but use the default
17 // tax rate of 5 percent.
18 Sale itemSale(cost);
19
20 // Set numeric output formatting.
21 cout << fixed << showpoint << setprecision(2);
22
23 // Display the sales tax and total.
24 cout << "The amount of sales tax is $"
25 << itemSale.getTax() << endl;
26 cout << "The total of the sale is $";
27 cout << itemSale.getTotal() << endl;
28 return 0;
29 }

Program Output with Example Input Shown in Bold
Enter the cost of the item: 10.00 [Enter]
The amount of sales tax is $0.50
The total of the sale is $10.50

750 Chapter 13 Introduction to Classes

Classes with No Default Constructor

When all of a class’s constructors require arguments, then the class does not have a default
constructor. In such a case you must pass the required arguments to the constructor when
creating an object. Otherwise, a compiler error will result.

13.9 Destructors

CONCEPT: A destructor is a member function that is automatically called when an
object is destroyed.

Destructors are member functions with the same name as the class, preceded by a tilde
character (~). For example, the destructor for the Rectangle class would be named
~Rectangle.

Destructors are automatically called when an object is destroyed. In the same way that
constructors set things up when an object is created, destructors perform shutdown proce-
dures when the object goes out of existence. For example, a common use of destructors is
to free memory that was dynamically allocated by the class object.

Program 13-10 shows a simple class with a constructor and a destructor. It illustrates
when, during the program’s execution, each is called.

Program 13-10

1 // This program demonstrates a destructor.
2 #include <iostream>
3 using namespace std;
4
5 class Demo
6 {
7 public:
8 Demo(); // Constructor
9 ~Demo(); // Destructor
10 };
11
12 Demo::Demo()
13 {
14 cout << "Welcome to the constructor!\n";
15 }
16
17 Demo::~Demo()
18 {
19 cout << "The destructor is now running.\n";
20 }
21

13.9 Destructors 751

The following code shows a more practical example of a class with a destructor. The
InventoryItem class holds the following data about an item that is stored in inventory:

• The item’s description
• The item’s cost
• The number of units in inventory

The constructor accepts arguments for all three items. The description is passed as a
pointer to a C-string. Rather than storing the description in a char array with a fixed size,
the constructor gets the length of the C-string and dynamically allocates just enough
memory to hold it. The destructor frees the allocated memory when the object is
destroyed. (This file is stored in the Student Source Code Folder Chapter 13\
InventoryItem Version 1.)

Contents of InventoryItem.h (Version 1)

1 // Specification file for the InventoryItem class.
2 #ifndef INVENTORYITEM_H
3 #define INVENTORYITEM_H
4 #include <cstring> // Needed for strlen and strcpy
5
6 // InventoryItem class declaration.
7 class InventoryItem
8 {
9 private:
10 char *description; // The item description
11 double cost; // The item cost
12 int units; // Number of units on hand

22 //***
23 // Function main. *
24 //***
25
26 int main()
27 {
28 Demo demoObject; // Define a demo object;
29
30 cout << "This program demonstrates an object\n";
31 cout << "with a constructor and destructor.\n";
32 return 0;
33 }

Program Output
Welcome to the constructor!
This program demonstrates an object
with a constructor and destructor.
The destructor is now running.

752 Chapter 13 Introduction to Classes

13 public:
14 // Constructor
15 InventoryItem(char *desc, double c, int u)
16 { // Allocate just enough memory for the description.
17 description = new char [strlen(desc) + 1];
18
19 // Copy the description to the allocated memory.
20 strcpy(description, desc);
21
22 // Assign values to cost and units.
23 cost = c;
24 units = u;}
25
26 // Destructor
27 ~InventoryItem()
28 { delete [] description; }
29
30 const char *getDescription() const
31 { return description; }
32
33 double getCost() const
34 { return cost; }
35
36 int getUnits() const
37 { return units; }
38 };
39 #endif

Notice that the return type of the getDescription function in lines 30 through 31 is
const char *. This means that the function returns a pointer to a constant char. This is a
security measure. It prevents any code that calls the function from changing the string that
the pointer points to.

Program 13-11 demonstrates the class. (This file is also stored in the Student Source Code
Folder Chapter 13\InventoryItem Version 1.)

Program 13-11

1 // This program demonstrates a class with a destructor.
2 #include <iostream>
3 #include <iomanip>
4 #include "InventoryItem.h"
5 using namespace std;
6
7 int main()
8 {
9 // Define an InventoryItem object with the following data:
10 // Description: Wrench Cost: 8.75 Units on hand: 20
11 InventoryItem stock("Wrench", 8.75, 20);
12
13 // Set numeric output formatting.
14 cout << setprecision(2) << fixed << showpoint;
15

13.9 Destructors 753

In addition to the fact that destructors are automatically called when an object is
destroyed, the following points should be mentioned:

• Like constructors, destructors have no return type.
• Destructors cannot accept arguments, so they never have a parameter list.

Destructors and Dynamically Allocated Class Objects
If a class object has been dynamically allocated by the new operator, its memory should be
released when the object is no longer needed. For example, in the following code
objectPtr is a pointer to a dynamically allocated InventoryItem class object.

// Define an InventoryItem pointer.
InventoryItem *objectPtr;

// Dynamically create an InventoryItem object.
objectPtr = new InventoryItem("Wrench", 8.75, 20);

The following statement shows the delete operator being used to destroy the dynami-
cally created object.

delete objectPtr;

When the object pointed to by objectPtr is destroyed, its destructor is automatically
called.

Checkpoint
13.12 Briefly describe the purpose of a constructor.

13.13 Briefly describe the purpose of a destructor.

13.14 A member function that is never declared with a return data type, but that may
have arguments is
A) The constructor
B) The destructor
C) Both the constructor and the destructor
D) Neither the constructor nor the destructor

16 // Display the object's data.
17 cout << "Item Description: " << stock.getDescription() << endl;
18 cout << "Cost: $" << stock.getCost() << endl;
19 cout << "Units on hand: " << stock.getUnits() << endl;
20 return 0;
21 }

Program Output
Item Description: Wrench
Cost: $8.75
Units on hand: 20

754 Chapter 13 Introduction to Classes

13.15 A member function that is never declared with a return data type and can never
have arguments is
A) The constructor
B) The destructor
C) Both the constructor and the destructor
D) Neither the constructor nor the destructor

13.16 Destructor function names always start with
A) A number
B) Tilde character (~)
C) A data type name
D) None of the above

13.17 A constructor that requires no arguments is called
A) A default constructor
B) An overloaded constructor
C) A null constructor
D) None of the above

13.18 TRUE or FALSE: Constructors are never declared with a return data type.

13.19 TRUE or FALSE: Destructors are never declared with a return type.

13.20 TRUE or FALSE: Destructors may take any number of arguments.

13.10 Overloading Constructors

CONCEPT: A class can have more than one constructor.

Recall from Chapter 6 that when two or more functions share the same name, the func-
tion is said to be overloaded. Multiple functions with the same name may exist in a C++
program, as long as their parameter lists are different.

A class’s member functions may be overloaded, including the constructor. One constructor
might take an integer argument, for example, while another constructor takes a double.
There could even be a third constructor taking two integers. As long as each constructor
takes a different list of parameters, the compiler can tell them apart. For example, the
string class, which was introduced in Chapter 10, has several overloaded constructors.
The following statement creates a string object with no arguments passed to the
constructor:

string str;

This executes the string class’s default constructor, which stores an empty string in the
object. Another way to create a string object is to pass a string literal as an argument to
the constructor, as shown here:

string str("Hello");

This executes an overloaded constructor, which stores the string “Hello” in the object.

13.10 Overloading Constructors 755

A new version of the InventoryItem class appears in the following code listing with three
constructors. To simplify the code listing, all the member functions are written inline.
(This file is stored in the Student Source Code Folder Chapter 13\InventoryItem Ver-
sion 2.)

Contents of InventoryItem.h (Version 2)

1 // This class has overloaded constructors.
2 #ifndef INVENTORYITEM_H
3 #define INVENTORYITEM_H
4 #include <cstring> // Needed for strlen and strcpy
5
6 // Constant for the description's default size
7 const int DEFAULT_SIZE = 51;
8
9 class InventoryItem
10 {
11 private:
12 char *description; // The item description
13 double cost; // The item cost
14 int units; // Number of units on hand
15 public:
16 // Constructor #1
17 InventoryItem()
18 { // Allocate the default amount of memory for description.
19 description = new char [DEFAULT_SIZE];
20
21 // Store a null terminator in the first character.
22 *description = '\0';
23
24 // Initialize cost and units.
25 cost = 0.0;
26 units = 0; }
27
28 // Constructor #2
29 InventoryItem(char *desc)
30 { // Allocate just enough memory for the description.
31 description = new char [strlen(desc) + 1];
32
33 // Copy the description to the allocated memory.
34 strcpy(description, desc);
35
36 // Initialize cost and units.
37 cost = 0.0;
38 units = 0; }
39
40 // Constructor #3
41 InventoryItem(char *desc, double c, int u)
42 { // Allocate just enough memory for the description.
43 description = new char [strlen(desc) + 1];
44
45 // Copy the description to the allocated memory.
46 strcpy(description, desc);
47

756 Chapter 13 Introduction to Classes

48 // Assign values to cost and units.
49 cost = c;
50 units = u; }
51
52 // Destructor
53 ~InventoryItem()
54 { delete [] description; }
55
56 // Mutator functions
57 void setDescription(char *d)
58 { strcpy(description, d); }
59
60 void setCost(double c)
61 { cost = c; }
62
63 void setUnits(int u)
64 { units = u; }
65
66 // Accessor functions
67 const char *getDescription() const
68 { return description; }
69
70 double getCost() const
71 { return cost; }
72
73 int getUnits() const
74 { return units; }
75 };
76 #endif

The first constructor appears in lines 17 through 26. It takes no arguments, so it is the
default constructor. It dynamically allocates a block of memory large enough to hold 51
characters and stores the address of the block in the description pointer. The cost and
units variables are initialized to 0.

The second constructor appears in lines 29 through 38. This constructor accepts only one
argument, a pointer to the item description. The cost and units variables are initialized to 0.

The third constructor appears in lines 41 through 50. This constructor, which is the same
one that appeared in the first version of the class, accepts arguments for the description,
cost, and units.

We have also added mutator functions that set values for description, cost, and units.
Program 13-12 demonstrates the class. (This file is also stored in the Student Source Code
Folder Chapter 13\InventoryItem Version 2.)

Program 13-12

1 // This program demonstrates a class with overloaded constructors.
2 #include <iostream>
3 #include <iomanip>
4 #include "InventoryItem.h"
5 using namespace std;
6

13.10 Overloading Constructors 757

7 int main()
8 {
9 // Create an InventoryItem object and call
10 // the default constructor.
11 InventoryItem item1;
12 item1.setDescription("Hammer"); // Set the description
13 item1.setCost(6.95); // Set the cost
14 item1.setUnits(12); // Set the units
15
16 // Create an InventoryItem object and call
17 // constructor #2.
18 InventoryItem item2("Pliers");
19
20 // Create an InventoryItem object and call
21 // constructor #3.
22 InventoryItem item3("Wrench", 8.75, 20);
23
24 cout << "The following items are in inventory:\n";
25 cout << setprecision(2) << fixed << showpoint;
26
27 // Display the data for item 1.
28 cout << "Description: " << item1.getDescription() << endl;
29 cout << "Cost: $" << item1.getCost() << endl;
30 cout << "Units on Hand: " << item1.getUnits() << endl << endl;
31
32 // Display the data for item 2.
33 cout << "Description: " << item2.getDescription() << endl;
34 cout << "Cost: $" << item2.getCost() << endl;
35 cout << "Units on Hand: " << item2.getUnits() << endl << endl;
36
37 // Display the data for item 3.
38 cout << "Description: " << item3.getDescription() << endl;
39 cout << "Cost: $" << item3.getCost() << endl;
40 cout << "Units on Hand: " << item3.getUnits() << endl;
41 return 0;
42 }

Program Output
The following items are in inventory:
Description: Hammer
Cost: $6.95
Units on Hand: 12

Description: Pliers
Cost: $0.00
Units on Hand: 0

Description: Wrench
Cost: $8.75
Units on Hand: 20

758 Chapter 13 Introduction to Classes

Only One Default Constructor and One Destructor
When an object is defined without an argument list for its constructor, the compiler auto-
matically calls the default constructor. For this reason, a class may have only one default
constructor. If there were more than one constructor that could be called without an argu-
ment, the compiler would not know which one to call by default.

Remember, a constructor whose parameters all have a default argument is considered a
default constructor. It would be an error to create a constructor that accepts no parame-
ters along with another constructor that has default arguments for all its parameters. In
such a case the compiler would not be able to resolve which constructor to execute.

Classes may also only have one destructor. Because destructors take no arguments, the
compiler has no way to distinguish different destructors.

Other Overloaded Member Functions
Member functions other than constructors can also be overloaded. This can be useful
because sometimes you need several different ways to perform the same operation. For
example, in the InventoryItem class we could have overloaded the setCost function as
shown here:

void setCost(double c)
 { cost = c; }

void setCost(char *c)
 { cost = atof(c); }

The first version of the function accepts a double argument and assigns it to cost. The
second version of the function accepts a char pointer. This could be used where you have
the cost of the item stored in a string. The function calls the atof function to convert the
string to a double, and assigns its value to cost.

13.11 Private Member Functions

CONCEPT: A private member function may only be called from a function that is a
member of the same class.

Sometimes a class will contain one or more member functions that are necessary for inter-
nal processing, but should not be called by code outside the class. For example, a class
might have a member function that performs a calculation only when a value is stored in a
particular member variable, and should not be performed at any other time. That function
should not be directly accessible by code outside the class because it might get called at the
wrong time. In this case, the member function should be declared private. When a mem-
ber function is declared private, it may only be called internally.

For example, consider the following version of the InventoryItem class. (This file is
stored in the Student Source Code Folder Chapter 13\InventoryItem Version 3.)

13.11 Private Member Functions 759

Contents of InventoryItem.h (Version 3)

1 // This class has a private member function.
2 #ifndef INVENTORYITEM_H
3 #define INVENTORYITEM_H
4 #include <cstring> // Needed for strlen and strcpy
5
6 // Constant for the description's default size
7 const int DEFAULT_SIZE = 51;
8
9 class InventoryItem
10 {
11 private:
12 char *description; // The item description
13 double cost; // The item cost
14 int units; // Number of units on hand
15
16 // Private member function.
17 void createDescription(int size, char *value)
18 { // Allocate the default amount of memory for description.
19 description = new char [size];
20
21 // Store a value in the memory.
22 strcpy(description, value); }
23
24 public:
25 // Constructor #1
26 InventoryItem()
27 { // Store an empty string in the description
28 // attribute.
29 createDescription(DEFAULT_SIZE, "");
30
31 // Initialize cost and units.
32 cost = 0.0;
33 units = 0; }
34
35 // Constructor #2
36 InventoryItem(char *desc)
37 { // Allocate memory and store the description.
38 createDescription(strlen(desc), desc);
39
40 // Initialize cost and units.
41 cost = 0.0;
42 units = 0; }
43
44 // Constructor #3
45 InventoryItem(char *desc, double c, int u)
46 { // Allocate memory and store the description.
47 createDescription(strlen(desc), desc);
48
49 // Assign values to cost and units.
50 cost = c;
51 units = u; }
52

760 Chapter 13 Introduction to Classes

53 // Destructor
54 ~InventoryItem()
55 { delete [] description; }
56
57 // Mutator functions
58 void setDescription(char *d)
59 { strcpy(description, d); }
60
61 void setCost(double c)
62 { cost = c; }
63
64 void setUnits(int u)
65 { units = u; }
66
67 // Accessor functions
68 const char *getDescription() const
69 { return description; }
70
71 double getCost() const
72 { return cost; }
73
74 int getUnits() const
75 { return units; }
76 };
77 #endif

This version of the class has a private member function named createDescription. The
purpose of the function is to allocate a specified amount of memory for the description
pointer and copy a string to the allocated memory. The function is called from all three of
the constructors. You can see why this function should be private. If it were ever called by
code outside the class, the value already stored for the item description would be lost.

13.12 Arrays of Objects

CONCEPT: You may define and work with arrays of class objects.

As with any other data type in C++, you can define arrays of class objects. An array of
InventoryItem objects could be created to represent a business’s inventory records. Here
is an example of such a definition:

InventoryItem inventory[40];

This statement defines an array of 40 InventoryItem objects. The name of the array is
inventory, and the default constructor is called for each object in the array.

If you wish to define an array of objects and call a constructor that requires arguments,
you must specify the arguments for each object individually in an initializer list. Here is an
example:

InventoryItem inventory[3] = {"Hammer", "Wrench", "Pliers"};

13.12 Arrays of Objects 761

The compiler treats each item in the initializer list as an argument for an array element’s
constructor. Recall that the second constructor in the InventoryItem class declaration
takes the item description as an argument. So, this statement defines an array of three
objects and calls that constructor for each object. The constructor for inventory[0] is
called with “Hammer” as its argument, the constructor for inventory[1] is called with
“Wrench” as its argument, and the constructor for inventory[2] is called with “Pliers”
as its argument.

If a constructor requires more than one argument, the initializer must take the form of a
function call. For example, look at the following definition statement.

InventoryItem inventory[3] = { InventoryItem("Hammer", 6.95, 12),
 InventoryItem("Wrench", 8.75, 20),
 InventoryItem("Pliers", 3.75, 10) };

This statement calls the third constructor in the InventoryItem class declaration for each
object in the inventory array.

It isn’t necessary to call the same constructor for each object in an array. For example,
look at the following statement.

InventoryItem inventory[3] = { "Hammer",
 InventoryItem("Wrench", 8.75, 20),
 "Pliers" };

This statement calls the second constructor for inventory[0] and inventory[2], and
calls the third constructor for inventory[1].

If you do not provide an initializer for all of the objects in an array, the default constructor
will be called for each object that does not have an initializer. For example, the following
statement defines an array of three objects, but only provides initializers for the first two.
The default constructor is called for the third object.

InventoryItem inventory[3] = { "Hammer",
 InventoryItem("Wrench", 8.75, 20) };

In summary, if you use an initializer list for class object arrays, there are three things to
remember:

• If there is no default constructor you must furnish an initializer for each object in
the array.

• If there are fewer initializers in the list than objects in the array, the default con-
structor will be called for all the remaining objects.

• If a constructor requires more than one argument, the initializer takes the form of
a constructor function call.

WARNING! If the class does not have a default constructor you must provide an
initializer for each object in the array.

762 Chapter 13 Introduction to Classes

Accessing Members of Objects in an Array
Objects in an array are accessed with subscripts, just like any other data type in an array.
For example, to call the setUnits member function of inventory[2], the following
statement could be used:

inventory[2].setUnits(30);

This statement sets the units variable of inventory[2] to the value 30. Program 13-13
shows an array of InventoryItem objects being used in a complete program. (This file is
stored in the Student Source Code Folder Chapter 13\InventoryItem Version 3.)

Program 13-13

1 // This program demonstrates an array of class objects.
2 #include <iostream>
3 #include <iomanip>
4 #include "InventoryItem.h"
5 using namespace std;
6
7 int main()
8 {
9 const int NUM_ITEMS = 5;
10 InventoryItem inventory[NUM_ITEMS] = {
11 InventoryItem("Hammer", 6.95, 12),
12 InventoryItem("Wrench", 8.75, 20),
13 InventoryItem("Pliers", 3.75, 10),
14 InventoryItem("Ratchet", 7.95, 14),
15 InventoryItem("Screwdriver", 2.50, 22) };
16
17 cout << setw(14) <<"Inventory Item"
18 << setw(8) << "Cost" << setw(8)
19 << setw(16) << "Units on Hand\n";
20 cout << "-------------------------------------\n";
21
22 for (int i = 0; i < NUM_ITEMS; i++)
23 {
24 cout << setw(14) << inventory[i].getDescription();
25 cout << setw(8) << inventory[i].getCost();
26 cout << setw(7) << inventory[i].getUnits() << endl;
27 }
28
29 return 0;
30 }

Program Output
Inventory Item Cost Units on Hand

 Hammer 6.95 12
 Wrench 8.75 20
 Pliers 3.75 10
 Ratchet 7.95 14
 Screwdriver 2.5 22

13.12 Arrays of Objects 763

Checkpoint
13.21 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Tank
{
private:

int gallons;
public:

Tank()
{ gallons = 50; }

Tank(int gal)
{ gallons = gal; }

int getGallons()
{ return gallons; }

};

int main()
{

Tank storage[3] = { 10, 20 };

for (int index = 0; index < 3; index++)
cout << storage[index].getGallons() << endl;

return 0;
}

13.22 What will the following program display on the screen?

#include <iostream>
using namespace std;

class Package
{
private:

int value;
public:

Package()
 { value = 7; cout << value << endl; }
Package(int v)
 { value = v; cout << value << endl; }
~Package()
 { cout << value << endl; }

};

int main()
{

Package obj1(4);
Package obj2();
Package obj3(2);
return 0;

}

13.23 In your answer for Checkpoint 13.22 indicate for each line of output whether the
line is displayed by constructor #1, constructor #2, or the destructor.

13.24 Why would a member function be declared private?

13.25 Define an array of three InventoryItem objects.

13.26 Complete the following program so it defines an array of Yard objects. The pro-
gram should use a loop to ask the user for the length and width of each Yard.

764 Chapter 13 Introduction to Classes

#include <iostream>
using namespace std;

class Yard
{
private:

int length, width;
public:

Yard()
{ length = 0; width = 0; }

setLength(int len)
{ length = len; }

setWidth(int w)
{ width = w; }

};

int main()
{

// Finish this program
}

13.13 Focus on Problem Solving and Program Design:
An OOP Case Study

You are a programmer for the Home Software Company. You have been assigned to
develop a class that models the basic workings of a bank account. The class should per-
form the following tasks:

• Save the account balance.
• Save the number of transactions performed on the account.
• Allow deposits to be made to the account.
• Allow withdrawals to be taken from the account.
• Calculate interest for the period.
• Report the current account balance at any time.
• Report the current number of transactions at any time.

Private Member Variables
Table 13-4 lists the private member variables needed by the class.

Table 13-4

Variable Description
balance A double that holds the current account balance.
interestRate A double that holds the interest rate for the period.
interest A double that holds the interest earned for the current period.
transactions An integer that holds the current number of transactions.

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 765

Public Member Functions
Table 13-5 lists the public member functions needed by the class.

The Class Declaration
The following listing shows the class declaration.

Contents of Account.h
1 // Specification file for the Account class.
2 #ifndef ACCOUNT_H
3 #define ACCOUNT_H
4
5 class Account
6 {
7 private:
8 double balance; // Account balance
9 double interestRate; // Interest rate for the period
10 double interest; // Interest earned for the period
11 int transactions; // Number of transactions
12 public:
13 Account(double iRate = 0.045, double bal = 0)
14 { balance = bal;
15 interestRate = iRate;
16 interest = 0;
17 transactions = 0; }
18

Table 13-5

Function Description

Constructor Takes arguments to be initially stored in the balance and interestRate
members. The default value for the balance is zero and the default value for the
interest rate is 0.045.

setInterestRate Takes a double argument which is stored in the interestRate member.
makeDeposit Takes a double argument, which is the amount of the deposit. This argument

is added to balance.
withdraw Takes a double argument which is the amount of the withdrawal. This value is

subtracted from the balance, unless the withdrawal amount is greater than the
balance. If this happens, the function reports an error.

calcInterest Takes no arguments. This function calculates the amount of interest for the
current period, stores this value in the interest member, and then adds it to
the balance member.

getInterestRate Returns the current interest rate (stored in the interestRate member).
getBalance Returns the current balance (stored in the balance member).
getInterest Returns the interest earned for the current period (stored in the interest

member).
getTransactions Returns the number of transactions for the current period (stored in the

transactions member).

766 Chapter 13 Introduction to Classes

19 void setInterestRate(double iRate)
20 { interestRate = iRate; }
21
22 void makeDeposit(double amount)
23 { balance += amount; transactions++; }
24
25 void withdraw(double amount); // Defined in Account.cpp
26
27 void calcInterest()
28 { interest = balance * interestRate; balance += interest; }
29
30 double getInterestRate() const
31 { return interestRate; }
32
33 double getBalance() const
34 { return balance; }
35
36 double getInterest() const
37 { return interest; }
38
39 int getTransactions() const
40 { return transactions; }
41 };
42 #endif

The withdraw Member Function
The only member function not written inline in the class declaration is withdraw. The
purpose of that function is to subtract the amount of a withdrawal from the balance
member. If the amount to be withdrawn is greater than the current balance, however, no
withdrawal is made. The function returns true if the withdrawal is made, or false if there
is not enough in the account.

Contents of Account.cpp

1 // Implementation file for the Account class.
2 #include "Account.h"
3
4 bool Account::withdraw(double amount)
5 {
6 if (balance < amount)
7 return false; // Not enough in the account
8 else
9 {
10 balance -= amount;
11 transactions++;
12 return true;
13 }
14 }

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 767

The Class’s Interface
The balance, interestRate, interest, and transactions member variables are pri-
vate, so they are hidden from the world outside the class. The reason is that a pro-
grammer with direct access to these variables might unknowingly commit any of the
following errors:

• A deposit or withdrawal might be made without the transactions member
being incremented.

• A withdrawal might be made for more than is in the account. This will cause the
balance member to have a negative value.

• The interest rate might be calculated and the balance member adjusted, but the
amount of interest might not get recorded in the interest member.

• The wrong interest rate might be used.

Because of the potential for these errors, the class contains public member functions that
ensure the proper steps are taken when the account is manipulated.

Implementing the Class
Program 13-14 shows an implementation of the Account class. It presents a menu for dis-
playing a savings account’s balance, number of transactions, and interest earned. It also
allows the user to deposit an amount into the account, make a withdrawal from the
account, and calculate the interest earned for the current period.

Program 13-14

1 // This program demonstrates the Account class.
2 #include <iostream>
3 #include <cctype>
4 #include <iomanip>
5 #include "Account.h"
6 using namespace std;
7
8 // Function prototypes
9 void displayMenu();

 10 void makeDeposit(Account &);
 11 void withdraw(Account &);
 12
 13 int main()
 14 {
 15 Account savings; // Savings account object
 16 char choice; // Menu selection
 17
 18 // Set numeric output formatting.
 19 cout << fixed << showpoint << setprecision(2);
 20
 21 do
 22 {
 23 // Display the menu and get a valid selection.
 24 displayMenu();
 25 cin >> choice;

(program continues)

768 Chapter 13 Introduction to Classes

 26 while (toupper(choice) < 'A' || toupper(choice) > 'G')
 27 {
 28 cout << "Please make a choice in the range "
 29 << "of A through G:";
 30 cin >> choice;
 31 }

 32
 33 // Process the user's menu selection.
 34 switch(choice)
 35 {
 36 case 'a':
 37 case 'A': cout << "The current balance is $";
 38 cout << savings.getBalance() << endl;
 39 break;
 40 case 'b':
 41 case 'B': cout << "There have been ";
 42 cout << savings.getTransactions()
 43 << " transactions.\n";
 44 break;
 45 case 'c':
 46 case 'C': cout << "Interest earned for this period: $";
 47 cout << savings.getInterest() << endl;
 48 break;
 49 case 'd':
 50 case 'D': makeDeposit(savings);
 51 break;
 52 case 'e':
 53 case 'E': withdraw(savings);
 54 break;
 55 case 'f':
 56 case 'F': savings.calcInterest();
 57 cout << "Interest added.\n";
 58 }
 59 } while (toupper(choice) != 'G');
 60
 61 return 0;
 62 }
 63
 64 //**
 65 // Definition of function displayMenu. This function *
 66 // displays the user's menu on the screen. *
 67 //**
 68

Program 13-14 (continued)

13.13 Focus on Problem Solving and Program Design: An OOP Case Study 769

 69 void displayMenu()
 70 {
 71 cout << "\n MENU\n";
 72 cout << "---\n";
 73 cout << "A) Display the account balance\n";
 74 cout << "B) Display the number of transactions\n";
 75 cout << "C) Display interest earned for this period\n";
 76 cout << "D) Make a deposit\n";
 77 cout << "E) Make a withdrawal\n";
 78 cout << "F) Add interest for this period\n";
 79 cout << "G) Exit the program\n\n";
 80 cout << "Enter your choice: ";
 81 }
 82
 83 //***
 84 // Definition of function makeDeposit. This function accepts *
 85 // a reference to an Account object. The user is prompted for *
 86 // the dollar amount of the deposit, and the makeDeposit *
 87 // member of the Account object is then called. *
 88 //***
 89
 90 void makeDeposit(Account &acnt)
 91 {
 92 double dollars;
 93
 94 cout << "Enter the amount of the deposit: ";
 95 cin >> dollars;
 96 cin.ignore();
 97 acnt.makeDeposit(dollars);
 98 }
 99
100 //***
101 // Definition of function withdraw. This function accepts *
102 // a reference to an Account object. The user is prompted for *
103 // the dollar amount of the withdrawal, and the withdraw *
104 // member of the Account object is then called. *
105 //***
106
107 void withdraw(Account &acnt)
108 {
109 double dollars;
110
111 cout << "Enter the amount of the withdrawal: ";
112 cin >> dollars;
113 cin.ignore();
114 if (!acnt.withdraw(dollars))
115 cout << "ERROR: Withdrawal amount too large.\n\n";
116 }

(program output continues)

770 Chapter 13 Introduction to Classes

Program 13-14 (continued)

Program Output with Example Input Shown in Bold
 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: d [Enter]
Enter the amount of the deposit: 500 [Enter]

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: a [Enter]
The current balance is $500.00

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: e [Enter]
Enter the amount of the withdrawal: 700 [Enter]
ERROR: Withdrawal amount too large.

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: e [Enter]
Enter the amount of the withdrawal: 200 [Enter]

13.14 Focus on Object-Oriented Programming: Creating an Abstract Array Data Type 771

13.14 Focus on Object-Oriented Programming:
Creating an Abstract Array Data Type

CONCEPT: The absence of array bounds checking in C++ is a source of potential
hazard. In this section we examine a simple integer list class that provides
bounds checking.

One of the benefits of object-oriented programming is the ability to create abstract data
types that are improvements on built-in data types. As you know, arrays provide no bounds
checking in C++. You can, however, create a class that has array-like characteristics and per-
forms bounds checking. For example, look at the following IntegerList class.

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: f [Enter]
Interest added.

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: a [Enter]
The current balance is $313.50

 MENU

A) Display the account balance
B) Display the number of transactions
C) Display interest earned for this period
D) Make a deposit
E) Make a withdrawal
F) Add interest for this period
G) Exit the program

Enter your choice: g [Enter]

772 Chapter 13 Introduction to Classes

Contents of IntegerList.h

 1 // Specification file for the IntegerList class.
 2 #ifndef INTEGERLIST_H
 3 #define INTEGERLIST_H
 4
 5 class IntegerList
 6 {
 7 private:
 8 int *list; // Pointer to the array.
 9 int numElements; // Number of elements.
10 bool isValid(int); // Validates subscripts.
11 public:
12 IntegerList(int); // Constructor
13 ~IntegerList(); // Destructor
14 void setElement(int, int); // Sets an element to a value.
15 void getElement(int, int&); // Returns an element.
16 };
17 #endif

Contents of IntegerList.cpp

 1 // Implementation file for the IntegerList class.
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include "IntegerList.h"
 5 using namespace std;
 6
 7 //***
 8 // The constructor sets each element to zero. *
 9 //***
10
11 IntegerList::IntegerList(int size)
12 {
13 list = new int[size];
14 numElements = size;
15 for (int ndx = 0; ndx < size; ndx++)
16 list[ndx] = 0;
17 }
18
19 //***
20 // The destructor releases allocated memory. *
21 //***
22
23 IntegerList::~IntegerList()
24 {
25 delete [] list;
26 }
27

13.14 Focus on Object-Oriented Programming: Creating an Abstract Array Data Type 773

28 //***
29 // isValid member function. *
30 // This private member functon returns true if the argument *
31 // is a valid subscript, or false otherwise. *
32 //***
33
34 bool IntegerList::isValid(int element) const
35 {
36 bool status;
37
38 if (element < 0 || element >= numElements)
39 status = false;
40 else
41 status = true;
42 return status;
43 }
44
45 //***
46 // setElement member function. *
47 // Stores a value in a specific element of the list. If an *
48 // invalid subscript is passed, the program aborts. *
49 //***
50
51 void IntegerList::setElement(int element, int value)
52 {
53 if (isValid(element))
54 list[element] = value;
55 else
56 {
57 cout << "Error: Invalid subscript\n";
58 exit(EXIT_FAILURE);
59 }
60 }
61
62 //***
63 // getElement member function. *
64 // Returns the value stored at the specified element. *
65 // If an invalid subscript is passed, the program aborts. *
66 //***
67
68 int IntegerList::getElement(int element) const
69 {
70 if (isValid(element))
71 return list[element];
72 else
73 {
74 cout << "Error: Invalid subscript\n";
75 exit(EXIT_FAILURE);
76 }
77 }

774 Chapter 13 Introduction to Classes

The IntegerList class allows you to store and retrieve numbers in a dynamically allo-
cated array of integers. Here is a synopsis of the members.

list A pointer to an int. This member points to the dynamically allocated
array of integers.

numElements An integer that holds the number of elements in the dynamically allo-
cated array.

isValid This function validates a subscript into the array. It accepts a subscript
value as an argument, and returns boolean true if the subscript is in
the range 0 through numElements - 1. If the value is outside that
range, boolean false is returned.

Constructor The class constructor accepts an int argument that is the number of
elements to allocate for the array. The array is allocated and each ele-
ment is set to zero.

setElement The setElement member function sets a specific element of the list
array to a value. The first argument is the element subscript, and the
second argument is the value to be stored in that element. The function
uses isValid to validate the subscript. If an invalid subscript is passed
to the function, the program aborts.

getElement The getElement member function retrieves a value from a specific ele-
ment in the list array. The argument is the subscript of the element
whose value is to be retrieved. The function uses isValid to validate
the subscript. If the subscript is valid, the value is returned. If the sub-
script is invalid, the program aborts.

Program 13-15 demonstrates the class. A loop uses the setElement member to fill the
array with 9s and prints an asterisk on the screen each time a 9 is successfully stored. Then
another loop uses the getElement member to retrieve the values from the array and
prints them on the screen. Finally, a statement uses the setElement member to demon-
strate the subscript validation by attempting to store a value in element 50.

Program 13-15

1 // This program demonstrates the IntegerList class.
2 #include <iostream>
3 #include "IntegerList.h"
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 20;
9 IntegerList numbers(SIZE);
10 int val, x;
11

13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 775

13.15 Focus on Object-Oriented Design:
The Unified Modeling Language (UML)

CONCEPT: The Unified Modeling Language provides a standard method for
graphically depicting an object-oriented system.

When designing a class it is often helpful to draw a UML diagram. UML stands for Uni-
fied Modeling Language. The UML provides a set of standard diagrams for graphically
depicting object-oriented systems. Figure 13-18 shows the general layout of a UML dia-
gram for a class. Notice that the diagram is a box that is divided into three sections. The
top section is where you write the name of the class. The middle section holds a list of the
class’s member variables. The bottom section holds a list of the class’s member functions.

12 // Store 9s in the list and display an asterisk
13 // each time a 9 is successfully stored.
14 for (x = 0; x < SIZE; x++)
15 {
16 numbers.setElement(x, 9);
17 cout << "* ";
18 }
19 cout << endl;
20
21 // Display the 9s.
22 for (x = 0; x < SIZE; x++)
23 {
24 val = numbers.getElement(x);
25 cout << val << " ";
26 }
27 cout << endl;
28
29 // Attempt to store a value outside the list's bounds.
30 numbers.setElement(50, 9);
31
32 // Will this message display?
33 cout << "Element 50 successfully set.\n";
34 return 0;
35 }

Program Output
* * * * * * * * * * * * * * * * * * * *
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Error: Invalid subscript

776 Chapter 13 Introduction to Classes

Earlier in this chapter you studied a Rectangle class that could be used in a program that
works with rectangles. The first version of the Rectangle class that you studied had the
following member variables:

• width
• length

The class also had the following member functions:

• setWidth
• setLength
• getWidth
• getLength
• getArea

From this information alone we can construct a simple UML diagram for the class, as
shown in Figure 13-19.

The UML diagram in Figure 13-19 tells us the name of the class, the names of the member
variables, and the names of the member functions. The UML diagram in Figure 13-19
does not convey many of the class details, however, such as access specification, member
variable data types, parameter data types, and function return types. The UML provides
optional notation for these types of details.

Showing Access Specification in UML Diagrams
The UML diagram in Figure 13-19 lists all of the members of the Rectangle class but
does not indicate which members are private and which are public. In a UML diagram
you may optionally place a - character before a member name to indicate that it is private,
or a + character to indicate that it is public. Figure 13-20 shows the UML diagram modi-
fied to include this notation.

Figure 13-18

Figure 13-19

Class name goes here

Member variables are listed here

Member functions are listed here

Rectangle

width
length

setWidth()
setLength()
getWidth()
getLength()
getArea()

13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML) 777

Data Type and Parameter Notation in UML Diagrams
The Unified Modeling Language also provides notation that you may use to indicate the
data types of member variables, member functions, and parameters. To indicate the data
type of a member variable, place a colon followed by the name of the data type after the
name of the variable. For example, the width variable in the Rectangle class is a double.
It could be listed as follows in the UML diagram:

- width : double

The return type of a member function can be listed in the same manner: After the func-
tion’s name, place a colon followed by the return type. The Rectangle class’s getLength
function returns a double, so it could be listed as follows in the UML diagram:

+ getLength() : double

Parameter variables and their data types may be listed inside a member function’s paren-
theses. For example, the Rectangle class’s setLength function has a double parameter
named len, so it could be listed as follows in the UML diagram:

+ setLength(len : double) : void

Figure 13-21 shows a UML diagram for the Rectangle class with parameter and data
type notation.

Figure 13-20

NOTE: In UML notation the variable name is listed first, then the data type. This is the
opposite of C++ syntax, which requires the data type to appear first.

Figure 13-21

Rectangle

- width
- length

+ setWidth()
+ setLength()
+ getWidth()
+ getLength()
+ getArea()

Rectangle

- width : double
- length : double

+ setWidth(w : double) : void
+ setLength(len : double) : void
+ getWidth() : double
+ getLength() : double
+ getArea() : double

778 Chapter 13 Introduction to Classes

Showing Constructors and Destructors in a UML Diagram
There is more than one accepted way of showing a class constructor in a UML diagram.
In this book we will show a constructor just as any other function, except we will list no
return type. For example, Figure 13-22 shows a UML diagram for the third version of the
InventoryItem class that we looked at.

13.16
Focus on Object-Oriented Design: Finding
the Classes and Their Responsibilities

CONCEPT: One of the first steps in creating an object-oriented application is determining
the classes that are necessary, and their responsibilities within the application.

So far you have learned the basics of writing a class, creating an object from the class, and
using the object to perform operations. This knowledge is necessary to create an object-
oriented application, but it is not the first step in designing the application. The first step is
to analyze the problem that you are trying to solve and determine the classes that you will
need. In this section we will discuss a simple technique for finding the classes in a problem
and determining their responsibilities.

Finding the Classes
When developing an object-oriented application, one of your first tasks is to identify the
classes that you will need to create. Typically, your goal is to identify the different types of
real-world objects that are present in the problem, and then create classes for those types
of objects within your application.

Figure 13-22

InventoryItem

- description : char*
- cost : double
- units : int
- createDescription(size : int,
 value : char*) : void

+ InventoryItem() :
+ InventoryItem(desc : char*) :
+ InventoryItem(desc : char*,
 c : double, u : int) :
+ ~InventoryItem() :
+ setDescription(d : char*) : void
+ setCost(c : double) : void
+ setUnits(u : int) : void
+ getDescription() : char*
+ getCost() : double
+ getUnits() : int

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 779

Over the years, software professionals have developed numerous techniques for finding the
classes in a given problem. One simple and popular technique involves the following steps.

1. Get a written description of the problem domain.

2. Identify all the nouns (including pronouns and noun phrases) in the description. Each
of these is a potential class.

3. Refine the list to include only the classes that are relevant to the problem.

Let’s take a closer look at each of these steps.

Write a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to
the problem. If you adequately understand the nature of the problem you are trying to
solve, you can write a description of the problem domain yourself. If you do not thor-
oughly understand the nature of the problem, you should have an expert write the
description for you.

For example, suppose we are programming an application that the manager of Joe’s Auto-
motive Shop will use to print service quotes for customers. Here is a description that an
expert, perhaps Joe himself, might have written:

Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by Mer-
cedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets the
customer’s name, address, and telephone number. The manager then determines the make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

The problem domain description should include any of the following:

• Physical objects such as vehicles, machines, or products
• Any role played by a person, such as manager, employee, customer, teacher,

student, etc.
• The results of a business event, such as a customer order, or in this case a service

quote
• Recordkeeping items, such as customer histories and payroll records

Identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here’s another look at the previous problem domain
description. This time the nouns and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager
gets the customer’s name, address, and telephone number. The manager then determines
the make, model, and year of the car, and gives the customer a service quote. The service
quote shows the estimated parts charges, estimated labor charges, sales tax, and total esti-
mated charges.

780 Chapter 13 Introduction to Classes

Notice that some of the nouns are repeated. The following list shows all of the nouns
without duplicating any of them.

Refine the List of Nouns

The nouns that appear in the problem description are merely candidates to become
classes. It might not be necessary to make classes for them all. The next step is to refine the
list to include only the classes that are necessary to solve the particular problem at hand.
We will look at the common reasons that a noun can be eliminated from the list of poten-
tial classes.

1. Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:
• cars and foreign cars

These both refer to the general concept of a car.
• Joe’s Automotive Shop and shop

Both of these refer to the company “Joe’s Automotive Shop.”

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 781

We can settle on a single class for each of these. In this example we will arbitrarily eliminate
foreign cars from the list, and use the word cars. Likewise we will eliminate Joe's Automo-
tive Shop from the list and use the word shop. The updated list of potential classes is:

2. Some nouns might represent items that we do not need to be concerned with in order
to solve the problem.

A quick review of the problem description reminds us of what our application should do:
print a service quote. In this example we can eliminate two unnecessary classes from the list:

• We can cross shop off the list because our application only needs to be concerned
with individual service quotes. It doesn’t need to work with or determine any
company-wide information. If the problem description asked us to keep a total of
all the service quotes, then it would make sense to have a class for the shop.

• We will not need a class for the manager because the problem statement does not
direct us to process any information about the manager. If there were multiple
shop managers, and the problem description had asked us to record which man-
ager generated each service quote, then it would make sense to have a class for the
manager.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Because cars and foreign cars mean the same thing in this
problem, we have eliminated foreign cars. Also, because
Joe's Automotive Shop and shop mean the same thing, we
have eliminated Joe's Automotive Shop.

782 Chapter 13 Introduction to Classes

The updated list of potential classes at this point is:

3. Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they
all represent specific cars, and can be considered instances of a cars class. Also, we can
eliminate the word car from the list. In the description it refers to a specific car brought to
the shop by a customer. Therefore, it would also represent an instance of a cars class. At
this point the updated list of potential classes is:

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

Our problem description does not direct us to process any
information about the shop, or any information about the
manager, so we have eliminated those from the list.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
manager
make
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

We have eliminated Mercedes, Porsche, BMW, and car
because they are all instances of a cars class. That means that
these nouns identify objects, not classes.

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 783

4. Some of the nouns might represent simple values that can be stored in a variable and
do not require a class.

Remember, a class contains attributes and member functions. Attributes are related items
that are stored within an object of the class, and define the object’s state. Member func-
tions are actions or behaviors that may be performed by an object of the class. If a noun
represents a type of item that would not have any identifiable attributes or member func-
tions, then it can probably be eliminated from the list. To help determine whether a noun
represents an item that would have attributes and member functions, ask the following
questions about it:

• Would you use a group of related values to represent the item’s state?
• Are there any obvious actions to be performed by the item?

If the answers to both of these questions are no, then the noun probably represents a value
that can be stored in a simple variable. If we apply this test to each of the nouns that
remain in our list, we can conclude that the following are probably not classes: address,
estimated labor charges, estimated parts charges, make, model, name, sales tax, telephone
number, total estimated charges and year. These are all simple string or numeric values
that can be stored in variables. Here is the updated list of potential classes:

As you can see from the list, we have eliminated everything except cars, customer, and ser-
vice quote. This means that in our application, we will need classes to represent cars, cus-
tomers, and service quotes. Ultimately, we will write a Car class, a Customer class, and a
ServiceQuote class.

NOTE: Some object-oriented designers take note of whether a noun is plural or singular.
Sometimes a plural noun will indicate a class and a singular noun will indicate an object.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe's Automotive Shop
make
manager
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

We have eliminated address, estimated labor charges,
estimated parts charges, make, model, name, sales
tax, telephone number, total estimated charges, and
year as classes because they represent simple values that can
be stored in variables.

784 Chapter 13 Introduction to Classes

Identifying a Class’s Responsibilities
Once the classes have been identified, the next task is to identify each class’s responsibili-
ties. A class’s responsibilities are

• the things that the class is responsible for knowing
• the actions that the class is responsible for doing

When you have identified the things that a class is responsible for knowing, then you have
identified the class’s attributes. Likewise, when you have identified the actions that a class
is responsible for doing, you have identified its member functions.

It is often helpful to ask the questions “In the context of this problem, what must the class
know? What must the class do?” The first place to look for the answers is in the descrip-
tion of the problem domain. Many of the things that a class must know and do will be
mentioned. Some class responsibilities, however, might not be directly mentioned in the
problem domain, so brainstorming is often required. Let’s apply this methodology to the
classes we previously identified from our problem domain.

The Customer class

In the context of our problem domain, what must the Customer class know? The descrip-
tion directly mentions the following items, which are all attributes of a customer:

• the customer’s name
• the customer’s address
• the customer’s telephone number

These are all values that can be represented as strings and stored in the class’s member
variables. The Customer class can potentially know many other things. One mistake that
can be made at this point is to identify too many things that an object is responsible for
knowing. In some applications, a Customer class might know the customer’s email
address. This particular problem domain does not mention that the customer’s email
address is used for any purpose, so we should not include it as a responsibility.

Now let’s identify the class’s member functions. In the context of our problem domain,
what must the Customer class do? The only obvious actions are to

• create an object of the Customer class
• set and get the customer’s name
• set and get the customer’s address
• set and get the customer’s telephone number

From this list we can see that the Customer class will have a constructor, as well as acces-
sor and mutator functions for each of its attributes. Figure 13-23 shows a UML diagram
for the Customer class.

13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 785

The Car Class

In the context of our problem domain, what must an object of the Car class know? The
following items are all attributes of a car, and are mentioned in the problem domain:

• the car’s make
• the car’s model
• the car’s year

Now let’s identify the class’s member functions. In the context of our problem domain,
what must the Car class do? Once again, the only obvious actions are the standard set of
member functions that we will find in most classes (constructors, accessors, and muta-
tors). Specifically, the actions are:

• create an object of the Car class
• set and get the car’s make
• set and get the car’s model
• set and get the car’s year

Figure 13-24 shows a UML diagram for the Car class at this point.

Figure 13-23

Figure 13-24

Customer

- name : String
- address : String
- phone : String

+ Customer() :
+ setName(n : String) : void
+ setAddress(a : String) : void
+ setPhone(p : String) : void
+ getName() : String
+ getAddress() : String
+ getPhone() : String

Car

- make : String
- model : String
- year : int

+ Car() :
+ setMake(m : String) : void
+ setModel(m : String) : void
+ setYear(y : int) : void
+ getMake() : String
+ getModel() : String
+ getYear() : int

786 Chapter 13 Introduction to Classes

The ServiceQuote Class

In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

• the estimated parts charges
• the estimated labor charges
• the sales tax
• the total estimated charges

Careful thought and a little brainstorming will reveal that two of these items are the
results of calculations: sales tax and total estimated charges. These items are dependent on
the values of the estimated parts and labor charges. In order to avoid the risk of holding
stale data, we will not store these values in member variables. Rather, we will provide
member functions that calculate these values and return them. The other member func-
tions that we will need for this class are a constructor and the accessors and mutators for
the estimated parts charges and estimated labor charges attributes. Figure 13-25 shows a
UML diagram for the ServiceQuote class.

This Is Only the Beginning
You should look at the process that we have discussed in this section as merely a starting
point. It’s important to realize that designing an object-oriented application is an iterative
process. It may take you several attempts to identify all of the classes that you will need, and
determine all of their responsibilities. As the design process unfolds, you will gain a deeper
understanding of the problem, and consequently you will see ways to improve the design.

Checkpoint
13.27 What is a problem domain?

13.28 When designing an object-oriented application, who should write a description of
the problem domain?

13.29 How do you identify the potential classes in a problem domain description?

13.30 What are a class’s responsibilities?

Figure 13-25

ServiceQuote

- partsCharges : double
- laborCharges : double

+ ServiceQuote() :
+ setPartsCharges(c : double) :
 void
+ setLaborCharges(c : double) :
 void
+ getPartsCharges() : double
+ getLaborCharges() : double
+ getSalesTax() : double
+ getTotalCharges() : double

Review Questions and Exercises 787

13.31 What two questions should you ask to determine a class’s responsibilities?

13.32 Will all of a class’s actions always be directly mentioned in the problem domain
description?

13.33 Look at the following description of a problem domain:
A doctor sees patients in her practice. When a patient comes to the practice, the
doctor performs one or more procedures on the patient. Each procedure that the
doctor performs has a description and a standard fee. As the patient leaves the
practice, he or she receives a statement from the office manager. The statement
shows the patient's name and address, as well as the procedures that were per-
formed, and the total charge for the procedures.
Assume that you are writing an application to generate a statement that can be
printed and given to the patient.
A) Identify all of the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes that you identified in step B.

Review Questions and Exercises

Short Answer
1. What is the difference between a class and an instance of the class?

2. What is the difference between the following Person structure and Person class?

struct Person
{

char name[51];
int age;

};

class Person
{

char name[51];
int age;

};

3. What is the default access specification of class members?

4. Look at the following function header for a member function.

void Circle::getRadius()

What is the name of the function?

What class is the function a member of?

5. A contractor uses a blueprint to build a set of identical houses. Are classes analogous
to the blueprint or the houses?

6. What is a mutator function? What is an accessor function?

7. Is it a good idea to make member variables private? Why or why not?

8. Can you think of a good reason to avoid writing statements in a class member func-
tion that use cout or cin?

788 Chapter 13 Introduction to Classes

9. Under what circumstances should a member function be private?

10. What is a constructor? What is a destructor?

11. What is a default constructor? Is it possible to have more than one default constructor?

12. Is it possible to have more than one constructor? Is it possible to have more than
one destructor?

13. If a class object is dynamically allocated in memory, does its constructor execute? If
so, when?

14. When defining an array of class objects, how do you pass arguments to the construc-
tor for each object in the array?

15. What are a class’s responsibilities?

16. How do you identify the classes in a problem domain description?

Fill-in-the-Blank

17. The two common programming methods in practice today are _________ and _________.

18. _________ programming is centered around functions or procedures.

19. _________ programming is centered around objects.

20. _________ is an object’s ability to contain and manipulate its own data.

21. In C++ the _________ is the construct primarily used to create objects.

22. A class is very similar to a(n) _________.

23. A(n) _________ is a key word inside a class declaration that establishes a member’s
accessibility.

24. The default access specification of class members is _________.

25. The default access specification of a struct in C++ is _________.

26. Defining a class object is often called the _________ of a class.

27. Members of a class object may be accessed through a pointer to the object by using
the _________ operator.

28. If you were writing the declaration of a class named Canine, what would you name
the file it was stored in? _________

29. If you were writing the external definitions of the Canine class’s member functions,
you would save them in a file named _________.

30. When a member function’s body is written inside a class declaration, the function is
_________.

31. A(n) _________ is automatically called when an object is created.

32. A(n) _________ is a member function with the same name as the class.

33. _________ are useful for performing initialization or setup routines in a class object.

34. Constructors cannot have a(n) _________ type.

35. A(n) _________ constructor is one that requires no arguments.

36. A(n) _________ is a member function that is automatically called when an object is
destroyed.

Review Questions and Exercises 789

37. A destructor has the same name as the class, but is preceded by a(n) _________ character.

38. Like constructors, destructors cannot have a(n) _________ type.

39. A constructor whose arguments all have default values is a(n) _________ constructor.

40. A class may have more than one constructor, as long as each has a different
_________.

41. A class may only have one default _________ and one _________.

42. A(n) _________ may be used to pass arguments to the constructors of elements in an
object array.

Algorithm Workbench

43. Write a class declaration named Circle with a private member variable named
radius. Write set and get functions to access the radius variable, and a function
named getArea that returns the area of the circle. The area is calculated as

3.14159 * radius * radius

44. Add a default constructor to the Circle class in question 43. The constructor should
initialize the radius member to 0.

45. Add an overloaded constructor to the Circle class in question 44. The constructor
should accept an argument and assign its value to the radius member variable.

46. Write a statement that defines an array of five objects of the Circle class in question
45. Let the default constructor execute for each element of the array.

47. Write a statement that defines an array of five objects of the Circle class in question
45. Pass the following arguments to the elements’ constructor: 12, 7, 9, 14, and 8.

48. Write a for loop that displays the radius and area of the circles represented by the
array you defined in question 47.

49. If the items on the following list appeared in a problem domain description, which
would be potential classes?

50. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings accounts,
checking accounts, and money market accounts. Customers are allowed to deposit
money into an account (thereby increasing its balance), withdraw money from an
account (thereby decreasing its balance), and earn interest on the account. Each
account has an interest rate.

Assume that you are writing an application that will calculate the amount of interest
earned for a bank account.
A) Identify the potential classes in this problem domain.
B) Refine the list to include only the necessary class or classes for this problem.
C) Identify the responsibilities of the class or classes.

Animal Medication Nurse

Inoculate Operate Advertise

Doctor Invoice Measure

Patient Client Customer

790 Chapter 13 Introduction to Classes

True or False
51. T F Private members must be declared before public members.

52. T F Class members are private by default.

53. T F Members of a struct are private by default.

54. T F Classes and structures in C++ are very similar.

55. T F All private members of a class must be declared together.

56. T F All public members of a class must be declared together.

57. T F It is legal to define a pointer to a class object.

58. T F You can use the new operator to dynamically allocate an instance of a class.

59. T F A private member function may be called from a statement outside the class, as
long as the statement is in the same program as the class declaration.

60. T F Constructors do not have to have the same name as the class.

61. T F Constructors may not have a return type.

62. T F Constructors cannot take arguments.

63. T F Destructors cannot take arguments.

64. T F Destructors may return a value.

65. T F Constructors may have default arguments.

66. T F Member functions may be overloaded.

67. T F Constructors may not be overloaded.

68. T F A class may not have a constructor with no parameter list, and a constructor
whose arguments all have default values.

69. T F A class may only have one destructor.

70. T F When an array of objects is defined, the constructor is only called for the first
element.

71. T F To find the classes needed for an object-oriented application, you identify all of
the verbs in a description of the problem domain.

72. T F A class’s responsibilities are the things the class is responsible for knowing, and
actions the class must perform.

Find the Errors

Each of the following class declarations or programs contain errors. Find as many as possible.

73. class Circle:
{
private
 double centerX;
 double centerY;
 double radius;
public
 setCenter(double, double);
 setRadius(double);
}

Review Questions and Exercises 791

74. #include <iostream>
using namespace std;

Class Moon;
{
Private;
 double earthWeight;
 double moonWeight;
Public;
 moonWeight(double ew);
 { earthWeight = ew; moonWeight = earthWeight / 6; }
 double getMoonWeight();
 { return moonWeight; }
}

int main()
{
 double earth;
 cout >> "What is your weight? ";
 cin << earth;
 Moon lunar(earth);
 cout << "On the moon you would weigh "
 <<lunar.getMoonWeight() << endl;
 return 0;
}

75. #include <iostream>
using namespace std;

class DumbBell;
{
 int weight;
public:
 void setWeight(int);
};
void setWeight(int w)
{
 weight = w;
}

int main()
{
 DumBell bar;

 DumbBell(200);
 cout << "The weight is " << bar.weight << endl;
 return 0;
}

76. class Change
{
public:
 int pennies;
 int nickels;
 int dimes;
 int quarters;
 Change()

792 Chapter 13 Introduction to Classes

 { pennies = nickels = dimes = quarters = 0; }
 Change(int p = 100, int n = 50, d = 50, q = 25);
};

void Change::Change(int p, int n, d, q)
{
 pennies = p;
 nickels = n;
 dimes = d;
 quarters = q;
}

Programming Challenges
1. Date

Design a class called Date. The class should store a date in three integers: month, day,
and year. There should be member functions to print the date in the following forms:

12/25/10
December 25, 2010
25 December 2010

Demonstrate the class by writing a complete program implementing it.

Input Validation: Do not accept values for the day greater than 31 or less than 1. Do
not accept values for the month greater than 12 or less than 1.

2. Employee Class

Write a class named Employee that has the following member variables:

• name. A string that holds the employee’s name.
• idNumber. An int variable that holds the employee’s ID number.
• department. A string that holds the name of the department where the employee

works.
• position. A string that holds the employee’s job title.

The class should have the following constructors:

• A constructor that accepts the following values as arguments and assigns them to
the appropriate member variables: employee’s name, employee’s ID number,
department, and position.

• A constructor that accepts the following values as arguments and assigns them to
the appropriate member variables: employee’s name and ID number. The
department and position fields should be assigned an empty string ("").

• A default constructor that assigns empty strings ("") to the name, department,
and position member variables, and 0 to the idNumber member variable.

Write appropriate mutator functions that store values in these member variables and
accessor functions that return the values in these member variables. Once you have
written the class, write a separate program that creates three Employee objects to
hold the following data.

Solving the
Employee

Class Problem

Review Questions and Exercises 793

 The program should store this data in the three objects and then display the data for
each employee on the screen.

3. Car Class

Write a class named Car that has the following member variables:

• yearModel. An int that holds the car’s year model.
• make. A string that holds the make of the car.
• speed. An int that holds the car’s current speed.

In addition, the class should have the following constructor and other member functions.

• Constructor. The constructor should accept the car’s year model and make as
arguments. These values should be assigned to the object’s yearModel and make
member variables. The constructor should also assign 0 to the speed member
variables.

• Accessor. Appropriate accessor functions to get the values stored in an object’s
yearModel, make, and speed member variables.

• accelerate. The accelerate function should add 5 to the speed member vari-
able each time it is called.

• brake. The brake function should subtract 5 from the speed member variable
each time it is called.

Demonstrate the class in a program that creates a Car object, and then calls the
accelerate function five times. After each call to the accelerate function, get the
current speed of the car and display it. Then, call the brake function five times. After
each call to the brake function, get the current speed of the car and display it.

4. Personal Information Class

Design a class that holds the following personal data: name, address, age, and phone
number. Write appropriate accessor and mutator functions. Demonstrate the class by
writing a program that creates three instances of it. One instance should hold your infor-
mation, and the other two should hold your friends’ or family members’ information.

5. RetailItem Class

Write a class named RetailItem that holds data about an item in a retail store. The
class should have the following member variables:

• description. A string that holds a brief description of the item.
• unitsOnHand. An int that holds the number of units currently in inventory.
• price. A double that holds the item’s retail price.

Write a constructor that accepts arguments for each member variable, appropriate
mutator functions that store values in these member variables, and accessor functions
that return the values in these member variables. Once you have written the class,

Name ID Number Department Position

Susan Meyers 47899 Accounting Vice President

Mark Jones 39119 IT Programmer

Joy Rogers 81774 Manufacturing Engineer

794 Chapter 13 Introduction to Classes

write a separate program that creates three RetailItem objects and stores the follow-
ing data in them.

6. Inventory Class

Design an Inventory class that can hold information and calculate data for items in a
retail store’s inventory. The class should have the following private member variables:

The class should have the following public member functions:

Demonstrate the class in a driver program.

Input Validation: Do not accept negative values for item number, quantity, or cost.

Description
Units
On Hand Price

Item #1 Jacket 12 59.95

Item #2 Designer Jeans 40 34.95

Item #3 Shirt 20 24.95

Variable Name Description
itemNumber An int that holds the item’s item number.
quantity An int for holding the quantity of the items on hand.
cost A double for holding the wholesale per-unit cost of the item
totalCost A double for holding the total inventory cost of the item

(calculated as quantity times cost).

Member Function Description

Default
Constructor

Sets all the member variables to 0.

Constructor #2 Accepts an item’s number, cost, and quantity as arguments. The
function should copy these values to the appropriate member
variables and then call the setTotalCost function.

setItemNumber Accepts an integer argument that is copied to the itemNumber
member variable.

setQuantity Accepts an integer argument that is copied to the quantity
member variable.

setCost Accepts a double argument that is copied to the cost member
variable.

setTotalCost Calculates the total inventory cost for the item (quantity times
cost) and stores the result in totalCost.

getItemNumber Returns the value in itemNumber.
getQuantity Returns the value in quantity.
getCost Returns the value in cost.
getTotalCost Returns the value in totalCost.

Review Questions and Exercises 795

7. Widget Factory

Design a class for a widget manufacturing plant. Assuming that 10 widgets may be
produced each hour, the class object will calculate how many days it will take to pro-
duce any number of widgets. (The plant operates two shifts of eight hours each per
day.) Write a program that asks the user for the number of widgets that have been
ordered and then displays the number of days it will take to produce them.

Input Validation: Do not accept negative values for the number of widgets ordered.

8. TestScores Class

Design a TestScores class that has member variables to hold three test scores. The
class should have a constructor, accessor, and mutator functions for the test score
fields, and a member function that returns the average of the test scores. Demonstrate
the class by writing a separate program that creates an instance of the class. The pro-
gram should ask the user to enter three test scores, which are stored in the
TestScores object. Then the program should display the average of the scores, as
reported by the TestScores object.

9. Circle Class

Write a Circle class that has the following member variables:

• radius: a double
• pi: a double initialized with the value 3.14159

The class should have the following member functions:

• Default Constructor. A default constructor that sets radius to 0.0.
• Constructor. Accepts the radius of the circle as an argument.
• setRadius. A mutator function for the radius variable.
• getRadius. An accessor function for the radius variable.
• getArea. Returns the area of the circle, which is calculated as

area = pi * radius * radius
• getDiameter. Returns the diameter of the circle, which is calculated as

diameter = radius * 2
• getCircumference. Returns the circumference of the circle, which is calculated as

circumference = 2 * pi * radius

Write a program that demonstrates the Circle class by asking the user for the circle’s
radius, creating a Circle object, and then reporting the circle’s area, diameter, and
circumference.

10. Population

In a population, the birth rate and death rate are calculated as follows:

Birth Rate = Number of Births ÷ Population
Death Rate = Number of Deaths ÷ Population

For example, in a population of 100,000 that has 8,000 births and 6,000 deaths per
year, the birth rate and death rate are:

Birth Rate = 8,000 ÷ 100,000 = 0.08
Death Rate = 6,000 ÷ 100,000 = 0.06

796 Chapter 13 Introduction to Classes

Design a Population class that stores a population, number of births, and number of
deaths for a period of time. Member functions should return the birth rate and death
rate. Implement the class in a program.

Input Validation: Do not accept population figures less than 1, or birth or death num-
bers less than 0.

11. Number Array Class

Design a class that has an array of floating-point numbers. The constructor should
accept an integer argument and dynamically allocate the array to hold that many
numbers. The destructor should free the memory held by the array. In addition, there
should be member functions to perform the following operations:

• Store a number in any element of the array
• Retrieve a number from any element of the array
• Return the highest value stored in the array
• Return the lowest value stored in the array
• Return the average of all the numbers stored in the array

Demonstrate the class in a program.

12. Payroll

Design a PayRoll class that has data members for an employee’s hourly pay rate,
number of hours worked, and total pay for the week. Write a program with an array
of seven PayRoll objects. The program should ask the user for the number of hours
each employee has worked and will then display the amount of gross pay each has
earned.

Input Validation: Do not accept values greater than 60 for the number of hours
worked.

13. Mortgage Payment

Design a class that will determine the monthly payment on a home mortgage. The
monthly payment with interest compounded monthly can be calculated as follows:

where

Payment = the monthly payment
Loan = the dollar amount of the loan
Rate = the annual interest rate
Years = the number of years of the loan

The class should have member functions for setting the loan amount, interest rate,
and number of years of the loan. It should also have member functions for returning

Payment
Loan Rate

12
------------ Term××

Term 1–
--=

Term 1 Rate
12
------------+⎝ ⎠

⎛ ⎞ 12 Years×
=

Review Questions and Exercises 797

the monthly payment amount and the total amount paid to the bank at the end of the
loan period. Implement the class in a complete program.

Input Validation: Do not accept negative numbers for any of the loan values.

14. Freezing and Boiling Points

The following table lists the freezing and boiling points of several substances.

Design a class that stores a temperature in a temperature member variable and has
the appropriate accessor and mutator functions. In addition to appropriate construc-
tors, the class should have the following member functions:

• isEthylFreezing. This function should return the bool value true if the tem-
perature stored in the temperature field is at or below the freezing point of ethyl
alcohol. Otherwise, the function should return false.

• isEthylBoiling. This function should return the bool value true if the temper-
ature stored in the temperature field is at or above the boiling point of ethyl
alcohol. Otherwise, the function should return false.

• isOxygenFreezing. This function should return the bool value true if the tem-
perature stored in the temperature field is at or below the freezing point of oxy-
gen. Otherwise, the function should return false.

• isOxygenBoiling. This function should return the bool value true if the tem-
perature stored in the temperature field is at or above the boiling point of oxy-
gen. Otherwise, the function should return false.

• isWaterFreezing. This function should return the bool value true if the tem-
perature stored in the temperature field is at or below the freezing point of
water. Otherwise, the function should return false.

• isWaterBoiling. This function should return the bool value true if the temper-
ature stored in the temperature field is at or above the boiling point of water.
Otherwise, the function should return false.

Write a program that demonstrates the class. The program should ask the user to
enter a temperature, and then display a list of the substances that will freeze at that
temperature and those that will boil at that temperature. For example, if the tempera-
ture is -20 the class should report that water will freeze and oxygen will boil at that
temperature.

15. Cash Register

Design a CashRegister class that can be used with the InventoryItem class dis-
cussed in this chapter. The CashRegister class should perform the following:

1. Ask the user for the item and quantity being purchased.

2. Get the item’s cost from the InventoryItem object.

3. Add a 30% profit to the cost to get the item’s unit price.

Substance Freezing Point Boiling Point

Ethyl Alcohol –173 172

Oxygen –362 –306

Water 32 212

798 Chapter 13 Introduction to Classes

4. Multiply the unit price times the quantity being purchased to get the purchase
subtotal.

5. Compute a 6% sales tax on the subtotal to get the purchase total.

6. Display the purchase subtotal, tax, and total on the screen.

7. Subtract the quantity being purchased from the onHand variable of the
InventoryItem class object.

Implement both classes in a complete program. Feel free to modify the
InventoryItem class in any way necessary.

Input Validation: Do not accept a negative value for the quantity of items being
purchased.

16. Trivia Game

In this programming challenge you will create a simple trivia game for two players.
The program will work like this:

• Starting with player 1, each player gets a turn at answering five trivia questions.
(There are a total of 10 questions.) When a question is displayed, four possible
answers are also displayed. Only one of the answers is correct, and if the player
selects the correct answer he or she earns a point.

• After answers have been selected for all of the questions, the program displays the
number of points earned by each player and declares the player with the highest
number of points the winner.

In this program you will design a Question class to hold the data for a trivia ques-
tion. The Question class should have member variables for the following data:

• A trivia question
• Possible answer #1
• Possible answer #2
• Possible answer #3
• Possible answer #4
• The number of the correct answer (1, 2, 3, or 4)

The Question class should have appropriate constructor(s), accessor, and mutator
functions.

The program should create an array of 10 Question objects, one for each trivia ques-
tion. Make up your own trivia questions on the subject or subjects of your choice for
the objects.

Group Project

17. Patient Fees

1. This program should be designed and written by a team of students. Here are
some suggestions:

– One or more students may work on a single class.
– The requirements of the program should be analyzed so each student is given

about the same workload.

Review Questions and Exercises 799

– The parameters and return types of each function and class member function
should be decided in advance.

– The program will be best implemented as a multi-file program.

2. You are to write a program that computes a patient’s bill for a hospital stay. The
different components of the program are

The PatientAccount class
The Surgery class
The Pharmacy class
The main program

– The PatientAccount class will keep a total of the patient’s charges. It will
also keep track of the number of days spent in the hospital. The group must
decide on the hospital’s daily rate.

– The Surgery class will have stored within it the charges for at least five types
of surgery. It can update the charges variable of the PatientAccount class.

– The Pharmacy class will have stored within it the price of at least five types of
medication. It can update the charges variable of the PatientAccount class.

– The student who designs the main program will design a menu that allows
the user to enter a type of surgery and a type of medication, and check the
patient out of the hospital. When the patient checks out, the total charges
should be displayed.

This page intentionally left blank

801

C
H

A
P

T
E

R

14 More About Classes

14.1 Instance and Static Members

CONCEPT: Each instance of a class has its own copies of the class’s instance
variables. If a member variable is declared static, however, all instances
of that class have access to that variable. If a member function is declared
static, it may be called without any instances of the class being defined.

Instance Variables
Each class object (an instance of a class) has its own copy of the class’s member variables.
An object’s member variables are separate and distinct from the member variables of other
objects of the same class. For example, recall that the Rectangle class discussed in Chap-
ter 13 has two member variables: width and length. Suppose that we define two objects
of the Rectangle class and set their width and length member variables as shown in the
following code.

Rectangle box1, box2;

// Set the width and length for box1.
box1.setWidth(5);
box1.setLength(10);

TOPICS

14.1 Instance and Static Members
14.2 Friends of Classes
14.3 Memberwise Assignment
14.4 Copy Constructors
14.5 Operator Overloading

14.6 Object Conversion
14.7 Aggregation
14.8 Focus on Object-Oriented Design:

Class Collaborations

802 Chapter 14 More About Classes

// Set the width and length for box2.
box2.setWidth(500);
box2.setLength(1000);

This code creates box1 and box2, which are two distinct objects. Each has its own width
and length member variables, as illustrated in Figure 14-1.

When the getWidth member function is called, it returns the value stored in the calling
object’s width member variable. For example, the following statement displays 5 500.

cout << box1.getWidth() << " " << box2.getWidth() << endl;

In object-oriented programming, member variables such as the Rectangle class’s width
and length members are known as instance variables. They are called instance variables
because each instance of the class has its own copies of the variables.

Static Members
It is possible to create a member variable or member function that does not belong to any
instance of a class. Such members are known as a static member variables and static mem-
ber functions. When a value is stored in a static member variable, it is not stored in an
instance of the class. In fact, an instance of the class doesn’t even have to exist in order for
values to be stored in the class’s static member variables. Likewise, static member func-
tions do not operate on instance variables. Instead, they can operate only on static mem-
ber variables. You can think of static member variables and static member functions as
belonging to the class instead of to an instance of the class. In this section, we will take a
closer look at static members. First we will examine static member variables.

Static Member Variables
When a member variable is declared with the key word static, there will be only one
copy of the member variable in memory, regardless of the number of instances of the class
that might exist. A single copy of a class’s static member variable is shared by all instances
of the class. For example, the following Tree class uses a static member variable to keep
count of the number of instances of the class that are created.

Contents of Tree.h

 1 // Tree class
 2 class Tree
 3 {
 4 private:
 5 static int objectCount; // Static member variable.

Figure 14-1

width

length

5

10

box1 object

width

length

500

1000

box2 object

14.1 Instance and Static Members 803

 6 public:
 7 // Constructor
 8 Tree()
 9 { objectCount++; }
10
11 // Accessor function for objectCount
12 int getObjectCount() const
13 { return objectCount; }
14 };
15
16 // Definition of the static member variable, written
17 // outside the class.
18 int Tree::objectCount = 0;

First, notice in line 5 the declaration of the static member variable named objectCount:
A static member variable is created by placing the key word static before the variable’s
data type. Also notice that in line 18 we have written a definition statement for the
objectCount variable, and that the statement is outside the class declaration. This exter-
nal definition statement causes the variable to be created in memory, and is required. In
line 18 we have explicitly initialized the objectCount variable with the value 0. We could
have left out the initialization because C++ automatically stores 0 in all uninitialized static
member variables. It is a good practice to initialize the variable anyway, so it is clear to
anyone reading the code that the variable starts out with the value 0.

Next, look at the constructor in lines 8 and 9. In line 9 the ++ operator is used to incre-
ment objectCount. Each time an instance of the Tree class is created, the constructor
will be called and the objectCount member variable will be incremented. As a result, the
objectCount member variable will contain the number of instances of the Tree class that
have been created. The getObjectCount function, in lines 12 and 13, returns the value in
objectCount. Program 14-1 demonstrates this class.

Program 14-1

 1 // This program demonstrates a static member variable.
 2 #include <iostream>
 3 #include "Tree.h"
 4 using namespace std;

 5
 6 int main()
 7 {
 8 // Define three Tree objects.
 9 Tree oak;
10 Tree elm;
11 Tree pine;
12
13 // Display the number of Tree objects we have.
14 cout << "We have " << pine.getObjectCount()
15 << " trees in our program!\n";
16 return 0;
17 }

Program Output
We have 3 trees in our program!

804 Chapter 14 More About Classes

The program creates three instances of the Tree class, stored in the variables oak, elm,
and pine. Although there are three instances of the class, there is only one copy of the
static objectCount variable. This is illustrated in Figure 14-2.

In line 14 the program calls the getObjectCount member function to retrieve the number
of instances that have been created. Although the program uses the pine object to call the
member function, the same value would be returned if any of the objects had been used.
For example, all three of the following cout statements would display the same thing.

cout << "We have " << oak.getObjectCount() << " trees\n";
cout << "We have " << elm.getObjectCount() << " trees\n";
cout << "We have " << pine.getObjectCount() << " trees\n";

A more practical use of a static member variable is demonstrated in Program 14-2. The
Budget class is used to gather the budget requests for all the divisions of a company. The
class uses a static member, corpBudget, to hold the amount of the overall corporate bud-
get. When the member function addBudget is called, its argument is added to the current
contents of corpBudget. By the time the program is finished, corpBudget will contain the
total of all the values placed there by all the Budget class objects. (These files are stored in
the Student Source Code Folder Chapter 14\Budget Version 1.)

Contents of Budget.h (Version 1)

 1 #ifndef BUDGET_H
 2 #define BUDGET_H
 3
 4 // Budget class declaration
 5 class Budget
 6 {
 7 private:
 8 static double corpBudget; // Static member
 9 double divisionBudget; // Instance member
10 public:
11 Budget()
12 { divisionBudget = 0; }
13

Figure 14-2

3

objectCount variable
(static)

oak pine elm

Instances of the Tree class

14.1 Instance and Static Members 805

14 void addBudget(double b)
15 { divisionBudget += b;
16 corpBudget += b; }
17
18 double getDivisionBudget() const
19 { return divisionBudget; }
20
21 double getCorpBudget() const
22 { return corpBudget; }
23 };
24
25 // Definition of static member variable corpBudget
26 double Budget::corpBudget = 0;
27
28 #endif

Program 14-2

 1 // This program demonstrates a static class member variable.
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "Budget.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int count; // Loop counter
10 const int NUM_DIVISIONS = 4; // Number of divisions
11 Budget divisions[NUM_DIVISIONS]; // Array of Budget objects
12
13 // Get the budget requests for each division.
14 for (count = 0; count < NUM_DIVISIONS; count++)
15 {
16 double budgetAmount;
17 cout << "Enter the budget request for division ";
18 cout << (count + 1) << ": ";
19 cin >> budgetAmount;
20 divisions[count].addBudget(budgetAmount);
21 }
22
23 // Display the budget requests and the corporate budget.
24 cout << fixed << showpoint << setprecision(2);
25 cout << "\nHere are the division budget requests:\n";
26 for (count = 0; count < NUM_DIVISIONS; count++)
27 {
28 cout << "\tDivision " << (count + 1) << "\t$ ";
29 cout << divisions[count].getDivisionBudget() << endl;
30 }
31 cout << "\tTotal Budget Requests:\t$ ";
32 cout << divisions[0].getCorpBudget() << endl;
33
34 return 0;
35 }

(program output continues)

806 Chapter 14 More About Classes

Static Member Functions
You declare a static member function by placing the static keyword in the function’s
prototype. Here is the general form:

A function that is a static member of a class cannot access any nonstatic member data in its
class. With this limitation in mind, you might wonder what purpose static member functions
serve. The following two points are important for understanding their usefulness:

• Even though static member variables are declared in a class, they are actually
defined outside the class declaration. The lifetime of a class’s static member vari-
able is the lifetime of the program. This means that a class’s static member vari-
ables come into existence before any instances of the class are created.

• A class’s static member functions can be called before any instances of the class are
created. This means that a class’s static member functions can access the class’s
static member variables before any instances of the class are defined in memory.
This gives you the ability to create very specialized setup routines for class objects.

Program 14-3, a modification of Program 14-2, demonstrates this feature. It asks the user
to enter the main office’s budget request before any division requests are entered. The
Budget class has been modified to include a static member function named mainOffice.
This function adds its argument to the static corpBudget variable, and is called before
any instances of the Budget class are defined. (These files are stored in the Student Source
Code Folder Chapter 14\Budget Version 2.)

Contents of Budget.h (Version 2)

 1 #ifndef BUDGET_H
 2 #define BUDGET_H
 3
 4 // Budget class declaration
 5 class Budget
 6 {
 7 private:
 8 static double corpBudget; // Static member variable
 9 double divisionBudget; // Instance member variable

Program Output with Example Input Shown in Bold
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for division 4: 400000 [Enter]

Here are the division budget requests:
Division 1 $ 100000.00
Division 2 $ 200000.00
Division 3 $ 300000.00
Division 4 $ 400000.00
Total Budget Requests: $ 1000000.00

 static ReturnType FunctionName (ParameterTypeList);

Program 14-2 (continued)

14.1 Instance and Static Members 807

10 public:
11 Budget()
12 { divisionBudget = 0; }
13
14 void addBudget(double b)
15 { divisionBudget += b;
16 corpBudget += b; }
17
18 double getDivisionBudget() const
19 { return divisionBudget; }
20
21 double getCorpBudget() const
22 { return corpBudget; }
23
24 static void mainOffice(double); // Static member function
25 };
26
27 #endif

Contents of Budget.cpp

 1 #include "Budget.h"
 2
 3 // Definition of corpBudget static member variable
 4 double Budget::corpBudget = 0;
 5
 6 //**
 7 // Definition of static member function mainOffice. *
 8 // This function adds the main office's budget request to *
 9 // the corpBudget variable. *
10 //**
11
12 void Budget::mainOffice(double moffice)
13 {
14 corpBudget += moffice;
15 }

Program 14-3

 1 // This program demonstrates a static member function.
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "Budget.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int count; // Loop counter
10 double mainOfficeRequest; // Main office budget request
11 const int NUM_DIVISIONS = 4; // Number of divisions
12

(program continues)

808 Chapter 14 More About Classes

Notice in line 17 the statement that calls the static function mainOffice:

Budget::mainOffice(amount);

Calls to static member functions do not use the regular notation of connecting the function
name to an object name with the dot operator. Instead, static member functions are called
by connecting the function name to the class name with the scope resolution operator.

13 // Get the main office's budget request.
14 // Note that no instances of the Budget class have been defined.
15 cout << "Enter the main office's budget request: ";
16 cin >> mainOfficeRequest;
17 Budget::mainOffice(mainOfficeRequest);
18
19 Budget divisions[NUM_DIVISIONS]; // An array of Budget objects.
20
21 // Get the budget requests for each division.
22 for (count = 0; count < NUM_DIVISIONS; count++)
23 {
24 double budgetAmount;
25 cout << "Enter the budget request for division ";
26 cout << (count + 1) << ": ";
27 cin >> budgetAmount;
28 divisions[count].addBudget(budgetAmount);
29 }
30
31 // Display the budget requests and the corporate budget.
32 cout << fixed << showpoint << setprecision(2);
33 cout << "\nHere are the division budget requests:\n";
34 for (count = 0; count < NUM_DIVISIONS; count++)
35 {
36 cout << "\tDivision " << (count + 1) << "\t$ ";
37 cout << divisions[count].getDivisionBudget() << endl;
38 }
39 cout << "\tTotal Budget Requests:\t$ ";
40 cout << divisions[0].getCorpBudget() << endl;
41
42 return 0;
43 }

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000 [Enter]
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for division 4: 400000 [Enter]

Here are the division budget requests:
Division 1 $ 100000.00
Division 2 $ 200000.00
Division 3 $ 300000.00
Division 4 $ 400000.00
Total Requests (including main office): $ 1100000.00

Program 14-3 (continued)

14.2 Friends of Classes 809

14.2 Friends of Classes

CONCEPT: A friend is a function or class that is not a member of a class, but has
access to the private members of the class.

Private members are hidden from all parts of the program outside the class, and accessing
them requires a call to a public member function. Sometimes you will want to create an
exception to that rule. A friend function is a function that is not part of a class, but that
has access to the class’s private members. In other words, a friend function is treated as if
it were a member of the class. A friend function can be a regular stand-alone function, or
it can be a member of another class. (In fact, an entire class can be declared a friend of
another class.)

In order for a function or class to become a friend of another class, it must be declared as
such by the class granting it access. Classes keep a “list” of their friends, and only the
external functions or classes whose names appear in the list are granted access. A function
is declared a friend by placing the key word friend in front of a prototype of the func-
tion. Here is the general format:

In the following declaration of the Budget class, the addBudget function of another class,
AuxiliaryOffice has been declared a friend. (This file is stored in the Student Source
Code Folder Chapter 14\Budget Version 3.)

Contents of Budget.h (Version 3)

 1 #ifndef BUDGET_H
 2 #define BUDGET_H
 3 #include "Auxil.h"
 4
 5 // Budget class declaration
 6 class Budget
 7 {
 8 private:
 9 static double corpBudget; // Static member variable
10 double divisionBudget; // Instance member variable
11 public:
12 Budget()
13 { divisionBudget = 0; }
14
15 void addBudget(double b)
16 { divisionBudget += b;
17 corpBudget += b; }

NOTE: If an instance of a class with a static member function exists, the static member
function can be called with the class object name and the dot operator, just like any other
member function.

 friend ReturnType FunctionName (ParameterTypeList)

810 Chapter 14 More About Classes

18
19 double getDivisionBudget() const
20 { return divisionBudget; }
21
22 double getCorpBudget() const
23 { return corpBudget; }
24
25 // Static member function
26 static void mainOffice(double);
27
28 // Friend function
29 friend void AuxiliaryOffice::addBudget(double, Budget &);
30 };
31
32 #endif

Let’s assume another class, AuxiliaryOffice, represents a division’s auxiliary office,
perhaps in another country. The auxiliary office makes a separate budget request,
which must be added to the overall corporate budget. The friend declaration of the
AuxiliaryOffice::addBudget function tells the compiler that the function is to be
granted access to Budget’s private members. Notice the function takes two arguments:
a double and a reference object of the Budget class. The Budget class object that is to
be modified by the function is passed to it, by reference, as an argument. The follow-
ing code shows the declaration of the AuxillaryOffice class. (This file is stored in the
Student Source Code Folder Chapter 14\Budget Version 3.)

Contents of Auxil.h
 1 #ifndef AUXIL_H
 2 #define AUXIL_H
 3
 4 class Budget; // Forward declaration of Budget class
 5
 6 // Aux class declaration
 7
 8 class AuxiliaryOffice
 9 {
10 private:
11 double auxBudget;
12 public:
13 AuxiliaryOffice()
14 { auxBudget = 0; }
15
16 double getDivisionBudget() const
17 { return auxBudget; }
18
19 void addBudget(double, Budget &);
20 };
21
22 #endif

14.2 Friends of Classes 811

Contents of Auxil.cpp
 1 #include "Auxil.h"
 2 #include "Budget.h"
 3
 4 //***
 5 // Definition of member function mainOffice. *
 6 // This function is declared a friend by the Budget class. *
 7 // It adds the value of argument b to the static corpBudget *
 8 // member variable of the Budget class. *
 9 //***
10
11 void AuxiliaryOffice::addBudget(double b, Budget &div)
12 {
13 auxBudget += b;
14 div.corpBudget += b;
15 }

Notice the Auxil.h file contains the following statement in line 4:

class Budget; // Forward declaration of Budget class

This is a forward declaration of the Budget class. It simply tells the compiler that a class
named Budget will be declared later in the program. This is necessary because the com-
piler will process the Auxil.h file before it processes the Budget class declaration. When
it is processing the Auxil.h file it will see the following function declaration in line 19:

void addBudget(double, Budget &);

The addBudget function’s second parameter is a Budget reference variable. At this point,
the compiler has not processed the Budget class declaration, so, without the forward dec-
laration, it wouldn’t know what a Budget reference variable is.

The following code shows the definition of the addBudget function. (This file is also
stored in the Student Source Code Folder Chapter 14\Budget Version 3.)

Contents of Auxil.cpp

 1 #include "Auxil.h"
 2 #include "Budget.h"
 3
 4 //***
 5 // Definition of member function mainOffice. *
 6 // This function is declared a friend by the Budget class. *
 7 // It adds the value of argument b to the static corpBudget *
 8 // member variable of the Budget class. *
 9 //***
10
11 void AuxiliaryOffice::addBudget(double b, Budget &div)
12 {
13 auxBudget += b;
14 div.corpBudget += b;
15 }

The parameter div, a reference to a Budget class object, is used in line 14. This statement
adds the parameter b to div.corpBudget. Program 14-4 demonstrates the classes.

812 Chapter 14 More About Classes

Program 14-4

 1 // This program demonstrates a static member function.
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "Budget.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int count; // Loop counter
10 double mainOfficeRequest; // Main office budget request
11 const int NUM_DIVISIONS = 4; // Number of divisions
12
13 // Get the main office's budget request.
14 cout << "Enter the main office's budget request: ";
15 cin >> mainOfficeRequest;
16 Budget::mainOffice(mainOfficeRequest);
17
18 Budget divisions[NUM_DIVISIONS]; // Array of Budget objects
19 AuxiliaryOffice auxOffices[4]; // Array of AuxiliaryOffice
20
21 // Get the budget requests for each division
22 // and their auxiliary offices.
23 for (count = 0; count < NUM_DIVISIONS; count++)
24 {
25 double budgetAmount; // To hold input
26
27 // Get the request for the division office.
28 cout << "Enter the budget request for division ";
29 cout << (count + 1) << ": ";
30 cin >> budgetAmount;
31 divisions[count].addBudget(budgetAmount);
32
33 // Get the request for the auxiliary office.
34 cout << "Enter the budget request for that division's\n";
35 cout << "auxiliary office: ";
36 cin >> budgetAmount;
37 auxOffices[count].addBudget(budgetAmount, divisions[count]);
38 }
39
40 // Display the budget requests and the corporate budget.
41 cout << fixed << showpoint << setprecision(2);
42 cout << "\nHere are the division budget requests:\n";
43 for (count = 0; count < NUM_DIVISIONS; count++)
44 {
45 cout << "\tDivision " << (count + 1) << "\t\t$";
46 cout << divisions[count].getDivisionBudget() << endl;
47 cout << "\tAuxiliary office:\t$";
48 cout << auxOffices[count].getDivisionBudget() << endl << endl;
49 }
50 cout << "Total Budget Requests:\t$ ";
51 cout << divisions[0].getCorpBudget() << endl;
52 return 0;
53 }

14.2 Friends of Classes 813

As mentioned before, it is possible to make an entire class a friend of another class. The
Budget class could make the AuxiliaryOffice class its friend with the following
declaration:

friend class AuxiliaryOffice;

This may not be a good idea, however. Every member function of AuxiliaryOffice
(including ones that may be added later) would have access to the private members of
Budget. The best practice is to declare as friends only those functions that must have
access to the private members of the class.

Checkpoint
14.1 What is the difference between an instance member variable and a static member

variable?

14.2 Static member variables are declared inside the class declaration. Where are static
member variables defined?

14.3 Does a static member variable come into existence in memory before, at the same
time as, or after any instances of its class?

14.4 What limitation does a static member function have?

Program Output with Example Input Shown in Bold
Enter the main office's budget request: 100000 [Enter]
Enter the budget request for division 1: 100000 [Enter]
Enter the budget request for that division's
auxiliary office: 50000 [Enter]
Enter the budget request for division 2: 200000 [Enter]
Enter the budget request for that division's
auxiliary office: 40000 [Enter]
Enter the budget request for division 3: 300000 [Enter]
Enter the budget request for that division's
auxiliary office: 70000 [Enter]
Enter the budget request for division 4: 400000 [Enter]
Enter the budget request for that division's
auxiliary office: 65000 [Enter]

Here are the division budget requests:
 Division 1 $100000.00
 Auxiliary office: $50000.00

 Division 2 $200000.00
 Auxiliary office: $40000.00

 Division 3 $300000.00
 Auxiliary office: $70000.00

 Division 4 $400000.00
 Auxiliary office: $65000.00

Total Budget Requests: $ 1325000.00

814 Chapter 14 More About Classes

14.5 What action is possible with a static member function that isn’t possible with an
instance member function?

14.6 If class X declares function f as a friend, does function f become a member of
class X?

14.7 Class Y is a friend of class X, which means the member functions of class Y have
access to the private members of class X. Does the friend key word appear in class
Y’s declaration or in class X’s declaration?

14.3 Memberwise Assignment

CONCEPT: The = operator may be used to assign one object’s data to another object,
or to initialize one object with another object’s data. By default, each
member of one object is copied to its counterpart in the other object.

Like other variables (except arrays), objects may be assigned to one another using the =
operator. As an example, consider Program 14-5 which uses the Rectangle class (version
4) that we discussed in Chapter 13. Recall that the Rectangle class has two member vari-
ables: width and length. The constructor accepts two arguments, one for width and one
for length.

Program 14-5

 1 // This program demonstrates memberwise assignment.
 2 #include <iostream>
 3 #include "Rectangle.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Define two Rectangle objects.
 9 Rectangle box1(10.0, 10.0); // width = 10.0, length = 10.0
10 Rectangle box2 (20.0, 20.0); // width = 20.0, length = 20.0
11
12 // Display each object's width and length.
13 cout << "box1's width and length: " << box1.getWidth()
14 << " " << box1.getLength() << endl;
15 cout << "box2's width and length: " << box2.getWidth()
16 << " " << box2.getLength() << endl << endl;
17
18 // Assign the members of box1 to box2.
19 box2 = box1;
20
21 // Display each object's width and length again.
22 cout << "box1's width and length: " << box1.getWidth()
23 << " " << box1.getLength() << endl;
24 cout << "box2's width and length: " << box2.getWidth()
25 << " " << box2.getLength() << endl;
26
27 return 0;
28 }

14.4 Copy Constructors 815

The following statement, which appears in line 19, copies the width and length member
variables of box1 directly into the width and length member variables of box2:

box2 = box1;

Memberwise assignment also occurs when one object is initialized with another object’s
values. Remember the difference between assignment and initialization: assignment occurs
between two objects that already exist, and initialization happens to an object being cre-
ated. Consider the following code:

// Define box1.
Rectangle box1(100.0, 50.0);

// Define box2, initialize with box1's values
Rectangle box2 = box1;

The last statement defines a Rectangle object, box2, and initializes it to the values stored
in box1. Because memberwise assignment takes place, the box2 object will contain the
exact same values as the box1 object.

14.4 Copy Constructors

CONCEPT: A copy constructor is a special constructor that is called whenever a new
object is created and initialized with another object’s data.

Most of the time, the default memberwise assignment behavior in C++ is perfectly accept-
able. There are instances, however, where memberwise assignment cannot be used. For
example, consider the following class. (This file is stored in the Student Source Code
Folder Chapter 14\PersonInfo Version 1.)

Contents of PersonInfo.h (Version 1)

 1 #include <cstring>
 2
 3 class PersonInfo
 4 {
 5 private:
 6 char *name;
 7 int age;
 8

Program Output
box1's width and length: 10 10
box2's width and length: 20 20

box1's width and length: 10 10
box2's width and length: 10 10

816 Chapter 14 More About Classes

 9 public:
10 PersonInfo(char *n, int a)
11 { name = new char[strlen(n) + 1];
12 strcpy(name, n);
13 age = a; }
14
15 ~PersonInfo()
16 { delete [] name; }
17
18 const char *getName()
19 { return name; }
20
21 int getAge()
22 { return age; }
23 };

A potential problem with this class lies in the fact that one of its members, name, is a
pointer. The constructor performs a critical operation with the pointer: it dynamically
allocates a section of memory and copies a string to it. For instance, the following state-
ment creates a personInfo object named person1, whose name member references
dynamically allocated memory holding the string "Maria Jones-Tucker":

PersonInfo person1("Maria Jones-Tucker", 25);

This is depicted in Figure 14-3.

Consider what happens when another PersonInfo object is created and initialized with
the person1 object, as in the following statement:

PersonInfo person2 = person1;

In the statement above, person2’s constructor isn’t called. Instead, memberwise assign-
ment takes place, copying each of person1’s member variables into person2. This means
that a separate section of memory is not allocated for person2’s name member. It simply
gets a copy of the address stored in person1’s name member. Both pointers will point to
the same address, as depicted in Figure 14-4.

In this situation, either object can manipulate the string, causing the changes to show up
in the other object. Likewise, one object can be destroyed, causing its destructor to be
called, which frees the allocated memory. The remaining object’s name pointer would still
reference this section of memory, although it should no longer be used.

Figure 14-3

Name
Pointer

Maria Jones-Tucker

Dynamically allocated memory

14.4 Copy Constructors 817

The solution to this problem is to create a copy constructor for the object. A copy con-
structor is a special constructor that’s called when an object is initialized with another
object’s data. It has the same form as other constructors, except it has a reference parame-
ter of the same class type as the object itself. For example, here is a copy constructor for
the PersonInfo class:

PersonInfo(PersonInfo &obj)
 { name = new char[strlen(obj.name) + 1];
 strcpy(name, obj.name);
 age = obj.age; }

When the = operator is used to initialize a PersonInfo object with the contents of another
PersonInfo object, the copy constructor is called. The PersonInfo object that appears
on the right side of the = operator is passed as an argument to the copy constructor. For
example, look at the following statement:

PersonInfo person1("Molly McBride", 27);
PersonInfo person2 = person1;

In this code, the person1 object is passed as an argument to the person2 object’s copy
constructor.

As you can see from studying the copy constructor’s code, person2’s name member will
properly reference its own dynamically allocated memory. There will be no danger of
person1 inadvertently destroying or corrupting person2’s data.

Using const Parameters in Copy Constructors
Because copy constructors are required to use reference parameters, they have access to
their argument’s data. Since the purpose of a copy constructor is to make a copy of the
argument, there is no reason the constructor should modify the argument’s data. With this
in mind, it’s a good idea to make copy constructors’ parameters constant by specifying the
const key word in the parameter list. Here is an example:

Figure 14-4

NOTE: C++ requires that a copy constructor’s parameter be a reference object.

person1’s
name
Pointer

person2’s
name
Pointer

Maria Jones-Tucker

Dynamically allocated memory

Both objects’ name members
point to the same section of memory

818 Chapter 14 More About Classes

PersonInfo(const PersonInfo &obj)
 { name = new char[strlen(obj.name) + 1];
 strcpy(name, obj.name);
 age = obj.age; }

The const key word ensures that the function cannot change the contents of the parame-
ter. This will prevent you from inadvertently writing code that corrupts data.

The complete listing for the revised PersonInfo class is shown here. (This file is stored in
the Student Source Code Folder Chapter 14\PersonInfo Version 2.)

Contents of PersonInfo.h (Version 2)

 1 #include <cstring>
 2
 3 class PersonInfo
 4 {
 5 private:
 6 char *name;
 7 int age;
 8
 9 public:
10 // Constructor
11 PersonInfo(char *n, int a)
12 { name = new char[strlen(n) + 1];
13 strcpy(name, n);
14 age = a; }
15
16 // Copy Constructor
17 PersonInfo(const PersonInfo &obj)
18 { name = new char[strlen(obj.name) + 1];
19 strcpy(name, obj.name);
20 age = obj.age; }
21
22 ~PersonInfo()
23 { delete [] name; }
24
25 const char *getName()
26 { return name; }
27
28 int getAge()
29 { return age; }
30 };

Copy Constructors and Function Parameters
When a class object is passed by value as an argument to a function, it is passed to a
parameter that is also a class object, and the copy constructor of the function’s parameter
is called. Remember that when a nonreference class object is used as a function parameter
it is created when the function is called, and it is initialized with the argument’s value.

This is why C++ requires the parameter of a copy constructor to be a reference object. If
an object were passed to the copy constructor by value, the copy constructor would create
a copy of the argument and store it in the parameter object. When the parameter object is

14.5 Operator Overloading 819

created, its copy constructor will be called, thus causing another parameter object to be
created. This process will continue indefinitely (or at least until the available memory fills
up, causing the program to halt).

To prevent the copy constructor from calling itself an infinite number of times, C++
requires its parameter to be a reference object.

The Default Copy Constructor
Although you may not realize it, you have seen the action of a copy constructor before. If a
class doesn’t have a copy constructor, C++ creates a default copy constructor for it. The default
copy constructor performs the memberwise assignment discussed in the previous section.

Checkpoint
14.8 Briefly describe what is meant by memberwise assignment.

14.9 Describe two instances when memberwise assignment occurs.

14.10 Describe a situation in which memberwise assignment should not be used.

14.11 When is a copy constructor called?

14.12 How does the compiler know that a member function is a copy constructor?

14.13 What action is performed by a class’s default copy constructor?

14.5 Operator Overloading

CONCEPT: C++ allows you to redefine how standard operators work when used
with class objects.

C++ provides many operators to manipulate data of the primitive data types. However,
what if you wish to use an operator to manipulate class objects? For example, assume that
a class named Date exists, and objects of the Date class hold the month, day, and year in
member variables. Suppose the Date class has a member function named add. The add
member function adds a number of days to the date, and adjusts the member variables if
the date goes to another month or year. For example, the following statement adds five days
to the date stored in the today object:

today.add(5);

Although it might be obvious that the statement is adding five days to the date stored in
today, the use of an operator might be more intuitive. For example, look at the following
statement:

today += 5;

This statement uses the standard += operator to add 5 to today. This behavior does not
happen automatically, however. The += operator must be overloaded for this action to
occur. In this section, you will learn to overload many of C++’s operators to perform spe-
cialized operations on class objects.

Operator
Overloading

820 Chapter 14 More About Classes

Overloading the = Operator
Although copy constructors solve the initialization problems inherent with objects con-
taining pointer members, they do not work with simple assignment statements. Copy con-
structors are just that—constructors. They are only invoked when an object is created.
Statements like the following still perform memberwise assignment:

person2 = person1;

In order to change the way the assignment operator works, it must be overloaded. Opera-
tor overloading permits you to redefine an existing operator’s behavior when used with a
class object.

C++ allows a class to have special member functions called operator functions. If you wish
to redefine the way a particular operator works with an object, you define a function for
that operator. The Operator function is then executed any time the operator is used with
an object of that class. For example, the following version of the PersonInfo class over-
loads the = operator. (This file is stored in the Student Source Code Folder Chapter 14\
PersonInfo Version 3.)

Contents of PersonInfo.h (Version 3)

 1 #include <cstring>
 2
 3 class PersonInfo
 4 {
 5 private:
 6 char *name;
 7 int age;
 8
 9 public:
10 // Constructor
11 PersonInfo(char *n, int a)
12 { name = new char[strlen(n) + 1];
13 strcpy(name, n);
14 age = a; }
15
16 // Copy Constructor
17 PersonInfo(const PersonInfo &obj)
18 { name = new char[strlen(obj.name) + 1];
19 strcpy(name, obj.name);
20 age = obj.age; }
21
22 // Destructor
23 ~PersonInfo()
24 { delete [] name; }
25

NOTE: You have already experienced the behavior of an overloaded operator. The /
operator performs two types of division: floating point and integer. If one of the /
operator’s operands is a floating point type, the result will be a floating point value. If
both of the / operator’s operands are integers, however, a different behavior occurs: the
result is an integer and any fractional part is thrown away.

14.5 Operator Overloading 821

26 // Accessor functions
27 const char *getName()
28 { return name; }
29
30 int getAge()
31 { return age; }
32
33 // Overloaded = operator
34 void operator=(const PersonInfo &right)
35 { delete [] name;
36 name = new char[strlen(right.name) + 1];
37 strcpy(name, right.name);
38 age = right.age; }
39 };

Let’s examine the operator function to understand how it works. First look at the function
header:

The name of the function is operator=. This specifies that the function overloads the =
operator. Because it is a member of the PersonInfo class, this function will be called only
when an assignment statement executes where the object on the left side of the = operator
is a PersonInfo object.

void operator = (const PersonInfo &right)

The function has one parameter: a constant reference object named right. This parame-
ter references the object on the right side of the operator. For example, when the statement
below is executed, right will reference the person1 object:

person2 = person1;

It is not required that the parameter of an operator function be a reference object. The
PersonInfo example declares right as a const reference for the following reasons:

• It was declared as a reference for efficiency purposes. This prevents the compiler
from making a copy of the object being passed into the function.

• It was declared constant so the function will not accidentally change the contents
of the argument.

NOTE: You can, if you choose, put spaces around the operator symbol. For instance,
the function header above could also read:

NOTE: In the example, the parameter was named right simply to illustrate that it
references the object on the right side of the operator. You can name the parameter
anything you wish. It will always take the object on the operator’s right as its argument.

 void operator=(const PersonInfo &right)

Return
type

Function
name

Parameter for object
on the right side of operator

822 Chapter 14 More About Classes

In learning the mechanics of operator overloading, it is helpful to know that the following
two statements do the same thing:

person2 = person1; // Call operator= function
person2.operator=(person1); // Call operator= function

In the last statement you can see exactly what is going on in the function call. The
person1 object is being passed to the function’s parameter, right. Inside the function, the
values in right’s members are used to initialize person2. Notice that the operator=
function has access to the right parameter’s private members. Because the operator=
function is a member of the PersonInfo class, it has access to the private members of any
PersonInfo object that is passed into it.

Program 14-6 demonstrates the PersonInfo class with its overloaded assignment opera-
tor. (This file is stored in the Student Source Code Folder Chapter 14\PersonInfo
Version 3.)

NOTE: C++ allows operator functions to be called with regular function call notation,
or by using the operator symbol.

Program 14-6

 1 // This program demonstrates the overloaded = operator.
 2 #include <iostream>
 3 #include <cstring>
 4 #include "PersonInfo.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Create and initialize the jim object.
10 PersonInfo jim("Jim Young", 27);
11
12 // Create and initialize the bob object.
13 PersonInfo bob("Bob Faraday", 32);
14
15 // Create the clone object and initialize with jim.
16 PersonInfo clone = jim;
17
18 // Display the contents of the jim object.
19 cout << "The jim Object contains: " << jim.getName();
20 cout << ", " << jim.getAge() << endl;
21
22 // Display the contents of the bob object.
23 cout << "The bob Object contains: " << bob.getName();
24 cout << ", " << bob.getAge() << endl;
25
26 // Display the contents of the clone object.
27 cout << "The clone Object contains: " << clone.getName();
28 cout << ", " << clone.getAge() << endl << endl;
29

14.5 Operator Overloading 823

The = Operator’s Return Value
There is only one problem with the overloaded = operator shown in Program 14-6: it
has a void return type. C++’s built-in = operator allows multiple assignment statements
such as:

a = b = c;

In this statement, the expression b = c causes c to be assigned to b and then returns the
value of c. The return value is then stored in a. If a class object’s overloaded = operator is
to function this way, it too must have a valid return type.

For example, the PersonInfo class’s operator= function could be written as:

const PersonInfo operator=(const PersonInfo &right)
{ delete [] name;
 name = new char[strlen(right.name) + 1];
 strcpy(name, right.name);
 age = right.age;
 return *this;
}

30 // Assign bob to clone.
31 cout << "Now the clone will change to bob and ";
32 cout << "bob will change to jim.\n\n";
33 clone = bob; // Call overloaded = operator
34 bob = jim; // Call overloaded = operator
35
36 // Display the contents of the jim object.
37 cout << "The jim Object contains: " << jim.getName();
38 cout << ", " << jim.getAge() << endl;
39
40 // Display the contents of the bob object.
41 cout << "The bob Object contains: " << bob.getName();
42 cout << ", " << bob.getAge() << endl;
43
44 // Display the contents of the clone object.
45 cout << "The clone Object contains: " << clone.getName();
46 cout << ", " << clone.getAge() << endl;
47
48 return 0;
49 }

Program Output
 The jim Object contains: Jim Young, 27
 The bob Object contains: Bob Faraday, 32
 The clone Object contains: Jim Young, 27

 Now the clone will change to bob and bob will change to jim.

 The jim Object contains: Jim Young, 27
 The bob Object contains: Jim Young, 27
 The clone Object contains: Bob Faraday, 32

824 Chapter 14 More About Classes

The data type of the operator function specifies that a const PersonInfo object is
returned. Look at the last statement in the function:

return *this;

This statement returns the value of a dereferenced pointer: this. But what is this? Read on.

The this Pointer
The this pointer is a special built-in pointer that is available to a class’s member func-
tions. It always points to the instance of the class making the function call. For example, if
person1 and person2 are both PersonInfo objects, the following statement causes the
getName function to operate on person1:

cout << person1.getName() << endl;

Likewise, the following statement causes getName to operate on person2:

cout << person2.getName() << endl;

When getName is operating on person1, the this pointer is pointing to person1. When
getName is operating on person2, this is pointing to person2. The this pointer always
points to the object that is being used to call the member function.

The overloaded = operator function is demonstrated in Program 14-7. The multiple
assignment statement in line 20 causes the operator= function to execute. (This file and
the revised version of the PersonInfo class is stored in the Student Source Code Folder
Chapter 14\PersonInfo Version 4.)

NOTE: The this pointer is passed as a hidden argument to all nonstatic member
functions.

Program 14-7

 1 // This program demonstrates the overloaded = operator
 2 // with a return value.
 3 #include <iostream>
 4 #include <cstring>
 5 #include "PersonInfo.h"
 6 using namespace std;
 7
 8 int main()
 9 {
10 // Create and initialize the jim object.
11 PersonInfo jim("Jim Young", 27);
12
13 // Create and initialize the bob object.
14 PersonInfo bob("Bob Faraday", 32);
15
16 // Create the clone object and initialize with jim.
17 PersonInfo clone = jim;
18

14.5 Operator Overloading 825

Some General Issues of Operator Overloading
Now that you have had a taste of operator overloading, let’s look at some of the general
issues involved in this programming technique.

Although it is not a good programming practice, you can change an operator’s entire
meaning if that’s what you wish to do. There is nothing to prevent you from changing the
= symbol from an assignment operator to a “display” operator. For instance, the follow-
ing class does just that:

class Weird
{
private:
 int value;
public:
 Weird(int v)
 {value = v; }
 void operator=(const weird &right)
 { cout << right.value << endl; }
};

Although the operator= function in the Weird class overloads the assignment operator,
the function doesn’t perform an assignment. Instead, it displays the contents of
right.value. Consider the following program segment:

Weird a(5), b(10);
a = b;

19 // Assign jim to bob and clone.
20 clone = bob = jim; // Call overloaded = operator
21
22 // Display the contents of the jim object.
23 cout << "The jim Object contains: " << jim.getName();
24 cout << ", " << jim.getAge() << endl;
25
26 // Display the contents of the bob object.
27 cout << "The bob Object contains: " << bob.getName();
28 cout << ", " << bob.getAge() << endl;
29
30 // Display the contents of the clone object.
31 cout << "The clone Object contains: " << clone.getName();
32 cout << ", " << clone.getAge() << endl;
33
34 return 0;
35 }

Program Output
The jim Object contains: Jim Young, 27
The bob Object contains: Jim Young, 27
The clone Object contains: Jim Young, 27

826 Chapter 14 More About Classes

Although the statement a = b looks like an assignment statement, it actually causes the
contents of b’s value member to be displayed on the screen:

10

Another operator overloading issue is that you cannot change the number of operands
taken by an operator. The = symbol must always be a binary operator. Likewise, ++ and
-- must always be unary operators.

The last issue is that although you may overload most of the C++ operators, you cannot
overload all of them. Table 14-1 shows all of the C++ operators that may be overloaded.

The only operators that cannot be overloaded are

?: . .* :: sizeof

Overloading Math Operators
Many classes would benefit not only from an overloaded assignment operator, but also
from overloaded math operators. To illustrate this, consider the FeetInches class shown
in the following two files. (These files are stored in the Student Source Code Folder
Chapter 14\FeetInches Version 1.)

Contents of FeetInches.h (Version 1)

 1 #ifndef FEETINCHES_H
 2 #define FEETINCHES_H
 3
 4 // The FeetInches class holds distances or measurements
 5 // expressed in feet and inches.
 6
 7 class FeetInches
 8 {
 9 private:
10 int feet; // To hold a number of feet
11 int inches; // To hold a number of inches
12 void simplify(); // Defined in FeetInches.cpp
13 public:
14 // Constructor
15 FeetInches(int f = 0, int i = 0)
16 { feet = f;
17 inches = i;
18 simplify(); }
19

Table 14-1

 + - * / % ^ & | ~ ! = <

 > += -= *= /= %= ^= &= |= << >> >>=

 <<= == != <= >= && || ++ -- ->* , ->

 [] () new delete

NOTE: Some of the operators in Table 14-1 are beyond the scope of this book and are
not covered.

14.5 Operator Overloading 827

20 // Mutator functions
21 void setFeet(int f)
22 { feet = f; }
23
24 void setInches(int i)
25 { inches = i;
26 simplify(); }
27
28 // Accessor functions
29 int getFeet() const
30 { return feet; }
31
32 int getInches() const
33 { return inches; }
34
35 // Overloaded operator functions
36 FeetInches operator + (const FeetInches &); // Overloaded +
37 FeetInches operator - (const FeetInches &); // Overloaded -
38 };
39
40 #endif

Contents of FeetInches.cpp (Version 1)

 1 // Implementation file for the FeetInches class
 2 #include <cstdlib> // Needed for abs()
 3 #include "FeetInches.h"
 4
 5 //**
 6 // Definition of member function simplify. This function *
 7 // checks for values in the inches member greater than *
 8 // twelve or less than zero. If such a value is found, *
 9 // the numbers in feet and inches are adjusted to conform *
10 // to a standard feet & inches expression. For example, *
11 // 3 feet 14 inches would be adjusted to 4 feet 2 inches and *
12 // 5 feet -2 inches would be adjusted to 4 feet 10 inches. *
13 //**
14
15 void FeetInches::simplify()
16 {
17 if (inches >= 12)
18 {
19 feet += (inches / 12);
20 inches = inches % 12;
21 }
22 else if (inches < 0)
23 {
24 feet -= ((abs(inches) / 12) + 1);
25 inches = 12 - (abs(inches) % 12);
26 }
27 }
28

828 Chapter 14 More About Classes

29 //**
30 // Overloaded binary + operator. *
31 //**
32
33 FeetInches FeetInches::operator + (const FeetInches &right)
34 {
35 FeetInches temp;
36
37 temp.inches = inches + right.inches;
38 temp.feet = feet + right.feet;
39 temp.simplify();
40 return temp;
41 }
42
43 //**
44 // Overloaded binary - operator. *
45 //**
46
47 FeetInches FeetInches::operator - (const FeetInches &right)
48 {
49 FeetInches temp;
50
51 temp.inches = inches - right.inches;
52 temp.feet = feet - right.feet;
53 temp.simplify();
54 return temp;
55 }

The FeetInches class is designed to hold distances or measurements expressed in feet and
inches. It consists of eight member functions:

• A constructor that allows the feet and inches members to be set. The default
values for these members is zero.

• A setFeet function for storing a value in the feet member.
• A setInches function for storing a value in the inches member.
• A getFeet function for returning the value in the feet member.
• A getInches function for returning the value in the inches member.
• A simplify function for normalizing the values held in feet and inches. This

function adjusts any set of values where the inches member is greater than 12 or
less than 0.

• An operator + function that overloads the standard + math operator.
• An operator - function that overloads the standard - math operator.

NOTE: The simplify function uses the standard library function abs() to get the
absolute value of the inches member. The abs() function requires that cstdlib be
included.

14.5 Operator Overloading 829

The overloaded + and - operators allow one FeetInches object to be added to or sub-
tracted from another. For example, assume the length1 and length2 objects are defined
and initialized as follows:

FeetInches length1(3, 5), length2(6, 3);

The length1 object is holding the value 3 feet 5 inches, and the length2 object is holding
the value 6 feet 3 inches. Because the + operator is overloaded, we can add these two
objects in a statement such as:

length3 = length1 + length2;

This statement will add the values of the length1 and length2 objects and store the
result in the length3 object. After the statement executes, the length3 object will be set
to 9 feet 8 inches.

The member function that overloads the + operator appears in lines 33 through 41 of the
FeetInches.cpp file.

This function is called anytime the + operator is used with two FeetInches objects. Just
like the overloaded = operator we defined in the previous section, this function has one
parameter: a constant reference object named right. This parameter references the object
on the right side of the operator. For example, when the following statement is executed,
right will reference the length2 object:

length3 = length1 + length2;

As before, it might be helpful to think of the statement above as the following function call:

length3 = length1.operator+(length2);

The length2 object is being passed to the function’s parameter, right. When the function
finishes, it will return a FeetInches object to length3. Now let’s see what is happening
inside the function. First, notice that a FeetInches object named temp is defined locally
in line 35:

FeetInches temp;

This object is a temporary location for holding the results of the addition. Next, line 37
adds inches to right.inches and stores the result in temp.inches:

temp.inches = inches + right.inches;

The inches variable is a member of length1, the object making the function call. It is the
object on the left side of the operator. right.inches references the inches member of
length2. The next statement, in line 38, is very similar. It adds feet to right.feet and
stores the result in temp.feet:

temp.feet = feet + right.feet;

At this point in the function, temp contains the sum of the feet and inches members of both
objects in the expression. The next step is to adjust the values so they conform to a normal value
expressed in feet and inches. This is accomplished in line 39 by calling temp.simplify():

temp.simplify();

830 Chapter 14 More About Classes

The last step, in line 40, is to return the value stored in temp:

return temp;

In the statement length3 = length1 + length2, the return statement in the operator
function causes the values stored in temp to be returned to the length3 object.

Program 14-8 demonstrates the overloaded operators. (This file is stored in the student
source code folder Chapter 14\FeetInches Version 1.)

Program 14-8

 1 // This program demonstrates the FeetInches class's overloaded
 2 // + and - operators.
 3 #include <iostream>
 4 #include "FeetInches.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int feet, inches; // To hold input for feet and inches
10
11 // Create three FeetInches objects. The default arguments
12 // for the constructor will be used.
13 FeetInches first, second, third;
14
15 // Get a distance from the user.
16 cout << "Enter a distance in feet and inches: ";
17 cin >> feet >> inches;
18
19 // Store the distance in the first object.
20 first.setFeet(feet);
21 first.setInches(inches);
22
23 // Get another distance from the user.
24 cout << "Enter another distance in feet and inches: ";
25 cin >> feet >> inches;
26
27 // Store the distance in second.
28 second.setFeet(feet);
29 second.setInches(inches);
30
31 // Assign first + second to third.
32 third = first + second;
33
34 // Display the result.
35 cout << "first + second = ";
36 cout << third.getFeet() << " feet, ";
37 cout << third.getInches() << " inches.\n";
38

14.5 Operator Overloading 831

Overloading the Prefix ++ Operator
Unary operators, such as ++ and – –, are overloaded in a fashion similar to the way binary
operators are implemented. Because unary operators only affect the object making the
operator function call, however, there is no need for a parameter. For example, let’s say
you wish to have a prefix increment operator for the FeetInches class. Assume the
FeetInches object distance is set to the values 7 feet and 5 inches. A ++ operator func-
tion could be designed to increment the object’s inches member. The following statement
would cause distance to have the value 7 feet 6 inches:

++distance;

The following function overloads the prefix ++ operator to work in this fashion:

FeetInches FeetInches::operator++()
{
 ++inches;
 simplify();
 return *this;
}

This function first increments the object’s inches member. The simplify() function is
called and then the dereferenced this pointer is returned. This allows the operator to per-
form properly in statements like this:

distance2 = ++distance1;

Remember, the statement above is equivalent to

distance2 = distance1.operator++();

39 // Assign first - second to third.
40 third = first - second;
41
42 // Display the result.
43 cout << "first - second = ";
44 cout << third.getFeet() << " feet, ";
45 cout << third.getInches() << " inches.\n";
46
47 return 0;
48 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5 [Enter]
Enter another distance in feet and inches: 3 10 [Enter]
first + second = 10 feet, 3 inches.
first - second = 2 feet, 7 inches.

832 Chapter 14 More About Classes

Overloading the Postfix ++ Operator
Overloading the postfix ++ operator is only slightly different than overloading the prefix
version. Here is the function that overloads the postfix operator with the FeetInches
class:

FeetInches FeetInches::operator++(int)
{
 FeetInches temp(feet, inches);
 inches++;
 simplify();
 return temp;
}

The first difference you will notice is the use of a dummy parameter. The word int in
the function’s parentheses establishes a nameless integer parameter. When C++ sees this
parameter in an operator function, it knows the function is designed to be used in post-
fix mode. The second difference is the use of a temporary local variable, the temp object.
temp is initialized with the feet and inches values of the object making the function
call. temp, therefore, is a copy of the object being incremented, but before the increment
takes place. After inches is incremented and the simplify function is called, the con-
tents of temp is returned. This causes the postfix operator to behave correctly in a state-
ment like this:

distance2 = distance1++;

You will find a version of the FeetInches class with the overloaded prefix and postfix ++
operators stored in the Student Source Code Folder Chapter 14\FeetInches Version 2. In
that folder you will also find Program 14-9, which demonstrates these overloaded operators.

Program 14-9

 1 // This program demonstrates the FeetInches class's overloaded
 2 // prefix and postfix ++ operators.
 3 #include <iostream>
 4 #include "FeetInches.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int count; // Loop counter
10
11 // Define a FeetInches object with the default
12 // value of 0 feet, 0 inches.
13 FeetInches first;
14
15 // Define a FeetInches object with 1 foot 5 inches.
16 FeetInches second(1, 5);
17

14.5 Operator Overloading 833

18 // Use the prefix ++ operator.
19 cout << "Demonstrating prefix ++ operator.\n";
20 for (count = 0; count < 12; count++)
21 {
22 first = ++second;
23 cout << "first: " << first.getFeet() << " feet, ";
24 cout << first.getInches() << " inches. ";
25 cout << "second: " << second.getFeet() << " feet, ";
26 cout << second.getInches() << " inches.\n";
27 }
28
29 // Use the postfix ++ operator.
30 cout << "\nDemonstrating postfix ++ operator.\n";
31 for (count = 0; count < 12; count++)
32 {
33 first = second++;
34 cout << "first: " << first.getFeet() << " feet, ";
35 cout << first.getInches() << " inches. ";
36 cout << "second: " << second.getFeet() << " feet, ";
37 cout << second.getInches() << " inches.\n";
38 }
39
40 return 0;
41 }

Program Output
Demonstrating prefix ++ operator.
first: 1 feet 6 inches. second: 1 feet 6 inches.
first: 1 feet 7 inches. second: 1 feet 7 inches.
first: 1 feet 8 inches. second: 1 feet 8 inches.
first: 1 feet 9 inches. second: 1 feet 9 inches.
first: 1 feet 10 inches. second: 1 feet 10 inches.
first: 1 feet 11 inches. second: 1 feet 11 inches.
first: 2 feet 0 inches. second: 2 feet 0 inches.
first: 2 feet 1 inches. second: 2 feet 1 inches.
first: 2 feet 2 inches. second: 2 feet 2 inches.
first: 2 feet 3 inches. second: 2 feet 3 inches.
first: 2 feet 4 inches. second: 2 feet 4 inches.
first: 2 feet 5 inches. second: 2 feet 5 inches.

Demonstrating postfix ++ operator.
first: 2 feet 5 inches. second: 2 feet 6 inches.
first: 2 feet 6 inches. second: 2 feet 7 inches.
first: 2 feet 7 inches. second: 2 feet 8 inches.
first: 2 feet 8 inches. second: 2 feet 9 inches.
first: 2 feet 9 inches. second: 2 feet 10 inches.
first: 2 feet 10 inches. second: 2 feet 11 inches.
first: 2 feet 11 inches. second: 3 feet 0 inches.
first: 3 feet 0 inches. second: 3 feet 1 inches.
first: 3 feet 1 inches. second: 3 feet 2 inches.
first: 3 feet 2 inches. second: 3 feet 3 inches.
first: 3 feet 3 inches. second: 3 feet 4 inches.
first: 3 feet 4 inches. second: 3 feet 5 inches.

834 Chapter 14 More About Classes

Checkpoint
14.14 Assume there is a class named Pet. Write the prototype for a member function of

Pet that overloads the = operator.

14.15 Assume that dog and cat are instances of the Pet class, which has overloaded the
= operator. Rewrite the following statement so it appears in function call notation
instead of operator notation:
dog = cat;

14.16 What is the disadvantage of an overloaded = operator returning void?

14.17 Describe the purpose of the this pointer.

14.18 The this pointer is automatically passed to what type of functions?

14.19 Assume there is a class named Animal that overloads the = and + operators. In the
following statement, assume cat, tiger, and wildcat are all instances of the
Animal class:
wildcat = cat + tiger;

Of the three objects, wildcat, cat, or tiger, which is calling the operator+
function? Which object is passed as an argument into the function?

14.20 What does the use of a dummy parameter in a unary operator function indicate to
the compiler?

Overloading Relational Operators
In addition to the assignment and math operators, relational operators may be over-
loaded. This capability allows classes to be compared in statements that use relational
expressions such as:

if (distance1 < distance2)
{

... code ...
}

Overloaded relational operators are implemented like other binary operators. The only
difference is that a relational operator function should always return a true or false
value. The FeetInches class in the Student Source Code Folder Chapter 14\
FeetInches Version 3 contains functions to overload the >, <, and == relational opera-
tors. Here is the function for overloading the > operator:

bool FeetInches::operator > (const FeetInches &right)
{
 bool status;

 if (feet > right.feet)
 status = true;
 else if (feet == right.feet && inches > right.inches)
 status = true;
 else
 status = false;

 return status;
}

14.5 Operator Overloading 835

As you can see, the function compares the feet member (and if necessary, the inches
member) with that of the parameter. If the calling object contains a value greater than that
of the parameter, true is returned. Otherwise, false is returned.

Here is the code that overloads the < operator:

bool FeetInches::operator < (const FeetInches &right)
{
 bool status;

 if (feet < right.feet)
 status = true;
 else if (feet == right.feet && inches < right.inches)
 status = true;
 else
 status = false;

 return status;
}

Here is the code that overloads the == operator:

bool FeetInches::operator == (const FeetInches &right)
{
 bool status;

 if (feet == right.feet && inches == right.inches)
 status = true;
 else
 status = false;

 return status;
}

Program 14-10 demonstrates these overloaded operators. (This file is also stored in the
Student Source Code Folder Chapter 14\FeetInches Version 3.)

Program 14-10

 1 // This program demonstrates the FeetInches class's overloaded
 2 // relational operators.
 3 #include <iostream>
 4 #include "FeetInches.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int feet, inches; // To hold input for feet and inches
10
11 // Create two FeetInches objects. The default arguments
12 // for the constructor will be used.
13 FeetInches first, second;
14
15 // Get a distance from the user.
16 cout << "Enter a distance in feet and inches: ";
17 cin >> feet >> inches;
18

(program continues)

836 Chapter 14 More About Classes

Overloading the << and >> Operators
Overloading the math and relational operators gives you the ability to write those types of
expressions with class objects just as naturally as with integers, floats, and other built-in
data types. If an object’s primary data members are private, however, you still have to
make explicit member function calls to send their values to cout. For example, assume
distance is a FeetInches object. The following statements display its internal values:

cout << distance.getFeet() << " feet, ";
cout << distance.getInches() << "inches";

It is also necessary to explicitly call member functions to set a FeetInches object’s data.
For instance, the following statements set the distance object to user-specified values:

19 // Store the distance in first.
20 first.setFeet(feet);
21 first.setInches(inches);
22
23 // Get another distance.
24 cout << "Enter another distance in feet and inches: ";
25 cin >> feet >> inches;
26
27 // Store the distance in second.
28 second.setFeet(feet);
29 second.setInches(inches);
30
31 // Compare the two objects.
32 if (first == second)
33 cout << "first is equal to second.\n";
34 if (first > second)
35 cout << "first is greater than second.\n";
36 if (first < second)
37 cout << "first is less than second.\n";
38
39 return 0;
40 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches: 6 5 [Enter]
Enter another distance in feet and inches: 3 10 [Enter]
first is greater than second.

Program Output with Different Example Input Shown in Bold
Enter a distance in feet and inches: 5 5 [Enter]
Enter another distance in feet and inches: 5 5 [Enter]
first is equal to second.

Program Output with Different Example Input Shown in Bold
Enter a distance in feet and inches: 3 4 [Enter]
Enter another distance in feet and inches: 3 7 [Enter]
first is less than second.

Program 14-10 (continued)

14.5 Operator Overloading 837

cout << "Enter a value in feet: ";
cin >> f;
distance.setFeet(f);
cout << "Enter a value in inches: ";
cin >> i;
distance.setInches(i);

By overloading the stream insertion operator (<<), you could send the distance object to
cout, as shown in the following code, and have the screen output automatically formatted
in the correct way.

cout << distance;

Likewise, by overloading the stream extraction operator (>>), the distance object could
take values directly from cin, as shown here.

cin >> distance;

Overloading these operators is done in a slightly different way, however, than overloading
other operators. These operators are actually part of the ostream and istream classes
defined in the C++ runtime library. (The cout and cin objects are instances of ostream
and istream.) You must write operator functions to overload the ostream version of <<
and the istream version of >>, so they work directly with a class such as FeetInches.
The FeetInches class in the Student Source Code Folder Chapter 14\FeetInches
Version 4 contains functions to overload the << and >> operators. Here is the function
that overloads the << operator:

ostream &operator << (ostream &strm, const FeetInches &obj)
{
 strm << obj.feet << " feet, " << obj.inches << " inches";
 return strm;
}

Notice the function has two parameters: an ostream reference object and a const
FeetInches reference object. The ostream parameter will be a reference to the actual
ostream object on the left side of the << operator. The second parameter is a reference
to a FeetInches object. This parameter will reference the object on the right side of the
<< operator. This function tells C++ how to handle any expression that has the
following form:

ostreamObject << FeetInchesObject

So, when C++ encounters the following statement, it will call the overloaded operator<<
function:

cout << distance;

Notice that the function’s return type is ostream &. This means that the function returns
a reference to an ostream object. When the return strm; statement executes, it doesn’t
return a copy of strm, but a reference to it. This allows you to chain together several
expressions using the overloaded << operator, such as:

cout << distance1 << " " << distance2 << endl;

Here is the function that overloads the stream extraction operator to work with the
FeetInches class:

838 Chapter 14 More About Classes

istream &operator >> (istream &strm, FeetInches &obj)
{
 // Prompt the user for the feet.
 cout << "Feet: ";
 strm >> obj.feet;

 // Prompt the user for the inches.
 cout << "Inches: ";
 strm >> obj.inches;

 // Normalize the values.
 obj.simplify();

 return strm;
}

The same principles hold true for this operator. It tells C++ how to handle any expression
in the following form:

istreamObject >> FeetInchesObject

Once again, the function returns a reference to an istream object so several of these
expressions may be chained together.

You have probably realized that neither of these functions is quite ready to work, though.
Both functions attempt to directly access the FeetInches object’s private members. Because
the functions aren’t themselves members of the FeetInches class, they don’t have this type
of access. The next step is to make the operator functions friends of FeetInches. This is
shown in the following listing of the FeetInches class declaration. (This file is stored in the
Student Source Code Folder Chapter 14\FeetInches Version 4.)

Contents of FeetInches.h (Version 4)

 1 #ifndef FEETINCHES_H
 2 #define FEETINCHES_H
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 class FeetInches; // Forward Declaration
 8
 9 // Function Prototypes for Overloaded Stream Operators
10 ostream &operator << (ostream &, const FeetInches &);
11 istream &operator >> (istream &, FeetInches &);

NOTE: Some compilers require you to prototype the >> and << operator functions
outside the class. For this reason, we have added the following statements to the
FeetInches.h class specification file.

 class FeetInches; // Forward Declaration

 // Function Prototypes for Overloaded Stream Operators
 ostream &operator << (ostream &, const FeetInches &);
 istream &operator >> (istream &, FeetInches &);

14.5 Operator Overloading 839

12
13 // The FeetInches class holds distances or measurements
14 // expressed in feet and inches.
15
16 class FeetInches
17 {
18 private:
19 int feet; // To hold a number of feet
20 int inches; // To hold a number of inches
21 void simplify(); // Defined in FeetInches.cpp
22 public:
23 // Constructor
24 FeetInches(int f = 0, int i = 0)
25 { feet = f;
26 inches = i;
27 simplify(); }
28
29 // Mutator functions
30 void setFeet(int f)
31 { feet = f; }
32
33 void setInches(int i)
34 { inches = i;
35 simplify(); }
36
37 // Accessor functions
38 int getFeet() const
39 { return feet; }
40
41 int getInches() const
42 { return inches; }
43
44 // Overloaded operator functions
45 FeetInches operator + (const FeetInches &); // Overloaded +
46 FeetInches operator - (const FeetInches &); // Overloaded -
47 FeetInches operator ++ (); // Prefix ++
48 FeetInches operator ++ (int); // Postfix ++
49 bool operator > (const FeetInches &); // Overloaded >
50 bool operator < (const FeetInches &); // Overloaded <
51 bool operator == (const FeetInches &); // Overloaded ==
52
53 // Friends
54 friend ostream &operator << (ostream &, const FeetInches &);
55 friend istream &operator >> (istream &, FeetInches &);
56 };
57
58 #endif

Lines 54 and 55 in the class declaration tell C++ to make the overloaded << and >> opera-
tor functions friends of the FeetInches class:

friend ostream &operator<<(ostream &, const FeetInches &);
friend istream &operator>>(istream &, FeetInches &);

840 Chapter 14 More About Classes

These statements give the operator functions direct access to the FeetInches class’s private
members. Program 14-11 demonstrates how the overloaded operators work. (This file is
also stored in the Student Source Code Folder Chapter 14\FeetInches Version 4.)

Overloading the [] Operator
In addition to the traditional operators, C++ allows you to change the way the [] symbols
work. This gives you the ability to write classes that have array-like behaviors. For example,
the string class overloads the [] operator so you can access the individual characters
stored in string class objects. Assume the following definition exists in a program:

string name = "William";

The first character in the string, ‘W,’ is stored at name[0], so the following statement will
display W on the screen.

cout << name[0];

Program 14-11

 1 // This program demonstrates the << and >> operators,
 2 // overloaded to work with the FeetInches class.
 3 #include <iostream>
 4 #include "FeetInches.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 FeetInches first, second; // Define two objects.
10
11 // Get a distance for the first object.
12 cout << "Enter a distance in feet and inches.\n";
13 cin >> first;
14
15 // Get a distance for the second object.
16 cout << "Enter another distance in feet and inches.\n";
17 cin >> second;
18
19 // Display the values in the objects.
20 cout << "The values you entered are:\n";
21 cout << first << " and " << second << endl;
22 return 0;
23 }

Program Output with Example Input Shown in Bold
 Enter a distance in feet and inches.
 Feet: 6 [Enter]
 Inches: 5 [Enter]
 Enter another distance in feet and inches.
 Feet: 3 [Enter]
 Inches: 10 [Enter]
 The values you entered are:
 6 feet, 5 inches and 3 feet, 10 inches

14.5 Operator Overloading 841

You can use the overloaded [] operator to create an array class, like the following one.
The class behaves like a regular array, but performs the bounds-checking that C++ lacks.

Contents of IntArray.h

 1 // Specification file for the IntArray class
 2 #ifndef INTARRAY_H
 3 #define INTARRAY_H
 4
 5 class IntArray
 6 {
 7 private:
 8 int *aptr; // Pointer to the array
 9 int arraySize; // Holds the array size
10 void subscriptError(); // Handles invalid subscripts
11 public:
12 IntArray(int); // Constructor
13 IntArray(const IntArray &); // Copy constructor
14 ~IntArray(); // Destructor
15
16 int size() const // Returns the array size
17 { return arraySize; }
18
19 int &operator[](const int &); // Overloaded [] operator
20 };
21 #endif

Contents of IntArray.cpp

 1 // Implementation file for the IntArray class
 2 #include <iostream>
 3 #include <cstdlib> // For the exit function
 4 #include "IntArray.h"
 5 using namespace std;
 6
 7 //***
 8 // Constructor for IntArray class. Sets the size of the *
 9 // array and allocates memory for it. *
10 //***
11
12 IntArray::IntArray(int s)
13 {
14 arraySize = s;
15 aptr = new int [s];
16 for (int count = 0; count < arraySize; count++)
17 *(aptr + count) = 0;
18 }
19
20 //**
21 // Copy Constructor for IntArray class. *
22 //**
23

842 Chapter 14 More About Classes

24 IntArray::IntArray(const IntArray &obj)
25 {
26 arraySize = obj.arraySize;
27 aptr = new int [arraySize];
28 for(int count = 0; count < arraySize; count++)
29 *(aptr + count) = *(obj.aptr + count);
30 }
31
32 //**
33 // Destructor for IntArray class. *
34 //**
35
36 IntArray::~IntArray()
37 {
38 if (arraySize > 0)
39 delete [] aptr;
40 }
41
42 //***
43 // subscriptError function. Displays an error message and *
44 // terminates the program when a subscript is out of range. *
45 //***
46
47 void IntArray::subscriptError()
48 {
49 cout << "ERROR: Subscript out of range.\n";
50 exit(0);
51 }
52
53 //***
54 // Overloaded [] operator. The argument is a subscript. *
55 // This function returns a reference to the element *
56 // in the array indexed by the subscript. *
57 //***
58
59 int &IntArray::operator[](const int &sub)
60 {
61 if (sub < 0 || sub >= arraySize)
62 subscriptError();
63 return aptr[sub];
64 }

Before focusing on the overloaded operator, let’s look at the constructors and the destructor.
The code for the first constructor in lines 12 through 18 of the IntArray.cpp file follows:

IntArray::IntArray(int s)
{
 arraySize = s;
 aptr = new int [s];
 for (int count = 0; count < arraySize; count++)
 *(aptr + count) = 0;
}

When an instance of the class is defined, the number of elements the array is to have is
passed into the constructor’s parameter, s. This value is copied to the arraySize member,

14.5 Operator Overloading 843

and then used to dynamically allocate enough memory for the array. The constructor’s
final step is to store zeros in all of the array’s elements:

for (int count = 0; count < arraySize; count++)
 *(aptr + count) = 0;

The class also has a copy constructor in lines 24 through 30, which is used when a class
object is initialized with another object’s data:

IntArray::IntArray(const IntArray &obj)
{
 arraySize = obj.arraySize;
 aptr = new int [arraySize];
 for(int count = 0; count < arraySize; count++)
 *(aptr + count) = *(obj.aptr + count);
}

A reference to the initializing object is passed into the parameter obj. Once the memory is
successfully allocated for the array, the constructor copies all the values in obj’s array into
the calling object’s array.

The destructor, in lines 36 through 40, simply frees the memory allocated by the class’s
constructors. First, however, it checks the value in arraySize to be sure the array has at
least one element:

IntArray::~IntArray()
{
 if (arraySize > 0)
 delete [] aptr;
}

The [] operator is overloaded similarly to other operators. The definition of the
operator[] function appears in lines 59 through 64:

int &IntArray::operator[](const int &sub)
{
 if (sub < 0 || sub >= arraySize)
 subscriptError();
 return aptr[sub];
}

The operator[] function can have only a single parameter. The one shown uses a con-
stant reference to an integer. This parameter holds the value placed inside the brackets in
an expression. For example, if table is an IntArray object, the number 12 will be passed
into the sub parameter in the following statement:

cout << table[12];

Inside the function, the value in the sub parameter is tested by the following if statement:

if (sub < 0 || sub >= arraySize)
 subscriptError();

This statement determines whether sub is within the range of the array’s subscripts. If sub
is less than 0 or greater than or equal to arraySize, it’s not a valid subscript, so the
subscriptError function is called. If sub is within range, the function uses it as an offset
into the array, and returns a reference to the value stored at that location.

844 Chapter 14 More About Classes

One critically important aspect of the function above is its return type. It’s crucial that the
function return not simply an integer, but a reference to an integer. The reason for this is
that expressions such as the following must be possible:

table[5] = 27;

Remember, the built-in = operator requires the object on its left to be an lvalue. An lvalue
must represent a modifiable memory location, such as a variable. The integer return value
of a function is not an lvalue. If the operator[] function merely returns an integer, it can-
not be used to create expressions placed on the left side of an assignment operator.

A reference to an integer, however, is an lvalue. If the operator[] function returns a ref-
erence, it can be used to create expressions like the following:

table[7] = 52;

In this statement, the operator[] function is called with 7 passed as its argument.
Assuming 7 is within range, the function returns a reference to the integer stored at (aptr
+ 7). In essence, the statement above is equivalent to:

*(aptr + 7) = 52;

Because the operator[] function returns actual integers stored in the array, it is not nec-
essary for math or relational operators to be overloaded. Even the stream operators <<
and >> will work just as they are with the IntArray class.

Program 14-12 demonstrates how the class works.

Program 14-12

 1 // This program demonstrates an overloaded [] operator.
 2 #include <iostream>
 3 #include "IntArray.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 10; // Array size
 9
10 // Define an IntArray with 10 elements.
11 IntArray table(SIZE);
12
13 // Store values in the array.
14 for (int x = 0; x < SIZE; x++)
15 table[x] = (x * 2);
16
17 // Display the values in the array.
18 for (int x = 0; x < SIZE; x++)
19 cout << table[x] << " ";
20 cout << endl;
21
22 // Use the standard + operator on array elements.
23 for (int x = 0; x < SIZE; x++)
24 table[x] = table[x] + 5;
25

14.5 Operator Overloading 845

Program 14-13 demonstrates the IntArray class’s bounds-checking capability.

26 // Display the values in the array.
27 for (int x = 0; x < SIZE; x++)
28 cout << table[x] << " ";
29 cout << endl;
30
31 // Use the standard ++ operator on array elements.
32 for (int x = 0; x < SIZE; x++)
33 table[x]++;
34
35 // Display the values in the array.
36 for (int x = 0; x < SIZE; x++)
37 cout << table[x] << " ";
38 cout << endl;
39
40 return 0;
41 }

Program Output
0 2 4 6 8 10 12 14 16 18
5 7 9 11 13 15 17 19 21 23
6 8 10 12 14 16 18 20 22 24

Program 14-13

 1 // This program demonstrates the IntArray class's bounds-checking ability.
 2 #include <iostream>
 3 #include "IntArray.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 const int SIZE = 10; // Array size
 9
10 // Define an IntArray with 10 elements.
11 IntArray table(SIZE);
12
13 // Store values in the array.
14 for (int x = 0; x < SIZE; x++)
15 table[x] = x;
16
17 // Display the values in the array.
18 for (int x = 0; x < SIZE; x++)
19 cout << table[x] << " ";
20 cout << endl;
21
22 // Attempt to use an invalid subscript.
23 cout << "Now attempting to use an invalid subscript.\n";
24 table[SIZE + 1] = 0;
25 return 0;
26 }

(program output continues)

846 Chapter 14 More About Classes

Checkpoint
14.21 Describe the values that should be returned from functions that overload rela-

tional operators.

14.22 What is the advantage of overloading the << and >> operators?

14.23 What type of object should an overloaded << operator function return?

14.24 What type of object should an overloaded >> operator function return?

14.25 If an overloaded << or >> operator accesses a private member of a class, what
must be done in that class’s declaration?

14.26 Assume the class NumList has overloaded the [] operator. In the expression
below, list1 is an instance of the NumList class:

list1[25]

Rewrite the expression above to explicitly call the function that overloads the []
operator.

14.6 Object Conversion

CONCEPT: Special operator functions may be written to convert a class object to any
other type.

As you’ve already seen, operator functions allow classes to work more like built-in data
types. Another capability that operator functions can give classes is automatic type con-
version.

Data type conversion happens “behind the scenes” with the built-in data types. For
instance, suppose a program uses the following variables:

int i;
double d;

The statement below automatically converts the value in i to a floating-point number and
stores it in d:

d = i;

Likewise, the following statement converts the value in d to an integer (truncating the
fractional part) and stores it in i:

i = d;

Program Output
0 1 2 3 4 5 6 7 8 9
Now attempting to use an invalid subscript.
ERROR: Subscript out of range.

Program 14-13 (continued)

14.6 Object Conversion 847

The same functionality can also be given to class objects. For example, assuming
distance is a FeetInches object and d is a double, the following statement would con-
veniently convert distance’s value into a floating-point number and store it in d, if
FeetInches is properly written:

d = distance;

To be able to use a statement such as this, an operator function must be written to per-
form the conversion. The Student Source Code Folder Chapter 14\FeetInches Version
5 contains a version of the FeetInches class with such an operator function. Here is the
code for the operator function that converts a FeetInches object to a double:

FeetInches::operator double()
{
 double temp = feet;

 temp += (inches / 12.0);
 return temp;
}

This function contains an algorithm that will calculate the decimal equivalent of a feet and
inches measurement. For example, the value 4 feet 6 inches will be converted to 4.5. This
value is stored in the local variable temp. The temp variable is then returned.

The revised FeetInches class also has an operator function that converts a FeetInches
object to an int. The function, shown here, simply returns the feet member, thus trun-
cating the inches value:

FeetInches:: operator int()
{
 return feet;
}

Program 14-14 demonstrates both of these conversion functions. (This file is also stored in
the Student Source Code Folder Chapter 14\FeetInches Version 5.)

NOTE: No return type is specified in the function header. Because the function is a
FeetInches-to-double conversion function, it will always return a double. Also,
because the function takes no arguments, there are no parameters.

Program 14-14

 1 // This program demonstrates the the FeetInches class's
 2 // conversion functions.
 3 #include <iostream>
 4 #include "FeetInches.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 double d; // To hold double input
10 int i; // To hold int input
11

(program continues)

848 Chapter 14 More About Classes

See the Case Study on Creating a String Class on the Student CD.

Checkpoint
14.27 When overloading a binary operator such as + or –, what object is passed into the

operator function’s parameter?

14.28 Explain why overloaded prefix and postfix ++ and -- operator functions should
return a value.

14.29 How does C++ tell the difference between an overloaded prefix and postfix ++ or
-- operator function?

14.30 Write member functions of the FeetInches class that overload the prefix and
postfix -- operators. Demonstrate the functions in a simple program similar to
Program 14-14.

14.7 Aggregation

CONCEPT: Aggregation occurs when a class contains an instance of another class.

In real life, objects are frequently made of other objects. A house, for example, is made of
door objects, window objects, wall objects, and much more. It is the combination of all
these objects that makes a house object.

12 // Define a FeetInches object.
13 FeetInches distance;
14
15 // Get a distance from the user.
16 cout << "Enter a distance in feet and inches:\n";
17 cin >> distance;
18
19 // Convert the distance object to a double.
20 d = distance;
21
22 // Convert the distance object to an int.
23 i = distance;
24
25 // Display the values.
26 cout << "The value " << distance;
27 cout << " is equivalent to " << d << " feet\n";
28 cout << "or " << i << " feet, rounded down.\n";
29 return 0;
30 }

Program Output with Example Input Shown in Bold
Enter a distance in feet and inches:
Feet: 8 [Enter]
Inches: 6 [Enter]
The value 8 feet, 6 inches is equivalent to 8.5 feet
or 8 feet, rounded down.

Program 14-14 (continued)

Class
Aggregation

14.7 Aggregation 849

When designing software, it sometimes makes sense to create an object from other objects.
For example, suppose you need an object to represent a course that you are taking in col-
lege. You decide to create a Course class, which will hold the following information:

• The course name
• The instructor’s last name, first name, and office number
• The textbook’s title, author, and publisher

In addition to the course name, the class will hold items related to the instructor and the
textbook. You could put attributes for each of these items in the Course class. However, a
good design principle is to separate related items into their own classes. In this example,
an Instructor class could be created to hold the instructor-related data and a TextBook
class could be created to hold the textbook-related data. Instances of these classes could
then be used as attributes in the Course class.

Let’s take a closer look at how this might be done. To keep things simple, the Instructor
class will have only the following functions:

• A default constructor that assigns empty strings to the instructor’s last name, first
name, and office number.

• A constructor that accepts arguments for the instructor’s last name, first name,
and office number

• A set function that can be used to set all of the class’s attributes
• A print function that displays the object’s attribute values

The code for the Instructor class is shown here:

Contents of Instructor.h

 1 #ifndef INSTRUCTOR
 2 #define INSTRUCTOR
 3 #include <iostream>
 4 #include <cstring>
 5 using namespace std;
 6
 7 // Constants for array sizes
 8 const int NAME_SIZE = 51;
 9 const int OFFICE_NUM_SIZE = 21;
10
11 // Instructor class
12 class Instructor
13 {
14 private:
15 char lastName[NAME_SIZE]; // Last name
16 char firstName[NAME_SIZE]; // First name
17 char officeNumber[OFFICE_NUM_SIZE]; // Office number
18 public:
19 // The default constructor stores empty strings
20 // in the char arrays.
21 Instructor()
22 { set("", "", ""); }
23
24 // Constructor
25 Instructor(char *lname, char *fname, char *office)

850 Chapter 14 More About Classes

26 { set(lname, fname, office); }
27
28 // set function
29 void set(const char *lname, const char *fname,
30 const char *office)
31 { strncpy(lastName, lname, NAME_SIZE);
32 lastName[NAME_SIZE - 1] = '\0';
33
34 strncpy(firstName, fname, NAME_SIZE);
35 firstName[NAME_SIZE - 1] = '\0';
36
37 strncpy(officeNumber, office, OFFICE_NUM_SIZE);
38 officeNumber[OFFICE_NUM_SIZE - 1] = '\0'; }
39
40 // print function
41 void print() const
42 { cout << "Last name: " << lastName << endl;
43 cout << "First name: " << firstName << endl;
44 cout << "Office number: " << officeNumber << endl; }
45 };
46 #endif

The code for the TextBook class is shown next. As before, we want to keep the class
simple. The only functions it has are a default constructor, a constructor that accepts argu-
ments, a set function, and a print function.

Contents of TextBook.h

 1 #ifndef TEXTBOOK
 2 #define TEXTBOOK
 3 #include <iostream>
 4 #include <cstring>
 5 using namespace std;
 6
 7 // Constant for array sizes
 8 const int PUB_SIZE = 51;
 9
10 // TextBook class
11 class TextBook
12 {
13 private:
14 char title[PUB_SIZE]; // Book title
15 char author[PUB_SIZE]; // Author name
16 char publisher[PUB_SIZE]; // Publisher name
17 public:
18 // The default constructor stores empty strings
19 // in the char arrays.
20 TextBook()
21 { set("", "", ""); }
22
23 // Constructor
24 TextBook(char *textTitle, char *auth, char *pub)
25 { set(textTitle, auth, pub); }
26
27 // set function

14.7 Aggregation 851

28 void set(const char *textTitle, const char *auth,
29 const char *pub)
30 { strncpy(title, textTitle, PUB_SIZE);
31 title[NAME_SIZE - 1] = '\0';
32
33 strncpy(author, auth, PUB_SIZE);
34 author[NAME_SIZE - 1] = '\0';
35
36 strncpy(publisher, pub, PUB_SIZE);
37 publisher[OFFICE_NUM_SIZE - 1] = '\0'; }
38
39 // print function
40 void print() const
41 { cout << "Title: " << title << endl;
42 cout << "Author: " << author << endl;
43 cout << "Publisher: " << publisher << endl; }
44 };
45 #endif

The Course class is shown next. Notice that the Course class has an Instructor object
and a TextBook object as member variables. Those objects are used as attributes of the
Course object. Making an instance of one class an attribute of another class is called
object aggregation. The word aggregate means “a whole that is made of constituent
parts.” In this example, the Course class is an aggregate class because an instance of it is
made of constituent objects.

When an instance of one class is a member of another class, it is said that there is a “has
a” relationship between the classes. For example, the relationships that exist among the
Course, Instructor, and TextBook classes can be described as follows:

• The course has an instructor.
• The course has a textbook.

The “has a” relationship is sometimes called a whole–part relationship because one object
is part of a greater whole.

Contents of Course.h

 1 #ifndef COURSE
 2 #define COURSE
 3 #include <iostream>
 4 #include <cstring>
 5 #include "Instructor.h"
 6 #include "TextBook.h"
 7 using namespace std;
 8
 9 // Constant for course name
10 const int COURSE_SIZE = 51;
11
12 class Course
13 {
14 private:
15 char courseName[COURSE_SIZE]; // Course name
16 Instructor instructor; // Instructor
17 TextBook textbook; // Textbook

852 Chapter 14 More About Classes

18 public:
19 // Constructor
20 Course(const char *course, const char *instrLastName,
21 const char *instrFirstName, const char *instrOffice,
22 const char *textTitle, const char *author,
23 const char *publisher)
24 { // Assign the course name.
25 strncpy(courseName, course, COURSE_SIZE);
26 courseName[COURSE_SIZE - 1] = '\0';
27
28 // Assign the instructor.
29 instructor.set(instrLastName, instrFirstName, instrOffice);
30
31 // Assign the textbook.
32 textbook.set(textTitle, author, publisher); }
33
34 // print function
35 void print() const
36 { cout << "Course name: " << courseName << endl << endl;
37 cout << "Instructor Information:\n";
38 instructor.print();
39 cout << "\nTextbook Information:\n";
40 textbook.print();
41 cout << endl; }
42 };
43 #endif

Program 14-15 demonstrates the Course class.

Program 14-15

 1 // This program demonstrates the Course class.
 2 #include "Course.h"
 3
 4 int main()
 5 {
 6 // Create a Course object.
 7 Course myCourse("Intro to Computer Science", // Course name
 8 "Kramer", "Shawn", "RH3010", // Instructor info
 9 "Starting Out with C++", "Gaddis", // Textbook title and author
10 "Addison-Wesley"); // Textbook publisher
11
12 // Display the course info.
13 myCourse.print();
14 return 0;
15 }

Program Output
Course name: Intro to Computer Science

Instructor Information:
Last name: Kramer
First name: Shawn
Office number: RH3010

14.7 Aggregation 853

Aggregation in UML Diagrams
In Chapter 13 you were introduced to the Unified Modeling Language (UML) as a tool for
designing classes. You show aggregation in a UML diagram by connecting two classes
with a line that has an open diamond at one end. The diamond is closest to the class that
is the aggregate. Figure 14-5 shows a UML diagram depicting the relationship between the
Course, Instructor, and TextBook classes. The open diamond is closest to the Course
class because it is the aggregate (the whole).

Textbook Information:
Title: Starting Out with C++
Author: Gaddis
Publisher: Addison-Wesley

Figure 14-5

- courseName : char []
- instructor : Instructor
- textBook : TextBook

+ Course(name : char *, instr : &Instructor,
 text : &TextBook) :
+ print() : void

Course

- lastName : char []
- firstName : char []
- officeNumber : char []

+ Instructor(lname : char *, fname : char *,
 office : char *) :
+ Instructor(obj : &Instructor) :
+ set(lname : char *, fname : char *,
 office : char *) : void
+ print() : void

Instructor

- title : char []
- author : char []
- publisher : char []

+ TextBook(textTitle : char *, auth : char *,
 pub : char *) :
+ TextBook(obj : &TextBook) :
+ set(textTitle : char *, auth : char *,
 pub : char *) : void
+ print() : void

TextBook

854 Chapter 14 More About Classes

14.8
Focus on Object-Oriented Design:
Class Collaborations

CONCEPT: It is common for classes to interact, or collaborate, with one another to
perform their operations. Part of the object-oriented design process is
identifying the collaborations between classes.

In an object-oriented application it is common for objects of different classes to collabo-
rate. This simply means that objects interact with each other. Sometimes one object will
need the services of another object in order to fulfill its responsibilities. For example, let’s
say an object needs to read a number from the keyboard and then format the number to
appear as a dollar amount. The object might use the services of the cin object to read the
number from the keyboard, and then use the services of another object that is designed to
format the number.

If one object is to collaborate with another object, then it must know something about the
other object’s member functions and how to call them. Let’s look at an example.

The following code shows a class named Stock. An object of this class holds data about a
company’s stock. This class has two attributes: symbol and sharePrice. The symbol
attribute holds the trading symbol for the company’s stock. This is a short series of charac-
ters that are used to identify the stock on the stock exchange. For example, the XYZ Com-
pany’s stock might have the trading symbol XYZ. The sharePrice attribute holds the
current price per share of the stock. The class also has the following member functions:

• A default constructor that initializes symbol to an empty string and sharePrice
to 0.0.

• A constructor that accepts arguments for the symbol and share price.
• A copy constructor
• A set function that accepts arguments for the symbol and share price.
• A getSymbol function that returns the stock’s trading symbol.
• A getSharePrice function that returns the current price of the stock.

Contents of Stock.h
 1 #ifndef STOCK
 2 #define STOCK
 3 #include <cstring>
 4
 5 // Constant for symbol array.
 6 const int SYMBOL_SIZE = 6;
 7
 8 class Stock
 9 {
10 private:
11 char symbol[SYMBOL_SIZE]; // Trading symbol of the stock
12 double sharePrice; // Current price per share

14.8 Focus on Object-Oriented Design: Class Collaborations 855

13 public:
14 // Default Constructor
15 Stock()
16 { set("", 0.0); }
17
18 // Constructor
19 Stock(const char *sym, double price)
20 { set(sym, price); }
21
22 // Copy constructor
23 Stock(const Stock &obj)
24 { set(obj.symbol, obj.sharePrice); }
25
26 // Mutator function
27 void set(const char *sym, double price)
28 { strncpy(symbol, sym, SYMBOL_SIZE);
29 symbol[SYMBOL_SIZE - 1] = '\0';
30 sharePrice = price; }
31
32 // Accessor functions
33 const char *getSymbol() const
34 { return symbol; }
35
36 double getSharePrice() const
37 { return sharePrice; }
38 };
39 #endif

The following code shows another class named StockPurchase that uses an object of the
Stock class to simulate the purchase of a stock. The StockPurchase class is responsible
for calculating the cost of the stock purchase. To do that, the StockPurchase class must
know how to call the Stock class’s getSharePrice function to get the price per share of
the stock.

Contents of StockPurchase.h
 1 #ifndef STOCK_PURCHASE
 2 #define STOCK_PURCHASE
 3 #include "Stock.h"
 4
 5 class StockPurchase
 6 {
 7 private:
 8 Stock stock; // The stock that was purchased
 9 int shares; // The number of shares
10 public:
11 // The default constructor sets shares to 0. The stock
12 // object is initialized by its default constructor.
13 StockPurchase()
14 { shares = 0; }
15

856 Chapter 14 More About Classes

16 // Constructor
17 StockPurchase(const Stock &stockObject, int numShares)
18 { stock = stockObject;
19 shares = numShares; }
20
21 // Accessor function
22 double getCost() const
23 { return shares * stock.getSharePrice(); }
24 };
25 #endif

The second constructor for the StockPurchase class accepts a Stock object representing
the stock that is being purchased, and an int representing the number of shares to pur-
chase. In line 18 we see the first collaboration: the StockPurchase constructor makes a
copy of the Stock object by using the Stock class’s copy constructor. The next collabora-
tion takes place in the getCost function. This function calculates and returns the cost of
the stock purchase. In line 23 it calls the Stock class’s getSharePrice function to deter-
mine the stock’s price per share. Program 14-16 demonstrates this class.

Program 14-16

 1 // Stock trader program
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "Stock.h"
 5 #include "StockPurchase.h"
 6 using namespace std;
 7
 8 int main()
 9 {
10 int sharesToBuy; // Number of shares to buy
11
12 // Create a Stock object for the company stock. The
13 // trading symbol is XYZ and the stock is currently
14 // priced at $9.62 per share.
15 Stock xyzCompany("XYZ", 9.62);
16
17 // Display the symbol and current share price.
18 cout << setprecision(2) << fixed << showpoint;
19 cout << "XYZ Company's trading symbol is "
20 << xyzCompany.getSymbol() << endl;
21 cout << "The stock is currently $"
22 << xyzCompany.getSharePrice()
23 << " per share.\n";
24
25 // Get the number of shares to purchase.
26 cout << "How many shares do you want to buy? ";
27 cin >> sharesToBuy;
28

14.8 Focus on Object-Oriented Design: Class Collaborations 857

Determining Class Collaborations with CRC Cards
During the object-oriented design process, you can determine many of the collaborations
that will be necessary between classes by examining the responsibilities of the classes. In
Chapter 13 we discussed the process of finding the classes and their responsibilities. Recall
from that section that a class’s responsibilities are

• the things that the class is responsible for knowing
• the actions that the class is responsible for doing

Often you will determine that the class must collaborate with another class in order to ful-
fill one or more of its responsibilities. One popular method of discovering a class’s respon-
sibilities and collaborations is by creating CRC cards. CRC stands for class,
responsibilities, and collaborations.

You can use simple index cards for this procedure. Once you have gone through the pro-
cess of finding the classes (which is discussed in Chapter 13), set aside one index card for
each class. At the top of the index card, write the name of the class. Divide the rest of the
card into two columns. In the left column, write each of the class’s responsibilities. As you
write each responsibility, think about whether the class needs to collaborate with another
class to fulfill that responsibility. Ask yourself questions such as

• Will an object of this class need to get data from another object in order to fulfill
this responsibility?

• Will an object of this class need to request another object to perform an operation
in order to fulfill this responsibility?

If collaboration is required, write the name of the collaborating class in the right column,
next to the responsibility that requires it. If no collaboration is required for a responsibil-
ity, simply write “None” in the right column, or leave it blank. Figure 14-6 shows an
example CRC card for the StockPurchase class.

29 // Create a StockPurchase object for the transaction.
30 StockPurchase buy(xyzCompany, sharesToBuy);
31
32 // Display the cost of the transaction.
33 cout << "The cost of the transaction is $"
34 << buy.getCost() << endl;
35 return 0;
36 }

Program Output with Example Input Shown in Bold
XYZ Company's trading symbol is XYZ
The stock is currently $9.62 per share.
How many shares do you want to buy? 100 [Enter]
The cost of the transaction is $962.00

858 Chapter 14 More About Classes

From the CRC card shown in the figure, we can see that the StockPurhcase class has the
following responsibilities and collaborations:

• Responsibility: To know the stock to purchase
Collaboration: The Stock class

• Responsibility: To know the number of shares to purchase
Collaboration: None

• Responsibility: To calculate the cost of the purchase
Collaboration: The Stock class

When you have completed a CRC card for each class in the application, you will have a
good idea of each class’s responsibilities and how the classes must interact.

Checkpoint
14.31 What are the benefits of having operator functions that perform object conversion?

14.32 Why are no return types listed in the prototypes or headers of operator functions
that perform data type conversion?

14.33 Assume there is a class named BlackBox. Write the header for a member function
that converts a BlackBox object to an int.

14.34 Assume there are two classes, Big and Small. The Big class has, as a member, an
instance of the Small class. Write a sentence that describes the relationship
between the two classes.

Figure 14-6

StockPurchase
Know the stock to
purchase

Know the number of
shares to purchase

Calculate the cost of
the purchase

Stock class

Stock class

None

Name of the class

Responsibilities Collaborating
classes

Review Questions and Exercises 859

Review Questions and Exercises

Short Answer
1. Describe the difference between an instance member variable and a static member

variable.

2. Assume that a class named Numbers has the following static member function
declaration:

static void showTotal();

Write a statement that calls the showTotal function.

3. A static member variable is declared in a class. Where is the static member variable
defined?

4. What is a friend function?

5. Why is it not always a good idea to make an entire class a friend of another class?

6. What is memberwise assignment?

7. When is a copy constructor called?

8. How can the compiler determine if a constructor is a copy constructor?

9. Describe a situation where memberwise assignment is not desirable.

10. Why must the parameter of a copy constructor be a reference?

11. What is a default copy constructor?

12. Why would a programmer want to overload operators rather than use regular mem-
ber functions to perform similar operations?

13. What is passed to the parameter of a class’s operator= function?

14. Why shouldn’t a class’s overloaded = operator be implemented with a void operator
function?

15. How does the compiler know whether an overloaded ++ operator should be used in
prefix or postfix mode?

16. What is the this pointer?

17. What type of value should be returned from an overloaded relational operator
function?

18. The class Stuff has both a copy constructor and an overloaded = operator. Assume
that blob and clump are both instances of the Stuff class. For each statement below,
indicate whether the copy constructor or the overloaded = operator will be called.

Stuff blob = clump;
clump = blob;
blob.operator=(clump);
showValues(blob); // blob is passed by value.

19. Explain the programming steps necessary to make a class’s member variable static.

20. Explain the programming steps necessary to make a class’s member function static.

21. Consider the following class declaration:
class Thing
{
private:
 int x;

860 Chapter 14 More About Classes

 int y;
 static int z;
public:
 Thing()
 { x = y = z; }
 static void putThing(int a)
 { z = a; }
};

Assume a program containing the class declaration defines three Thing objects with
the following statement:
Thing one, two, three;

How many separate instances of the x member exist?

How many separate instances of the y member exist?

How many separate instances of the z member exist?

What value will be stored in the x and y members of each object?

Write a statement that will call the PutThing member function before the objects
above are defined.

22. Describe the difference between making a class a member of another class (object
aggregation), and making a class a friend of another class.

23. What is the purpose of a forward declaration of a class?

24. Explain why memberwise assignment can cause problems with a class that contains a
pointer member.

25. Why is a class’s copy constructor called when an object of that class is passed by value
into a function?

Fill-in-the-Blank

26. If a member variable is declared __________, all objects of that class have access to
the same variable.

27. Static member variables are defined __________ the class.

28. A(n) __________ member function cannot access any nonstatic member variables in
its own class.

29. A static member function may be called __________ any instances of its class are
defined.

30. A(n) __________ function is not a member of a class, but has access to the private
members of the class.

31. A(n) __________ tells the compiler that a specific class will be declared later in the
program.

32. __________ is the default behavior when an object is assigned the value of another
object of the same class.

33. A(n) __________ is a special constructor, called whenever a new object is initialized
with another object’s data.

34. __________ is a special built-in pointer that is automatically passed as a hidden argu-
ment to all nonstatic member functions.

35. An operator may be __________ to work with a specific class.

Review Questions and Exercises 861

36. When overloading the __________ operator, its function must have a dummy
parameter.

37. Making an instance of one class a member of another class is called __________.

38. Object aggregation is useful for creating a(n) __________ relationship between two
classes.

Algorithm Workbench

39. Assume a class named Bird exists. Write the header for a member function that over-
loads the = operator for that class.

40. Assume a class named Dollars exists. Write the headers for member functions that
overload the prefix and postfix ++ operators for that class.

41. Assume a class named Yen exists. Write the header for a member function that over-
loads the < operator for that class.

42. Assume a class named Length exists. Write the header for a member function that
overloads cout’s << operator for that class.

43. Assume a class named Collection exists. Write the header for a member function
that overloads the [] operator for that class.

True or False
44. T F Static member variables cannot be accessed by nonstatic member functions.

45. T F Static member variables are defined outside their class declaration.

46. T F A static member function may refer to nonstatic member variables of the same
class, but only after an instance of the class has been defined.

47. T F When a function is declared a friend by a class, it becomes a member of
that class.

48. T F A friend function has access to the private members of the class declaring it
a friend.

49. T F An entire class may be declared a friend of another class.

50. T F In order for a function or class to become a friend of another class, it must be
declared as such by the class granting it access.

51. T F If a class has a pointer as a member, it’s a good idea to also have a copy con-
structor.

52. T F You cannot use the = operator to assign one object’s values to another object,
unless you overload the operator.

53. T F If a class doesn’t have a copy constructor, the compiler generates a default copy
constructor for it.

54. T F If a class has a copy constructor, and an object of that class is passed by value
into a function, the function’s parameter will not call its copy constructor.

55. T F The this pointer is passed to static member functions.

56. T F All functions that overload unary operators must have a dummy parameter.

57. T F For an object to perform automatic type conversion, an operator function must
be written.

58. T F It is possible to have an instance of one class as a member of another class.

862 Chapter 14 More About Classes

Find the Error

Each of the following class declarations has errors. Locate as many as you can.

59. class Box
{
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 Box(Box b) // Copy constructor
 { width = b.width;
 length = b.length;
 height = b.height; }

 ... Other member functions follow ...
};

60. class Circle
{
 private:
 double diameter;
 int centerX;
 int centerY;
 public:
 Circle(double d, int x, int y)
 { diameter = d; centerX = x; centerY = y; }
 // Overloaded = operator
 void Circle=(Circle &right)
 { diameter = right.diameter;
 centerX = right.centerX;
 centerY = right.centerY; }

 ... Other member functions follow ...
 };

61. class Point
{
 private:
 int xCoord;
 int yCoord;
 public:
 Point (int x, int y)
 { xCoord = x; yCoord = y; }
 // Overloaded + operator
 void operator+(const &Point right)
 { xCoord += right.xCoord;
 yCoord += right.yCoord;
 }

 ... Other member functions follow ...
};

Review Questions and Exercises 863

62. class Box
{
 private:
 double width;
 double length;
 double height;
 public:
 Box(double w, l, h)
 { width = w; length = l; height = h; }
 // Overloaded prefix ++ operator
 void operator++()
 { ++width; ++length; }
 // Overloaded postfix ++ operator
 void operator++()
 { width++; length++; }

 ... Other member functions follow ...
};

63. class Yard
{
 private:
 float length;
 public:
 yard(float l)
 { length = l; }
 // float conversion function
 void operator float()
 { return length; }

 ... Other member functions follow ...
};

Programming Challenges

1. Numbers Class

Design a class Numbers that can be used to translate whole dollar amounts in the
range 0 through 9999 into an English description of the number. For example, the
number 713 would be translated into the string seven hundred thirteen, and 8203
would be translated into eight thousand two hundred three. The class should have a
single integer member variable:

int number;

and a static array of strings that specify how to translate key dollar amounts into the
desired format. For example, you might use static strings such as

char lessThan20[20][25] = {"zero", "one", …, "eighteen", "nineteen"};
char hundred[] = "hundred";
char thousand[] = "thousand";

The class should have a constructor that accepts a nonnegative integer and uses it to
initialize the Numbers object. It should have a member function print() that prints
the English description of the Numbers object. Demonstrate the class by writing a
main program that asks the user to enter a number in the proper range and then prints
out its English description.

864 Chapter 14 More About Classes

2. Day of the Year

Assuming that a year has 365 days, write a class named DayOfYear that takes an inte-
ger representing a day of the year and translates it to a string consisting of the month
followed by day of the month. For example,

Day 2 would be January 2.
Day 32 would be February 1.
Day 365 would be December 31.

The constructor for the class should take as parameter an integer representing the day
of the year, and the class should have a member function print() that prints the day
in the month–day format. The class should have an integer member variable to repre-
sent the day, and should have static member variables holding strings that can be used
to assist in the translation from the integer format to the month-day format.

Test your class by inputting various integers representing days and printing out their
representation in the month–day format.

3. Day of the Year Modification

Modify the DayOfYear class, written in Programming Challenge 2, to add a construc-
tor that takes two parameters: a string representing a month and an integer in the
range 0 through 31 representing the day of the month. The constructor should then
initialize the integer member of the class to represent the day specified by the month
and day of month parameters. The constructor should terminate the program with an
appropriate error message if the number entered for a day is outside the range of days
for the month given.

Add the following overloaded operators:

++ prefix and postfix increment operators. These operators should modify the
DayOfYear object so that it represents the next day. If the day is already the end
of the year, the new value of the object will represent the first day of the year.

-- prefix and postfix decrement operators. These operators should modify the
DayOfYear object so that it represents the previous day. If the day is already the
first day of the year, the new value of the object will represent the last day of the
year.

4. NumDays Class

Design a class called NumDays. The class’s purpose is to store a value that represents a
number of work hours and convert it to a number of days. For example, 8 hours
would be converted to 1 day, 12 hours would be converted to 1.5 days, and 18 hours
would be converted to 2.25 days. The class should have a constructor that accepts a
number of hours, as well as member functions for storing and retrieving the hours and
days. The class should also have the following overloaded operators:

+ Addition operator. When two NumDays objects are added together, the over-
loaded + operator should return the sum of the two objects’ hours members.

- Subtraction operator. When one NumDays object is subtracted from another,
the overloaded - operator should return the difference of the two objects’
hours members.

Solving the
NumDays
Problem

Review Questions and Exercises 865

++ Prefix and postfix increment operators. These operators should increment the
number of hours stored in the object. When incremented, the number of days
should be automatically recalculated.

-- Prefix and postfix decrement operators. These operators should decrement the
number of hours stored in the object. When decremented, the number of days
should be automatically recalculated.

5. Time Off

Design a class named TimeOff. The purpose of the class is to track an employee’s sick
leave, vacation, and unpaid time off. It should have, as members, the following
instances of the NumDays class described in Programming Challenge 4:

maxSickDays A NumDays object that records the maximum number of days of
sick leave the employee may take.

sickTaken A NumDays object that records the number of days of sick leave the
employee has already taken.

maxVacation A NumDays object that records the maximum number of days of
paid vacation the employee may take.

vacTaken A NumDays object that records the number of days of paid vacation
the employee has already taken.

maxUnpaid A NumDays object that records the maximum number of days of
unpaid vacation the employee may take.

unpaidTaken A NumDays object that records the number of days of unpaid leave
the employee has taken.

Additionally, the class should have members for holding the employee’s name and
identification number. It should have an appropriate constructor and member func-
tions for storing and retrieving data in any of the member objects.

Input Validation: Company policy states that an employee may not accumulate more
than 240 hours of paid vacation. The class should not allow the maxVacation object
to store a value greater than this amount.

6. Personnel Report

Write a program that uses an instance of the TimeOff class you designed in Program-
ming Challenge 5. The program should ask the user to enter the number of months an
employee has worked for the company. It should then use the TimeOff object to cal-
culate and display the employee’s maximum number of sick leave and vacation days.
Employees earn 12 hours of vacation leave and 8 hours of sick leave per month.

NOTE: This assignment assumes you have already completed Programming Challenge 4.

NOTE: This assignment assumes you have already completed Programming
Challenges 4 and 5.

866 Chapter 14 More About Classes

7. Month Class

Design a class named Month. The class should have the following private members:

• name A string object that holds the name of a month, such as “January,”
“February,” etc.

• monthNumber An integer variable that holds the number of the month. For
example, January would be 1, February would be 2, etc. Valid values for this
variable are 1 through 12.

In addition, provide the following member functions:

• A default constructor that sets monthNumber to 1 and name to “January.”
• A constructor that accepts the name of the month as an argument. It should set

name to the value passed as the argument and set monthNumber to the correct
value.

• A constructor that accepts the number of the month as an argument. It should set
monthNumber to the value passed as the argument and set name to the correct
month name.

• Appropriate set and get functions for the name and monthNumber member vari-
ables.

• Prefix and postfix overloaded ++ operator functions that increment monthNumber
and set name to the name of next month. If monthNumber is set to 12 when these
functions execute, they should set monthNumber to 1 and name to “January.”

• Prefix and postfix overloaded -- operator functions that decrement monthNumber
and set name to the name of previous month. If monthNumber is set to 1 when these
functions execute, they should set monthNumber to 12 and name to “December.”

Also, you should overload cout’s << operator and cin’s >> operator to work with the
Month class. Demonstrate the class in a program.

8. Date Class Modification

Modify the Date class in Programming Challenge 1 of Chapter 13. The new version
should have the following overloaded operators:

++ Prefix and postfix increment operators. These operators should increment the
object’s day member.

-- Prefix and postfix decrement operators. These operators should decrement the
object’s day member.

- Subtraction operator. If one Date object is subtracted from another, the operator
should give the number of days between the two dates. For example, if April 10,
2010 is subtracted from April 18, 2010, the result will be 8.

<< cout’s stream insertion operator. This operator should cause the date to be dis-
played in the form

 April 18, 2010

>> cin’s stream extraction operator. This operator should prompt the user for a
date to be stored in a Date object.

The class should detect the following conditions and handle them accordingly:

Review Questions and Exercises 867

• When a date is set to the last day of the month and incremented, it should become
the first day of the following month.

• When a date is set to December 31 and incremented, it should become January 1
of the following year.

• When a day is set to the first day of the month and decremented, it should
become the last day of the previous month.

• When a date is set to January 1 and decremented, it should become December 31
of the previous year.

Demonstrate the class’s capabilities in a simple program.

Input Validation: The overloaded >> operator should not accept invalid dates. For
example, the date 13/45/09 should not be accepted.

9. FeetInches Modification

Modify the FeetInches class discussed in this chapter so it overloads the following
operators:

<=
>=
!=

Demonstrate the class’s capabilities in a simple program.

10. Corporate Sales

A corporation has six divisions, each responsible for sales to different geographic
locations. Design a DivSales class that keeps sales data for a division, with the fol-
lowing members:

• An array with four elements for holding four quarters of sales figures for the division.
• A private static variable for holding the total corporate sales for all divisions for

the entire year.
• A member function that takes four arguments, each assumed to be the sales for a

quarter. The value of the arguments should be copied into the array that holds the
sales data. The total of the four arguments should be added to the static variable
that holds the total yearly corporate sales.

• A function that takes an integer argument within the range of 0–3. The argument
is to be used as a subscript into the division quarterly sales array. The function
should return the value of the array element with that subscript.

Write a program that creates an array of six DivSales objects. The program should
ask the user to enter the sales for four quarters for each division. After the data are
entered, the program should display a table showing the division sales for each quar-
ter. The program should then display the total corporate sales for the year.

Input Validation: Only accept positive values for quarterly sales figures.

11. FeetInches Class Copy Constructor and multiply Function

Add a copy constructor to the FeetInches class. This constructor should accept a
FeetInches object as an argument. The constructor should assign to the feet
attribute the value in the argument’s feet attribute, and assign to the inches
attribute the value in the argument’s inches attribute. As a result, the new object will
be a copy of the argument object.

868 Chapter 14 More About Classes

Next, add a multiply member function to the FeetInches class. The multiply
function should accept a FeetInches object as an argument. The argument object’s
feet and inches attributes will be multiplied by the calling object’s feet and inches
attributes, and a FeetInches object containing the result will be returned.

12. LandTract Class

Make a LandTract class that is composed of two FeetInches objects, one for the
tract’s length and one for the width. The class should have a member function that
returns the tract’s area. Demonstrate the class in a program that asks the user to enter
the dimensions for two tracts of land. The program should display the area of each
tract of land and indicate whether the tracts are of equal size.

13. Carpet Calculator

The Westfield Carpet Company has asked you to write an application that calculates
the price of carpeting for rectangular rooms. To calculate the price, you multiply the
area of the floor (width times length) by the price per square foot of carpet. For
example, the area of floor that is 12 feet long and 10 feet wide is 120 square feet. To
cover that floor with carpet that costs $8 per square foot would cost $960. (12 × 10 ×
8 = 960.)

First, you should create a class named RoomDimension that has two FeetInches
objects as attributes: one for the length of the room and one for the width. (You
should use the version of the FeetInches class that you created in Programming
Challenge 11 with the addition of a multiply member function. You can use this
function to calculate the area of the room.) The RoomDimension class should have a
member function that returns the area of the room as a FeetInches object.

Next, you should create a RoomCarpet class that has a RoomDimension object as an
attribute. It should also have an attribute for the cost of the carpet per square foot.
The RoomCarpet class should have a member function that returns the total cost of
the carpet.

Once you have written these classes, use them in an application that asks the user to
enter the dimensions of a room and the price per square foot of the desired carpeting.
The application should display the total cost of the carpet.

14. Parking Ticket Simulator

For this assignment you will design a set of classes that work together to simulate a
police officer issuing a parking ticket. The classes you should design are:

• The ParkedCar Class: This class should simulate a parked car. The class’s
responsibilities are:
– To know the car’s make, model, color, license number, and the number of

minutes that the car has been parked
• The ParkingMeter Class: This class should simulate a parking meter. The class’s

only responsibility is:
– To know the number of minutes of parking time that has been purchased

Review Questions and Exercises 869

• The ParkingTicket Class: This class should simulate a parking ticket. The
class’s responsibilities are:
– To report the make, model, color, and license number of the illegally

parked car
– To report the amount of the fine, which is $25 for the first hour or part of an

hour that the car is illegally parked, plus $10 for every additional hour or
part of an hour that the car is illegally parked

– To report the name and badge number of the police officer issuing the
ticket

• The PoliceOfficer Class: This class should simulate a police officer inspecting
parked cars. The class’s responsibilities are:
– To know the police officer’s name and badge number
– To examine a ParkedCar object and a ParkingMeter object, and determine

whether the car’s time has expired
– To issue a parking ticket (generate a ParkingTicket object) if the car’s time

has expired

Write a program that demonstrates how these classes collaborate.

15. Car Instrument Simulator

For this assignment you will design a set of classes that work together to simulate a car’s
fuel gauge and odometer. The classes you will design are:

• The FuelGauge Class: This class will simulate a fuel gauge. Its responsibilities
are
– To know the car’s current amount of fuel, in gallons.
– To report the car’s current amount of fuel, in gallons.
– To be able to increment the amount of fuel by 1 gallon. This simulates putting

fuel in the car. (The car can hold a maximum of 15 gallons.)
– To be able to decrement the amount of fuel by 1 gallon, if the amount of fuel

is greater than 0 gallons. This simulates burning fuel as the car runs.

• The Odometer Class: This class will simulate the car’s odometer. Its responsibili-
ties are:
– To know the car’s current mileage.
– To report the car’s current mileage.
– To be able to increment the current mileage by 1 mile. The maximum mileage

the odometer can store is 999,999 miles. When this amount is exceeded, the
odometer resets the current mileage to 0.

– To be able to work with a FuelGuage object. It should decrease the FuelGauge
object’s current amount of fuel by 1 gallon for every 24 miles traveled. (The
car’s fuel economy is 24 miles per gallon.)

Demonstrate the classes by creating instances of each. Simulate filling the car up with
fuel, and then run a loop that increments the odometer until the car runs out of fuel.
During each loop iteration, print the car’s current mileage and amount of fuel.

This page intentionally left blank

871

C
H

A
P

T
E

R

15 Inheritance, Polymorphism,
and Virtual Functions

15.1 What Is Inheritance?

CONCEPT: Inheritance allows a new class to be based on an existing class. The new
class inherits all the member variables and functions (except the
constructors and destructor) of the class it is based on.

Generalization and Specialization
In the real world you can find many objects that are specialized versions of other more
general objects. For example, the term “insect” describes a very general type of creature
with numerous characteristics. Because grasshoppers and bumblebees are insects, they
have all the general characteristics of an insect. In addition, they have special characteris-
tics of their own. For example, the grasshopper has its jumping ability, and the bumblebee
has its stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is
illustrated in Figure 15-1.

TOPICS

15.1 What Is Inheritance?
15.2 Protected Members and Class

Access
15.3 Constructors and Destructors in

Base and Derived Classes
15.4 Redefining Base Class Functions
15.5 Class Hierarchies

15.6 Polymorphism and Virtual
Member Functions

15.7 Abstract Base Classes and Pure
Virtual Functions

15.8 Multiple Inheritance

872 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Inheritance and the “Is a” Relationship
When one object is a specialized version of another object, there is an “is a” relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the “is a” relationship.

• A poodle is a dog.
• A car is a vehicle.
• A tree is a plant.
• A rectangle is a shape.
• A football player is an athlete.

When an “is a” relationship exists between classes, it means that the specialized class has
all of the characteristics of the general class, plus additional characteristics that make it
special. In object-oriented programming, inheritance is used to create an “is a” relation-
ship between classes.

Inheritance involves a base class and a derived class. The base class is the general class and
the derived class is the specialized class. The derived class is based on, or derived from, the
base class. You can think of the base class as the parent and the derived class as the child.
This is illustrated in Figure 15-2.

Figure 15-1

Figure 15-2

Insect
All insects have

certain characteristics.

In addition to the common
insect characteristics, the

 bumble bee has its own unique
characteristics such as the

ability to sting.

In addition to the common
insect characteristics, the

 grasshopper has its own unique
characteristics such as the

ability to jump.

Insect class

members

Grasshopper class

members

Base Class
(Parent)

Derived Class
(Child)

15.1 What Is Inheritance? 873

The derived class inherits the member variables and member functions of the base class
without any of them being rewritten. Furthermore, new member variables and functions
may be added to the derived class to make it more specialized than the base class.

Let’s look at an example of how inheritance can be used. Most teachers assign various
graded activities for their students to complete. A graded activity can receive a numeric
score such as 70, 85, 90, and so on, and a letter grade such as A, B, C, D, or F. The follow-
ing GradedActivity class is designed to hold the numeric score and letter grade of a
graded activity. When a numeric score is stored by the class, it automatically determines
the letter grade. (These files are stored in the Student Source Code Folder Chapter 15\
GradedActivity Version 1.)

Contents of GradedActivity.h (Version 1)
 1 #ifndef GRADEDACTIVITY_H
 2 #define GRADEDACTIVITY_H
 3
 4 // GradedActivity class declaration
 5
 6 class GradedActivity
 7 {
 8 private:
 9 double score; // To hold the numeric score
10 public:
11 // Default constructor
12 GradedActivity()
13 { score = 0.0; }
14
15 // Constructor
16 GradedActivity(double s)
17 { score = s; }
18
19 // Mutator function
20 void setScore(double s)
21 { score = s; }
22
23 // Accessor functions
24 double getScore() const
25 { return score; }
26
27 char getLetterGrade() const;
28 };
29 #endif

Contents of GradedActivity.cpp (Version 1)
 1 #include "GradedActivity.h"
 2
 3 //**
 4 // Member function GradedActivity::getLetterGrade *
 5 //**
 6

874 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 7 char GradedActivity::getLetterGrade() const
 8 {
 9 char letterGrade; // To hold the letter grade
10
11 if (score > 89)
12 letterGrade = 'A';
13 else if (score > 79)
14 letterGrade = 'B';
15 else if (score > 69)
16 letterGrade = 'C';
17 else if (score > 59)
18 letterGrade = 'D';
19 else
20 letterGrade = 'F';
21
22 return letterGrade;
23 }

The GradedActivity class has a default constructor that initializes the score member
variable to 0.0. A second constructor accepts an argument for score. The setScore mem-
ber function also accepts an argument for the score variable, and the getLetterGrade
member function returns the letter grade that corresponds to the value in score.
Program 15-1 demonstrates the GradedActivity class. (This file is also stored in the Stu-
dent Source Code Folder Chapter 15\GradedActivity Version 1.)

Program 15-1

 1 // This program demonstrates the GradedActivity class.
 2 #include <iostream>
 3 #include "GradedActivity.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 double testScore; // To hold a test score
 9
10 // Create a GradedActivity object for the test.
11 GradedActivity test;
12
13 // Get a numeric test score from the user.
14 cout << "Enter your numeric test score: ";
15 cin >> testScore;
16
17 // Store the numeric score in the test object.
18 test.setScore(testScore);
19
20 // Display the letter grade for the test.
21 cout << "The grade for that test is "
22 << test.getLetterGrade() << endl;
23
24 return 0;
25 }

15.1 What Is Inheritance? 875

The GradedActivity class represents the general characteristics of a student’s graded activ-
ity. Many different types of graded activities exist, however, such as quizzes, midterm exams,
final exams, lab reports, essays, and so on. Because the numeric scores might be determined
differently for each of these graded activities, we can create derived classes to handle each
one. For example, the following code shows the FinalExam class, which is derived from the
GradedActivity class. It has member variables for the number of questions on the exam
(numQuestions), the number of points each question is worth (pointsEach), and the num-
ber of questions missed by the student (numMissed). These files are also stored in the Stu-
dent Source Code Folder Chapter 15\GradedActivity Version 1.

Contents of FinalExam.h
 1 #ifndef FINALEXAM_H
 2 #define FINALEXAM_H
 3 #include "GradedActivity.h"
 4
 5 class FinalExam : public GradedActivity
 6 {
 7 private:
 8 int numQuestions; // Number of questions
 9 double pointsEach; // Points for each question
10 int numMissed; // Number of questions missed
11 public:
12 // Default constructor
13 FinalExam()
14 { numQuestions = 0;
15 pointsEach = 0.0;
16 numMissed = 0; }
17
18 // Constructor
19 FinalExam(int questions, int missed)
20 { set(questions, missed); }
21
22 // Mutator function
23 void set(int, int); // Defined in FinalExam.cpp
24
25 // Accessor functions
26 double getNumQuestions() const
27 { return numQuestions; }
28
29 double getPointsEach() const
30 { return pointsEach; }
31

Program Output with Example Input Shown in Bold
Enter your numeric test score: 89 [Enter]
The grade for that test is B

Program Output with Different Example Input Shown in Bold
Enter your numeric test score: 75 [Enter]
The grade for that test is C

876 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

32 int getNumMissed() const
33 { return numMissed; }
34 };
35 #endif

Contents of FinalExam.cpp
 1 #include "FinalExam.h"
 2
 3 //**
 4 // set function *
 5 // The parameters are the number of questions and the *
 6 // number of questions missed. *
 7 //**
 8
 9 void FinalExam::set(int questions, int missed)
10 {
11 double numericScore; // To hold the numeric score
12
13 // Set the number of questions and number missed.
14 numQuestions = questions;
15 numMissed = missed;
16
17 // Calculate the points for each question.
18 pointsEach = 100.0 / numQuestions;
19
20 // Calculate the numeric score for this exam.
21 numericScore = 100.0 - (missed * pointsEach);
22
23 // Call the inherited setScore function to set
24 // the numeric score.
25 setScore(numericScore);
26 }

The only new notation in this code is in line 5 of the FinalExam.h file, which reads

class FinalExam : public GradedActivity

This line indicates the name of the class being declared and the name of the base class it is
derived from. FinalExam is the name of the class being declared and GradedActivity is
the name of the base class it inherits from.

If we want to express the relationship between the two classes, we can say that a
FinalExam is a GradedActivity.

The word public, which precedes the name of the base class in line 5 of the FinalExam.h
file, is the base class access specification. It affects how the members of the base class are
inherited by the derived class. When you create an object of a derived class, you can think

class FinalExam : public GradedActivity

Class being declared
(the derived class)

Base class

15.1 What Is Inheritance? 877

of it as being built on top of an object of the base class. The members of the base class
object become members of the derived class object. How the base class members appear in
the derived class is determined by the base class access specification.

Although we will discuss this topic in more detail in the next section, let’s see how it
works in this example. The GradedActivity class has both private members and public
members. The FinalExam class is derived from the GradedActivity class, using public
access specification. This means that the public members of the GradedActivity class
will become public members of the FinalExam class. The private members of the
GradedActivity class cannot be accessed directly by code in the FinalExam class.
Although the private members of the GradedActivity class are inherited, it’s as though
they are invisible to the code in the FinalExam class. They can only be accessed by the
member functions of the GradedActivity class. Here is a list of the members of the
FinalExam class:

Private Members:

int numQuestions Declared in the FinalExam class
double pointsEach Declared in the FinalExam class
int numMissed Declared in the FinalExam class

Public Members:

FinalExam() Defined in the FinalExam class
FinalExam(int, int) Defined in the FinalExam class
set(int, int) Defined in the FinalExam class
getNumQuestions() Defined in the FinalExam class
getPointsEach() Defined in the FinalExam class
getNumMissed() Defined in the FinalExam class
setScore(double) Inherited from GradedActivity
getScore() Inherited from GradedActivity
getLetterGrade() Inherited from GradedActivity

The GradedActivity class has one private member, the variable score. Notice that it is
not listed as a member of the FinalExam class. It is still inherited by the derived class, but
because it is a private member of the base class, only member functions of the base class
may access it. It is truly private to the base class. Because the functions setScore,
getScore, and getLetterGrade are public members of the base class, they also become
public members of the derived class.

You will also notice that the GradedActivity class constructors are not listed among the
members of the FinalExam class. Although the base class constructors still exist, it makes
sense that they are not members of the derived class because their purpose is to construct
objects of the base class. In the next section we discuss in more detail how base class con-
structors operate.

Let’s take a closer look at the FinalExam class constructors. The default constructor
appears in lines 13 through 16 of the FinalExam.h file. It simply assigns 0 to each of the
class’s member variables. Another constructor appears in lines 19 through 20. This con-
structor accepts two arguments, one for the number of questions on the exam, and one for
the number of questions missed. This constructor merely passes those values as arguments
to the set function.

878 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

The set function is defined in FinalExam.cpp. It accepts two arguments: the number of
questions on the exam, and the number of questions missed by the student. In lines 14 and
15 these values are assigned to the numQuestions and numMissed member variables. In
line 18 the number of points for each question is calculated. In line 21 the numeric test
score is calculated. In line 25, the last statement in the function reads:

setScore(numericScore);

This is a call to the setScore function. Although no setScore function appears in the
FinalExam class, it is inherited from the GradedActivity class. Program 15-2 demon-
strates the FinalExam class.

Program 15-2

 1 // This program demonstrates a base class and a derived class.
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "FinalExam.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int questions; // Number of questions on the exam
10 int missed; // Number of questions missed by the student
11
12 // Get the number of questions on the final exam.
13 cout << "How many questions are on the final exam? ";
14 cin >> questions;
15
16 // Get the number of questions the student missed.
17 cout << "How many questions did the student miss? ";
18 cin >> missed;
19
20 // Define a FinalExam object and initialize it with
21 // the values entered.
22 FinalExam test(questions, missed);
23
24 // Display the test results.
25 cout << setprecision(2);
26 cout << "\nEach question counts " << test.getPointsEach()
27 << " points.\n";
28 cout << "The exam score is " << test.getScore() << endl;
29 cout << "The exam grade is " << test.getLetterGrade() << endl;
30
31 return 0;
32 }

Program Output with Example Input Shown in Bold
How many questions are on the final exam? 20 [Enter]
How many questions did the student miss? 3 [Enter]

Each question counts 5 points.
The exam score is 85
The exam grade is B

15.1 What Is Inheritance? 879

Notice in lines 28 and 29 that the public member functions of the GradedActivity class
may be directly called by the test object:

cout << "The exam score is " << test.getScore() << endl;
cout << "The exam grade is " << test.getLetterGrade() << endl;

The getScore and getLetterGrade member functions are inherited as public members
of the FinalExam class, so they may be accessed like any other public member.

Inheritance does not work in reverse. It is not possible for a base class to call a member
function of a derived class. For example, the following classes will not compile in a pro-
gram because the BadBase constructor attempts to call a function in its derived class:

class BadBase
{
 private:
 int x;
 public:
 BadBase() { x = getVal(); } // Error!
};

class Derived : public BadBase
{
 private:
 int y;
 public:
 Derived(int z) { y = z; }
 int getVal() { return y; }
};

Checkpoint
15.1 Here is the first line of a class declaration. Circle the name of the base class:

class Truck : public Vehicle

15.2 Circle the name of the derived class in the following declaration line:
class Truck : public Vehicle

15.3 Suppose a program has the following class declarations:

class Shape
{
private:
 double area;
public:
 void setArea(double a)
 { area = a; }

 double getArea()
 { return area; }
};

class Circle : public Shape
{
private:
 double radius;

880 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:
 void setRadius(double r)
 { radius = r;
 setArea(3.14 * r * r); }

 double getRadius()
 { return radius; }
};

Answer the following questions concerning these classes:
A) When an object of the Circle class is created, what are its private members?
B) When an object of the Circle class is created, what are its public members?
C) What members of the Shape class are not accessible to member functions of the

Circle class?

15.2 Protected Members and Class Access

CONCEPT: Protected members of a base class are like private members, but they may
be accessed by derived classes. The base class access specification
determines how private, public, and protected base class members are
accessed when they are inherited by the derived classes.

Until now you have used two access specifications within a class: private and public.
C++ provides a third access specification, protected. Protected members of a base class
are like private members, except they may be accessed by functions in a derived class. To
the rest of the program, however, protected members are inaccessible.

The following code shows a modified version of the GradedActivity class declaration.
The private member of the class has been made protected. This file is stored in the Student
Source Code Folder Chapter 15\GradedActivity Version 2. The implementation file,
GradedActivity.cpp has not changed, so it is not shown again in this example.

Contents of GradedActivity.h (Version 2)
1 #ifndef GRADEDACTIVITY_H
2 #define GRADEDACTIVITY_H
3
4 // GradedActivity class declaration
5
6 class GradedActivity
7 {
8 protected:
9 double score; // To hold the numeric score
10 public:
11 // Default constructor
12 GradedActivity()
13 { score = 0.0; }
14
15 // Constructor
16 GradedActivity(double s)
17 { score = s; }
18

15.2 Protected Members and Class Access 881

19 // Mutator function
20 void setScore(double s)
21 { score = s; }
22
23 // Accessor functions
24 double getScore() const
25 { return score; }
26
27 char getLetterGrade() const;
28 };
29 #endif

Now we will look at a modified version of the FinalExam class, which is derived from this
version of the GradedActivity class. This version of the FinalExam class has a new mem-
ber function named adjustScore. This function directly accesses the GradedActivity
class’s score member variable. If the content of the score variable has a fractional part of
0.5 or greater, the function rounds score up to the next whole number. The set function
calls the adjustScore function after it calculates the numeric score. (These files are stored
in the Student Source Code Folder Chapter 15\GradedActivity Version 2.)

Contents of FinalExam.h (Version 2)
1 #ifndef FINALEXAM_H
2 #define FINALEXAM_H
3 #include "GradedActivity.h"
4
5 class FinalExam : public GradedActivity
6 {
7 private:
8 int numQuestions; // Number of questions
9 double pointsEach; // Points for each question
10 int numMissed; // Number of questions missed
11 public:
12 // Default constructor
13 FinalExam()
14 { numQuestions = 0;
15 pointsEach = 0.0;
16 numMissed = 0; }
17
18 // Constructor
19 FinalExam(int questions, int missed)
20 { set(questions, missed); }
21
22 // Mutator functions
23 void set(int, int); // Defined in FinalExam.cpp
24 void adjustScore(); // Defined in FinalExam.cpp
25
26 // Accessor functions
27 double getNumQuestions() const
28 { return numQuestions; }
29
30 double getPointsEach() const
31 { return pointsEach; }
32

882 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

33 int getNumMissed() const
34 { return numMissed; }
35 };
36 #endif

 Contents of FinalExam.cpp (Version 2)
1 #include "FinalExam.h"
2
3 //**
4 // set function *
5 // The parameters are the number of questions and the *
6 // number of questions missed. *
7 //**
8
9 void FinalExam::set(int questions, int missed)
10 {
11 double numericScore; // To hold the numeric score
12
13 // Set the number of questions and number missed.
14 numQuestions = questions;
15 numMissed = missed;
16
17 // Calculate the points for each question.
18 pointsEach = 100.0 / numQuestions;
19
20 // Calculate the numeric score for this exam.
21 numericScore = 100.0 - (missed * pointsEach);
22
23 // Call the inherited setScore function to set
24 // the numeric score.
25 setScore(numericScore);
26
27 // Call the adjustScore function to adjust
28 // the score.
29 adjustScore();
30 }
31
32 //**
33 // Definition of Test::adjustScore. If score is within *
34 // 0.5 points of the next whole point, it rounds the score up *
35 // and recalculates the letter grade. *
36 //**
37
38 void FinalExam::adjustScore()
39 {
40 double fraction = score - static_cast<int>(score);
41
42 if (fraction >= 0.5)
43 {
44 // Adjust the score variable in the GradedActivity class.
45 score += (1.0 - fraction);
46 }
47 }

15.2 Protected Members and Class Access 883

Program 15-3 demonstrates these versions of the GradedActivity and FinalExam
classes. (This file is also stored in the Student Source Code Folder Chapter 15\
GradedActivity Version 2.)

The program works as planned. In the example run, the student missed five questions,
which are worth 6.25 points each. The unadjusted score would be 68.75. The score was
adjusted to 69.

Program 15-3

1 // This program demonstrates a base class with a
2 // protected member.
3 #include <iostream>
4 #include <iomanip>
5 #include "FinalExam.h"
6 using namespace std;
7
8 int main()
9 {
10 int questions; // Number of questions on the exam
11 int missed; // Number of questions missed by the student
12
13 // Get the number of questions on the final exam.
14 cout << "How many questions are on the final exam? ";
15 cin >> questions;
16
17 // Get the number of questions the student missed.
18 cout << "How many questions did the student miss? ";
19 cin >> missed;
20
21 // Define a FinalExam object and initialize it with
22 // the values entered.
23 FinalExam test(questions, missed);
24
25 // Display the adjusted test results.
26 cout << setprecision(2) << fixed;
27 cout << "\nEach question counts "
28 << test.getPointsEach() << " points.\n";
29 cout << "The adjusted exam score is "
30 << test.getScore() << endl;
31 cout << "The exam grade is "
32 << test.getLetterGrade() << endl;
33
34 return 0;
35 }

Program Output with Example Input Shown in Bold
How many questions are on the final exam? 16 [Enter]
How many questions did the student miss? 5 [Enter]

Each question counts 6.25 points.
The adjusted exam score is 69.00
The exam grade is D

884 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

More About Base Class Access Specification
The first line of the FinalExam class declaration reads:

class FinalExam : public GradedActivity

This declaration gives public access specification to the base class. Recall from our earlier
discussion that base class access specification affects how inherited base class members are
accessed. Be careful not to confuse base class access specification with member access
specification. Member access specification determines how members that are defined
within the class are accessed. Base class access specification determines how inherited
members are accessed.

When you create an object of a derived class, it inherits the members of the base class. The
derived class can have its own private, protected, and public members, but what is the
access specification of the inherited members? This is determined by the base class access
specification. Table 15-1 summarizes how base class access specification affects the way
that base class members are inherited.

As you can see from Table 15-1, class access specification gives you a great deal of flexibil-
ity in determining how base class members will appear in the derived class. Think of a
base class’s access specification as a filter that base class members must pass through when
becoming inherited members of a derived class. This is illustrated in Figure 15-3.

Table 15-1

Base Class Access
Specification How Members of the Base Class Appear in the Derived Class
private Private members of the base class are inaccessible to the derived class.

Protected members of the base class become private members of the
derived class.

Public members of the base class become private members of the derived class.
protected Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the
derived class.

Public members of the base class become protected members of the derived
class.

public Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the
derived class.

Public members of the base class become public members of the derived class.

NOTE: If the base class access specification is left out of a declaration, the default access
specification is private. For example, in the following declaration, Grade is declared as
a private base class:

 class Test : Grade

15.2 Protected Members and Class Access 885

Checkpoint
15.4 What is the difference between private members and protected members?

15.5 What is the difference between member access specification and class access
specification?

15.6 Suppose a program has the following class declaration:

// Declaration of CheckPoint class.
class CheckPoint
{
 private:
 int a;
 protected:
 int b;
 int c;
 void setA(int x) { a = x;}
 public:
 void setB(int y) { b = y;}
 void setC(int z) { c = z;}
};

Answer the following questions regarding the class:
A) Suppose another class, Quiz, is derived from the CheckPoint class. Here is the

first line of its declaration:
 class Quiz : private CheckPoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setB
setC

Figure 15-3

private: x
protected: y
public: z

private: x
protected: y
public: z

private: x
protected: y
public: z

x is inaccessible.
private: y
private: z

x is inaccessible.
protected: y
protected: z

x is inaccessible.
protected: y
public: z

private
base class

protected
base class

public
base class

How base class
members appear

in the derived classBase class members

886 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

B) Suppose the Quiz class, derived from the CheckPoint class, is declared as
 class Quiz : protected Checkpoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setB
setC

C) Suppose the Quiz class, derived from the CheckPoint class, is declared as
class Quiz : public Checkpoint

Indicate whether each member of the CheckPoint class is private,
protected, public, or inaccessible:

a
b
c
setA
setB
setC

D) Suppose the Quiz class, derived from the CheckPoint class, is declared as
 class Quiz : Checkpoint

Is the CheckPoint class a private, public, or protected base class?

15.3
Constructors and Destructors in Base
and Derived Classes

CONCEPT: The base class’s constructor is called before the derived class’s
constructor. The destructors are called in reverse order, with the derived
class’s destructor being called first.

In inheritance, the base class constructor is called before the derived class constructor.
Destructors are called in reverse order. Program 15-4 shows a simple set of demonstration
classes, each with a default constructor and a destructor. The DerivedClass class is
derived from the BaseClass class. Messages are displayed by the constructors and
destructors to demonstrate when each is called.

Program 15-4

 1 // This program demonstrates the order in which base and
 2 // derived class constructors and destructors are called.
 3 #include <iostream>
 4 using namespace std;
 5
 6 //********************************
 7 // BaseClass declaration *
 8 //********************************
 9

15.3 Constructors and Destructors in Base and Derived Classes 887

Passing Arguments to Base Class Constructors
In Program 15-4, both the base class and derived class have default constructors, that are
called automatically. But what if the base class’s constructor takes arguments? What if
there is more than one constructor in the base class? The answer to these questions is to let
the derived class constructor pass arguments to the base class constructor. For example,
consider the following class:

10 class BaseClass
11 {
12 public:
13 BaseClass() // Constructor
14 { cout << "This is the BaseClass constructor.\n"; }
15
16 ~BaseClass() // Destructor
17 { cout << "This is the BaseClass destructor.\n"; }
18 };
19
20 //********************************
21 // DerivedClass declaration *
22 //********************************
23
24 class DerivedClass : public BaseClass
25 {
26 public:
27 DerivedClass() // Constructor
28 { cout << "This is the DerivedClass constructor.\n"; }
29
30 ~DerivedClass() // Destructor
31 { cout << "This is the DerivedClass destructor.\n"; }
32 };
33
34 //********************************
35 // main function *
36 //********************************
37
38 int main()
39 {
40 cout << "We will now define a DerivedClass object.\n";
41
42 DerivedClass object;
43
44 cout << "The program is now going to end.\n";
45 return 0;
46 }

Program Output
We will now define a DerivedClass object.
This is the BaseClass constructor.
This is the DerivedClass constructor.
The program is now going to end.
This is the DerivedClass destructor.
This is the BaseClass destructor.

888 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of Rectangle.h
 1 #ifndef RECTANGLE_H
 2 #define RECTANGLE_H
 3
 4 class Rectangle
 5 {
 6 private:
 7 double width;
 8 double length;
 9 public:
10 // Default constructor
11 Rectangle()
12 { width = 0.0;
13 length = 0.0; }
14
15 // Constructor #2
16 Rectangle(double w, double len)
17 { width = w;
18 length = len; }
19
20 double getWidth() const
21 { return width; }
22
23 double getLength() const
24 { return length; }
25
26 double getArea() const
27 { return width * length; }
28 };
29 #endif

This class is designed to hold data about a rectangle. It specifies two constructors. The
default constructor, in lines 11 through 13, simply initializes the width and length mem-
ber variables to 0.0. The second constructor, in lines 16 through 18, takes two arguments,
which are assigned to the width and length member variables. Now let’s look at a class
that is derived from the Rectangle class:

Contents of Cube.h
1 #ifndef CUBE_H
2 #define CUBE_H
3 #include "Rectangle.h"
4
5 class Cube : public Rectangle
6 {
7 protected:
8 double height;
9 double volume;
10 public:
11 // Default constructor
12 Cube() : Rectangle()
13 { height = 0.0; volume = 0.0; }
14

15.3 Constructors and Destructors in Base and Derived Classes 889

15 // Constructor #2
16 Cube(double w, double len, double h) : Rectangle(w, len)
17 { height = h;
18 volume = getArea() * h; }
19
20 double getHeight() const
21 { return height; }
22
23 double getVolume() const
24 { return volume; }
25 };
26 #endif

The Cube class is designed to hold data about cubes, which not only have a length and
width, but a height and volume as well. Look at line 12, which is the first line of the Cube
class’s default constructor:

Cube() : Rectangle()

Notice the added notation in the header of the constructor. A colon is placed after the
derived class constructor’s parentheses, followed by a function call to a base class con-
structor. In this case, the base class’s default constructor is being called. When this Cube
class constructor executes, it will first call the Rectangle class’s default constructor. This
is illustrated here:

The general format of this type of constructor declaration is

You can also pass arguments to the base class constructor, as shown in the Cube class’s
second constructor. Look at line 16:

Cube(double w, double len, double h) : Rectangle(w, len)

This Cube class constructor has three parameters: w, len, and h. Notice that the Rectangle
class’s constructor is called, and the w and len parameters are passed as arguments. This
causes the Rectangle class’s second constructor to be called.

You only write this notation in the definition of a constructor, not in a prototype. In this
example, the derived class constructor is written inline (inside the class declaration), so the
notation that contains the call to the base class constructor appears there. If the construc-
tor were defined outside the class, the notation would appear in the function header. For
example, the Cube class could appear as follows.

ClassName::ClassName(ParameterList) : BaseClassName(ArgumentList)

Cube() : Rectangle()

Derived Class
Constructor

Call to the Base
Class Constructor

890 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

class Cube : public Rectangle
{
protected:
 double height;
 double volume;
public:
 // Default constructor
 Cube() : Rectangle()
 { height = 0.0; volume = 0.0; }

 // Constructor #2
 Cube(double, double, double);

 double getHeight() const
 { return height; }

 double getVolume() const
 { return volume; }
};

// Cube class constructor #2
Cube::Cube(double w, double len, double h) : Rectangle(w, len)
{
 height = h;
 volume = getArea() * h;
}

The base class constructor is always executed before the derived class constructor. When
the Rectangle constructor finishes, the Cube constructor is then executed.

Any literal value or variable that is in scope may be used as an argument to the derived
class constructor. Usually, one or more of the arguments passed to the derived class con-
structor are, in turn, passed to the base class constructor. The values that may be used as
base class constructor arguments are

• Derived class constructor parameters
• Literal values
• Global variables that are accessible to the file containing the derived class con-

structor definition
• Expressions involving any of these items

Program 15-5 shows the Rectangle and Cube classes in use.

Program 15-5

 1 // This program demonstrates passing arguments to a base
 2 // class constructor.
 3 #include <iostream>
 4 #include "Cube.h"
 5 using namespace std;
 6

15.3 Constructors and Destructors in Base and Derived Classes 891

 7 int main()
 8 {
 9 double cubeWidth; // To hold the cube's width
10 double cubeLength; // To hold the cube's length
11 double cubeHeight; // To hold the cube's height
12
13 // Get the width, length, and height of
14 // the cube from the user.
15 cout << "Enter the dimensions of a cube:\n";
16 cout << "Width: ";
17 cin >> cubeWidth;
18 cout << "Length: ";
19 cin >> cubeLength;
20 cout << "Height: ";
21 cin >> cubeHeight;
22
23 // Define a Cube object and use the dimensions
24 // entered by the user.
25 Cube myCube(cubeWidth, cubeLength, cubeHeight);
26
27 // Display the Cube object's properties.
28 cout << "Here are the cube's properties:\n";
29 cout << "Width: " << myCube.getWidth() << endl;
30 cout << "Length: " << myCube.getLength() << endl;
31 cout << "Height: " << myCube.getHeight() << endl;
32 cout << "Base area: " << myCube.getArea() << endl;
33 cout << "Volume: " << myCube.getVolume() << endl;
34
35 return 0;
36 }

Program Output with Example Input Shown in Bold
Enter the dimensions of a cube:
Width: 10 [Enter]
Length: 15 [Enter]
Height: 12 [Enter]
Here are the cube's properties:
Width: 10
Length: 15
Height: 12
Base area: 150
Volume: 1800

NOTE: If the base class has no default constructor, then the derived class must have a
constructor that calls one of the base class constructors.

892 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Checkpoint
15.7 What will the following program display?

#include <iostream>
using namespace std;

class Sky
{
public:
 Sky()
 { cout << "Entering the sky.\n"; }
 ~Sky()
 { cout << "Leaving the sky.\n"; }
};

class Ground : public Sky
{
public:
 Ground()
 { cout << "Entering the Ground.\n"; }
 ~Ground()
 { cout << "Leaving the Ground.\n"; }
};

int main()
{
 Ground object;
 return 0;
}

15.8 What will the following program display?

#include <iostream>
using namespace std;

class Sky
{
public:
 Sky()
 { cout << "Entering the sky.\n"; }
 Sky(char *color)
 { cout << "The sky is " << color << endl; }
 ~Sky()
 { cout << "Leaving the sky.\n"; }
};

class Ground : public Sky
{
public:
 Ground()
 { cout << "Entering the Ground.\n"; }
 Ground(char *c1, char *c2) : Sky(c1)
 { cout << "The ground is " << c2 << endl; }
 ~Ground()
 { cout << "Leaving the Ground.\n"; }
};

15.4 Redefining Base Class Functions 893

int main()
{
 Ground object;
 return 0;
}

15.4 Redefining Base Class Functions

CONCEPT: A base class member function may be redefined in a derived class.

Inheritance is commonly used to extend a class or give it additional capabilities. Some-
times it may be helpful to overload a base class function with a function of the same name
in the derived class. For example, recall the GradedActivity class that was presented ear-
lier in this chapter:

class GradedActivity
{
protected:
 char letter; // To hold the letter grade
 double score; // To hold the numeric score
 void determineGrade(); // Determines the letter grade
public:
 // Default constructor
 GradedActivity()
 { letter = ' '; score = 0.0; }

 // Mutator function
 void setScore(double s)
 { score = s;
 determineGrade();}

 // Accessor functions
 double getScore() const
 { return score; }

 char getLetterGrade() const
 { return letter; }
};

This class holds a numeric score and determines a letter grade based on that score. The
setScore member function stores a value in score, then calls the determineGrade mem-
ber function to determine the letter grade.

Suppose a teacher wants to “curve” a numeric score before the letter grade is determined.
For example, Dr. Harrison determines that in order to curve the grades in her class she
must multiply each student’s score by a certain percentage. This gives an adjusted score,
which is used to determine the letter grade.

The following CurvedActivity class is derived from the GradedActivity class. It mul-
tiplies the numeric score by a percentage, and passes that value as an argument to the
base class’s setScore function. (This file is stored in the Student Source Code Folder
Chapter 15\CurvedActivity.)

Redefining a
Base Class

Function in a
Derived Class

894 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of CurvedActivity.h

 1 #ifndef CURVEDACTIVITY_H
 2 #define CURVEDACTIVITY_H
 3 #include "GradedActivity.h"
 4
 5 class CurvedActivity : public GradedActivity
 6 {
 7 protected:
 8 double rawScore; // Unadjusted score
 9 double percentage; // Curve percentage
10 public:
11 // Default constructor
12 CurvedActivity() : GradedActivity()
13 { rawScore = 0.0; percentage = 0.0; }
14
15 // Mutator functions
16 void setScore(double s)
17 { rawScore = s;
18 GradedActivity::setScore(rawScore * percentage); }
19
20 void setPercentage(double c)
21 { percentage = c; }
22
23 // Accessor functions
24 double getPercentage() const
25 { return percentage; }
26
27 double getRawScore() const
28 { return rawScore; }
29 };
30 #endif

This CurvedActivity class has the following member variables:

• rawScore This variable holds the student’s unadjusted score.
• percentage This variable holds the value that the unadjusted score

must be multiplied by to get the curved score.

It also has the following member functions:

• A default constructor that calls the GradedActivity default constructor, then
sets rawScore and percentage to 0.0.

• setScore This function accepts an argument that is the student’s
unadjusted score. The function stores the argument in the
rawScore variable, then passes rawScore * percentage
as an argument to the base class’s setScore function.

• setPercentage This function stores a value in the percentage variable.
• getPercentage This function returns the value in the percentage variable.
• getRawScore This function returns the value in the rawScore variable.

NOTE: Although we are not using the CurvedActivity class as a base class, it still has
a protected member section. This is because we might want to use the CurvedActivity
class itself as a base class, as you will see in the next section.

15.4 Redefining Base Class Functions 895

Notice that the CurvedActivity class has a setScore member function. This function
has the same name as one of the base class member functions. When a derived class’s
member function has the same name as a base class member function, it is said that the
derived class function redefines the base class function. When an object of the derived
class calls the function, it calls the derived class’s version of the function.

There is a distinction between redefining a function and overloading a function. An over-
loaded function is one with the same name as one or more other functions, but with a dif-
ferent parameter list. The compiler uses the arguments passed to the function to tell which
version to call. Overloading can take place with regular functions that are not members of
a class. Overloading can also take place inside a class when two or more member func-
tions of the same class have the same name. These member functions must have different
parameter lists for the compiler to tell them apart in function calls.

Redefining happens when a derived class has a function with the same name as a base
class function. The parameter lists of the two functions can be the same because the
derived class function is always called by objects of the derived class type.

Let’s continue our look at the CurvedActivity class. Here is the setScore member
function:

void setScore(double s)
 { rawScore = s;
 GradedActivity::setScore(rawScore * percentage); }

This function accepts an argument that should be the student’s unadjusted numeric score,
into the parameter s. This value is stored in the rawScore variable. Then the following
statement is executed:

GradedActivity::setScore(rawScore * percentage);

This statement calls the base class’s version of the setScore function with the expression
rawScore * percentage passed as an argument. Notice that the name of the base class
and the scope resolution operator precede the name of the function. This specifies that the
base class’s version of the setScore function is being called. A derived class function may
call a base class function of the same name using this notation, which takes this form:

Program 15-6 shows the GradedActivity and CurvedActivity classes used in a com-
plete program. (This file is stored in the Student Source Code Folder Chapter 15\
CurvedActivity.)

BaseClassName::functionName(ArgumentList);

Program 15-6

 1 // This program demonstrates a class that redefines
 2 // a base class function.
 3 #include <iostream>
 4 #include <iomanip>
 5 #include "CurvedActivity.h"
 6 using namespace std;
 7

(program continues)

896 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

It is important to note that even though a derived class may redefine a function in the base
class, objects that are defined of the base class type still call the base class version of the
function. This is demonstrated in Program 15-7.

 8 int main()
 9 {
10 double numericScore; // To hold the numeric score
11 double percentage; // To hold curve percentage
12
13 // Define a CurvedActivity object.
14 CurvedActivity exam;
15
16 // Get the unadjusted score.
17 cout << "Enter the student's raw numeric score: ";
18 cin >> numericScore;
19
20 // Get the curve percentage.
21 cout << "Enter the curve percentage for this student: ";
22 cin >> percentage;
23
24 // Send the values to the exam object.
25 exam.setPercentage(percentage);
26 exam.setScore(numericScore);
27
28 // Display the grade data.
29 cout << fixed << setprecision(2);
30 cout << "The raw score is "
31 << exam.getRawScore() << endl;
32 cout << "The curved score is "
33 << exam.getScore() << endl;
34 cout << "The curved grade is "
35 << exam.getLetterGrade() << endl;
36
37 return 0;
38 }

Program Output with Example Input Shown in Bold
Enter the student's raw numeric score: 87 [Enter]
Enter the curve percentage for this student: 1.06 [Enter]
The raw score is 87.00
The curved score is 92.22
The curved grade is A

Program 15-7

 1 // This program demonstrates that when a derived class function
 2 // overrides a base class function, objects of the base class
 3 // still call the base class version of the function.
 4 #include <iostream>
 5 using namespace std;
 6

Program 15-6 (continued)

15.5 Class Hierarchies 897

In Program 15-7, a class named BaseClass is declared with a member function named
showMessage. A class named DerivedClass is then declared, also with a showMessage
member function. As their names imply, DerivedClass is derived from BaseClass. Two
objects, b and d, are defined in function main. The object b is a BaseClass object and d is
a DerivedClass object. When b is used to call the showMessage function, it is the
BaseClass version that is executed. Likewise, when d is used to call showMessage, the
DerivedClass version is used.

15.5 Class Hierarchies

CONCEPT: A base class can also be derived from another class.

Sometimes it is desirable to establish a hierarchy of classes in which one class inherits from
a second class, which in turn inherits from a third class, as illustrated by Figure 15-4. In
some cases, the inheritance of classes goes on for many layers.

In Figure 15-4, ClassC inherits ClassB’s members, including the ones that ClassB inher-
ited from ClassA. Let’s look at an example of such a chain of inheritance. Consider the
following PassFailActivity class, which inherits from the GradedActivity class. The

 7 class BaseClass
 8 {
 9 public:
10 void showMessage()
11 { cout << "This is the Base class.\n"; }
12 };
13
14 class DerivedClass : public BaseClass
15 {
16 public:
17 void showMessage()
18 { cout << "This is the Derived class.\n"; }
19 };
20
21 int main()
22 {
23 BaseClass b;
24 DerivedClass d;
25
26 b.showMessage();
27 d.showMessage();
28
29 return 0;
30 }

Program Output
This is the Base class.
This is the Derived class.

898 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

class is intended to determine a letter grade of ‘P’ for passing, or ‘F’ for failing. (This file is
stored in the Student Source Code Folder Chapter 15\PassFailActivity.)

Contents of PassFailActivity.h
 1 #ifndef PASSFAILACTIVITY_H
 2 #define PASSFAILACTIVITY_H
 3 #include "GradedActivity.h"
 4
 5 class PassFailActivity : public GradedActivity
 6 {
 7 protected:
 8 double minPassingScore; // Minimum passing score.
 9 public:
10 // Default constructor
11 PassFailActivity() : GradedActivity()
12 { minPassingScore = 0.0; }
13
14 // Constructor
15 PassFailActivity(double mps) : GradedActivity()
16 { minPassingScore = mps; }
17
18 // Mutator
19 void setMinPassingScore(double mps)
20 { minPassingScore = mps; }
21
22 // Accessors
23 double getMinPassingScore() const
24 { return minPassingScore; }
25
26 char getLetterGrade() const;
27 };
28 #endif

Figure 15-4

ClassA

ClassB

ClassC

15.5 Class Hierarchies 899

The PassFailActivity class has a private member variable named minPassingScore.
This variable holds the minimum passing score for an activity. The default constructor, in
lines 11 through 12, sets minPassingScore to 0.0. An overloaded constructor in lines 15
through 16 accepts a double argument that is the minimum passing grade for the activ-
ity. This value is stored in the minPassingScore variable. The getLetterGrade member
function is defined in the following PassFailActivity.cpp file. (This file is also stored in
the Student Source Code Folder Chapter 15\PassFailActivity.)

Contents of PassFailActivity.cpp
 1 #include "PassFailActivity.h"
 2
 3 //**
 4 // Member function PassFailActivity::getLetterGrade *
 5 // This function returns 'P' if the score is passing, *
 6 // otherwise it returns 'F'. *
 7 //**
 8
 9 char PassFailActivity::getLetterGrade() const
10 {
11 char letterGrade;
12
13 if (score >= minPassingScore)
14 letterGrade = 'P';
15 else
16 letterGrade = 'F';
17
18 return letterGrade;
19 }

This getLetterGrade member function redefines the getLetterGrade member function
of GradedActivity class. This version of the function returns a grade of 'P' if the
numeric score is greater than or equal to minPassingScore. Otherwise, the function
returns a grade of 'F'.

The PassFailActivity class represents the general characteristics of a student’s pass-or-
fail activity. There might be numerous types of pass-or-fail activities, however. Suppose we
need a more specialized class, such as one that determines a student’s grade for a pass-or-
fail exam. The following PassFailExam class is an example. This class is derived from the
PassFailActivity class. It inherits all of the members of PassFailActivity, including
the ones that PassFailActivity inherits from GradedActivity. The PassFailExam
class calculates the number of points that each question on the exam is worth, as well as
the student’s numeric score. (These files are stored in the Student Source Code Folder
Chapter 15\PassFailActivity.)

Contents of PassFailExam.h
 1 #ifndef PASSFAILEXAM_H
 2 #define PASSFAILEXAM_H
 3 #include "PassFailActivity.h"
 4
 5 class PassFailExam : public PassFailActivity
 6 {

900 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 7 private:
 8 int numQuestions; // Number of questions
 9 double pointsEach; // Points for each question
10 int numMissed; // Number of questions missed
11 public:
12 // Default constructor
13 PassFailExam() : PassFailActivity()
14 { numQuestions = 0;
15 pointsEach = 0.0;
16 numMissed = 0; }
17
18 // Constructor
19 PassFailExam(int questions, int missed, double mps) :
20 PassFailActivity(mps)
21 { set(questions, missed); }
22
23 // Mutator function
24 void set(int, int); // Defined in PassFailExam.cpp
25
26 // Accessor functions
27 double getNumQuestions() const
28 { return numQuestions; }
29
30 double getPointsEach() const
31 { return pointsEach; }
32
33 int getNumMissed() const
34 { return numMissed; }
35 };
36 #endif

Contents of PassFailExam.cpp
 1 #include "PassFailExam.h"
 2
 3 //**
 4 // set function *
 5 // The parameters are the number of questions and the *
 6 // number of questions missed. *
 7 //**
 8
 9 void PassFailExam::set(int questions, int missed)
10 {
11 double numericScore; // To hold the numeric score
12
13 // Set the number of questions and number missed.
14 numQuestions = questions;
15 numMissed = missed;
16
17 // Calculate the points for each question.
18 pointsEach = 100.0 / numQuestions;
19

15.5 Class Hierarchies 901

20 // Calculate the numeric score for this exam.
21 numericScore = 100.0 - (missed * pointsEach);
22
23 // Call the inherited setScore function to set
24 // the numeric score.
25 setScore(numericScore);
26 }

The PassFailExam class inherits all of the PassFailActivity class’s members, including
the ones that PassFailActivity inherited from GradedActivity. Because the public
base class access specification is used, all of the protected members of PassFailActivity
become protected members of PassFailExam, and all of the public members of
PassFailActivity become public members of PassFailExam. Table 15-2 lists all of
the member variables of the PassFailExam class, and Table 15-3 lists all the member
functions. These include the members that were inherited from the base classes.

Program 15-8 demonstrates the PassFailExam class. This file is also stored in the student
source code folder Chapter 15\PassFailActivity.

Table 15-2

Member Variable of the
PassFailExam Class Access Inherited?
numQuestions protected No
pointsEach protected No
numMissed protected No
minPassingScore protected Yes, from PassFailActivity
score protected Yes, from PassFailActivity, which inherited it from

GradedActivity

Table 15-3

Member Function of the
PassFailExam Class Access Inherited?
set public No
getNumQuestions public No
getPointsEach public No
getNumMissed public No
setMinPassingScore public Yes, from PassFailActivity
getMinPassingScore public Yes, from PassFailActivity
getLetterGrade public Yes, from PassFailActivity
setScore public Yes, from PassFailActivity,which inherited it from

GradedActivity

getScore public Yes, from PassFailActivity, which inherited it from
GradedActivity

902 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-8

 1 // This program demonstrates the PassFailExam class.
 2 #include <iostream>
 3 #include <iomanip>
 4 #include "PassFailExam.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int questions; // Number of questions
10 int missed; // Number of questions missed
11 double minPassing; // The minimum passing score
12
13 // Get the number of questions on the exam.
14 cout << "How many questions are on the exam? ";
15 cin >> questions;
16
17 // Get the number of questions the student missed.
18 cout << "How many questions did the student miss? ";
19 cin >> missed;
20
21 // Get the minimum passing score.
22 cout << "Enter the minimum passing score for this test: ";
23 cin >> minPassing;
24
25 // Define a PassFailExam object.
26 PassFailExam exam(questions, missed, minPassing);
27
28 // Display the test results.
29 cout << fixed << setprecision(1);
30 cout << "\nEach question counts "
31 << exam.getPointsEach() << " points.\n";
32 cout << "The minimum passing score is "
33 << exam.getMinPassingScore() << endl;
34 cout << "The student's exam score is "
35 << exam.getScore() << endl;
36 cout << "The student's grade is "
37 << exam.getLetterGrade() << endl;
38 return 0;
39 }

Program Output with Example Input Shown in Bold
How many questions are on the exam? 100 [Enter]
How many questions did the student miss? 25 [Enter]
Enter the minimum passing score for this test: 60 [Enter]

Each question counts 1.0 points.
The minimum passing score is 60.0
The student's exam score is 75.0
The student's grade is P

15.6 Polymorphism and Virtual Member Functions 903

This program uses the PassFailExam object to call the getLetterGrade member func-
tion in line 37. Recall that the PassFailActivity class redefines the getLetterGrade
function to report only grades of ‘P’ or ‘F’. Because the PassFailExam class is derived
from the PassFailActivity class, it inherits the redefined getLetterGrade function.

Software designers often use class hierarchy diagrams. Like a family tree, a class hierarchy
diagram shows the inheritance relationships between classes. Figure 15-5 shows a class
hierarchy for the GradedActivity, FinalExam, PassFailActivity, and PassFailExam
classes. The more general classes are toward the top of the tree and the more specialized
classes are toward the bottom.

15.6 Polymorphism and Virtual Member Functions

CONCEPT: Polymorphism allows an object reference variable or an object pointer to
reference objects of different types, and to call the correct member
functions, depending upon the type of object being referenced.

Look at the following code for a function named displayGrade:

void displayGrade(const GradedActivity &activity)
{
 cout << setprecision(1) << fixed;
 cout << "The activity's numeric score is "
 << activity.getScore() << endl;
 cout << "The activity's letter grade is "
 << activity.getLetterGrade() << endl;
}

This function uses a const GradedActivity reference variable as its parameter. When a
GradedActivity object is passed as an argument to this function, the function calls the
object’s getScore and getLetterGrade member functions to display the numeric score
and letter grade. The following code shows how we might call the function.

Figure 15-5

GradedActivity

FinalExam

PassFailExam

PassFailActivity

Polymorphism

904 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

GradedActivity test(88.0); // The score is 88
displayGrade(test); // Pass test to displayGrade

This code will produce the following output:

The activity's numeric score is 88.0
The activity's letter grade is B

Recall that the GradedActivity class is also the base class for the FinalExam class.
Because of the “is-a” relationship between a base class and a derived class, an object of the
FinalExam class is not just a FinalExam object. It is also a GradedActivity object. (A
final exam is a graded activity.) Because of this relationship, we can also pass a
FinalExam object to the displayGrade function. For example, look at the following code:

// There are 100 questions. The student missed 25.
FinalExam test2(100, 25);
displayGrade(test2);

This code will produce the following output:

The activity's numeric score is 75.0
The activity's letter grade is C

Because the parameter in the displayGrade function is a GradedActivity reference vari-
able, it can reference any object that is derived from GradedActivity. A problem can occur
with this type of code, however, when redefined member functions are involved. For exam-
ple, recall that the PassFailActivity class is derived from the GradedActivity class.
The PassFailActivity class redefines the getLetterGrade function. Although we can
pass a PassFailActivity object as an argument to the displayGrade function, we will
not get the results we wish. This is demonstrated in Program 15-9. (This file is stored in the
Student Source Code Folder Chapter 15\PassFailActivity.)

Program 15-9

 1 #include <iostream>
 2 #include <iomanip>
 3 #include "PassFailActivity.h"
 4 using namespace std;
 5
 6 // Function prototype
 7 void displayGrade(const GradedActivity &);
 8
 9 int main()
10 {
11 // Create a PassFailActivity object. Minimum passing
12 // score is 70.
13 PassFailActivity test(70);
14
15 // Set the score to 72.
16 test.setScore(72);
17
18 // Display the object's grade data. The letter grade
19 // should be 'P'. What will be displayed?
20 displayGrade(test);
21 return 0;
22 }

15.6 Polymorphism and Virtual Member Functions 905

As you can see from the example output, the getLetterGrade member function returned
‘C’ instead of ‘P’. This is because the GradedActivity class’s getLetterGrade function
was executed instead of the PassFailActivity class’s version of the function.

This behavior happens because of the way C++ matches function calls with the correct
function. This process is known as binding. In Program 15-9, C++ decides at compile time
which version of the getLetterGrade function to execute when it encounters the call to
the function in line 35. Even though we passed a PassFailActivity object to the
displayGrade function, the activity parameter in the displayGrade function is a
GradedActivity reference variable. Because it is of the GradedActivity type, the com-
piler binds the function call in line 35 with the GradedActivity class’s getLetterGrade
function. When the program executes, it has already been determined by the compiler that
the GradedActivity class’s getLetterGrade function will be called. The process of
matching a function call with a function at compile time is called static binding.

To remedy this, the getLetterGrade function can be made virtual. A virtual function is a
member function that is dynamically bound to function calls. In dynamic binding, C++
determines which function to call at runtime, depending on the type of the object responsi-
ble for the call. If a GradedActivity object is responsible for the call, C++ will execute the
GradedActivity::getLetterGrade function. If a PassFailActivity object is responsi-
ble for the call, C++ will execute the PassFailActivity:: getLetterGrade function.

Virtual functions are declared by placing the key word virtual before the return type in
the base class’s function declaration, such as

virtual char getLetterGrade() const;

This declaration tells the compiler to expect getLetterGrade to be redefined in a derived
class. The compiler does not bind calls to the function with the actual function. Instead, it
allows the program to bind calls, at runtime, to the version of the function that belongs to
the same class as the object responsible for the call.

23
24 //***
25 // The displayGrade function displays a GradedActivity object's *
26 // numeric score and letter grade. *
27 //***
28
29 void displayGrade(const GradedActivity &activity)
30 {
31 cout << setprecision(1) << fixed;
32 cout << "The activity's numeric score is "
33 << activity.getScore() << endl;
34 cout << "The activity's letter grade is "
35 << activity.getLetterGrade() << endl;
36 }

Program Output
The activity's numeric score is 72.0
The activity's letter grade is C

906 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

The following code shows an updated version of the GradedActivity class, with the
getLetterGrade function declared virtual. This file is stored in the Student Source
Code Folder Chapter 15\GradedActivity Version 3. The GradedActivity.cpp file
has not changed, so it is not shown again.

Contents of GradedActivity.h (Version 3)
 1 #ifndef GRADEDACTIVITY_H
 2 #define GRADEDACTIVITY_H
 3
 4 // GradedActivity class declaration
 5
 6 class GradedActivity
 7 {
 8 protected:
 9 double score; // To hold the numeric score
10 public:
11 // Default constructor
12 GradedActivity()
13 { score = 0.0; }
14
15 // Constructor
16 GradedActivity(double s)
17 { score = s; }
18
19 // Mutator function
20 void setScore(double s)
21 { score = s; }
22
23 // Accessor functions
24 double getScore() const
25 { return score; }
26
27 virtual char getLetterGrade() const;
28 };
29 #endif

The only change we have made to this class is to declare getLetterGrade as virtual
in line 27. This tells the compiler not to bind calls to getLetterGrade with the func-
tion at compile time. Instead, calls to the function will be bound dynamically to the
function at runtime.

When a member function is declared virtual in a base class, any redefined versions of the
function that appear in derived classes automatically become virtual. So, it is not neces-
sary to declare the getLetterGrade function in the PassFailActivity class as virtual.
It is still a good idea to declare the function virtual in the PassFailActivity class for
documentation purposes. A new version of the PassFailActivity class is shown here.
This file is stored in the Student Source Code Folder Chapter 15\GradedActivity
Version 3. The PassFailActivity.cpp file has not changed, so it is not shown again.

NOTE: You place the virtual key word only in the function’s declaration or prototype.
If the function is defined outside the class, you do not place the virtual key word in the
function header.

15.6 Polymorphism and Virtual Member Functions 907

Contents of PassFailActivity.h

 1 #ifndef PASSFAILACTIVITY_H
 2 #define PASSFAILACTIVITY_H
 3 #include "GradedActivity.h"
 4
 5 class PassFailActivity : public GradedActivity
 6 {
 7 protected:
 8 double minPassingScore; // Minimum passing score
 9 public:
10 // Default constructor
11 PassFailActivity() : GradedActivity()
12 { minPassingScore = 0.0; }
13
14 // Constructor
15 PassFailActivity(double mps) : GradedActivity()
16 { minPassingScore = mps; }
17
18 // Mutator
19 void setMinPassingScore(double mps)
20 { minPassingScore = mps; }
21
22 // Accessors
23 double getMinPassingScore() const
24 { return minPassingScore; }
25
26 virtual char getLetterGrade() const;
27 };
28 #endif

The only change we have made to this class is to declare getLetterGrade as virtual in
line 26. Program 15-10 is identical to Program 15-9, except it uses the corrected version of
the GradedActivity and PassFailActivity classes. This file is also stored in the stu-
dent source code folder Chapter 15\GradedActivity Version 3.

Program 15-10

 1 #include <iostream>
 2 #include <iomanip>
 3 #include "PassFailActivity.h"
 4 using namespace std;
 5
 6 // Function prototype
 7 void displayGrade(const GradedActivity &);
 8
 9 int main()
10 {
11 // Create a PassFailActivity object. Minimum passing
12 // score is 70.
13 PassFailActivity test(70);
14

(program continues)

908 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Now that the getLetterGrade function is declared virtual, the program works prop-
erly. This type of behavior is known as polymorphism. The term polymorphism means the
ability to take many forms. Program 15-11 demonstrates polymorphism by passing
objects of the GradedActivity and PassFailExam classes to the displayGrade func-
tion. This file is stored in the Student Source Code Folder Chapter 15\GradedActivity
Version 3.

15 // Set the score to 72.
16 test.setScore(72);
17
18 // Display the object's grade data. The letter grade
19 // should be 'P'. What will be displayed?
20 displayGrade(test);
21 return 0;
22 }
23
24 //***
25 // The displayGrade function displays a GradedActivity object's *
26 // numeric score and letter grade. *
27 //***
28
29 void displayGrade(const GradedActivity &activity)
30 {
31 cout << setprecision(1) << fixed;
32 cout << "The activity's numeric score is "
33 << activity.getScore() << endl;
34 cout << "The activity's letter grade is "
35 << activity.getLetterGrade() << endl;
36 }

Program Output
The activity's numeric score is 72.0
The activity's letter grade is P

Program 15-11

 1 #include <iostream>
 2 #include <iomanip>
 3 #include "PassFailExam.h"
 4 using namespace std;
 5
 6 // Function prototype
 7 void displayGrade(const GradedActivity &);
 8
 9 int main()
10 {
11 // Create a GradedActivity object. The score is 88.
12 GradedActivity test1(88.0);
13

Program 15-10 (continued)

15.6 Polymorphism and Virtual Member Functions 909

Polymorphism Requires References or Pointers
The displayGrade function in Programs 15-10 and 15-11 uses a GradedActivity refer-
ence variable as its parameter. When we call the function, we pass an object by reference.
Polymorphic behavior is not possible when an object is passed by value, however. For
example, suppose the displayGrade function had been written as shown here:

// Polymorphic behavior is not possible with this function.
void displayGrade(const GradedActivity activity)
{
 cout << setprecision(1) << fixed;
 cout << "The activity's numeric score is "
 << activity.getScore() << endl;
 cout << "The activity's letter grade is "
 << activity.getLetterGrade() << endl;
}

14 // Create a PassFailExam object. There are 100 questions,
15 // the student missed 25 of them, and the minimum passing
16 // score is 70.
17 PassFailExam test2(100, 25, 70.0);
18
19 // Display the grade data for both objects.
20 cout << "Test 1:\n";
21 displayGrade(test1); // GradedActivity object
22 cout << "\nTest 2:\n";
23 displayGrade(test2); // PassFailExam object
24 return 0;
25 }
26
27 //***
28 // The displayGrade function displays a GradedActivity object's *
29 // numeric score and letter grade. *
30 //***
31
32 void displayGrade(const GradedActivity &activity)
33 {
34 cout << setprecision(1) << fixed;
35 cout << "The activity's numeric score is "
36 << activity.getScore() << endl;
37 cout << "The activity's letter grade is "
38 << activity.getLetterGrade() << endl;
39 }

Program Output
Test 1:
The activity's numeric score is 88.0
The activity's letter grade is B

Test 2:
The activity's numeric score is 75.0
The activity's letter grade is P

910 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

In this version of the function the activity parameter is an object variable, not a refer-
ence variable. Suppose we call this version of the function with the following code:

// Create a GradedActivity object. The score is 88.
GradedActivity test1(88.0);

// Create a PassFailExam object. There are 100 questions,
// the student missed 25 of them, and the minimum passing
// score is 70.
PassFailExam test2(100, 25, 70.0);

// Display the grade data for both objects.
cout << "Test 1:\n";
displayGrade(test1); // Pass the GradedActivity object
cout << "\nTest 2:\n";
displayGrade(&test2); // Pass the PassFailExam object

This code will produce the following output:

Test 1:
The activity's numeric score is 88.0
The activity's letter grade is B

Test 2:
The activity's numeric score is 75.0
The activity's letter grade is C

Even though the getLetterGrade function is declared virtual, static binding still takes
place because activity is not a reference variable or a pointer.

Alternatively we could have used a GradedActivity pointer in the displayGrade func-
tion, as shown in Program 15-12. This file is also stored in the Student Source Code
Folder Chapter 15\GradedActivity Version 3.

Program 15-12

 1 #include <iostream>
 2 #include <iomanip>
 3 #include "PassFailExam.h"
 4 using namespace std;
 5
 6 // Function prototype
 7 void displayGrade(const GradedActivity *);
 8
 9 int main()
10 {
11 // Create a GradedActivity object. The score is 88.
12 GradedActivity test1(88.0);
13
14 // Create a PassFailExam object. There are 100 questions,
15 // the student missed 25 of them, and the minimum passing
16 // score is 70.
17 PassFailExam test2(100, 25, 70.0);
18

15.6 Polymorphism and Virtual Member Functions 911

Base Class Pointers
Pointers to a base class may be assigned the address of a derived class object. For example,
look at the following code:

GradedActivity *exam = new PassFailExam(100, 25, 70.0);

This statement dynamically allocates a PassFailExam object and assigns its address to
exam, which is a GradedActivity pointer. We can then use the exam pointer to call member
functions, as shown here:

cout << exam->getScore() << endl;
cout << exam->getLetterGrade() << endl;

Program 15-13 is an example that uses base class pointers to reference derived class
objects. This file is also stored in the Student Source Code Folder Chapter 15\
GradedActivity Version 3.

19 // Display the grade data for both objects.
20 cout << "Test 1:\n";
21 displayGrade(&test1); // Address of the GradedActivity object
22 cout << "\nTest 2:\n";
23 displayGrade(&test2); // Address of the PassFailExam object
24 return 0;
25 }
26
27 //***
28 // The displayGrade function displays a GradedActivity object's *
29 // numeric score and letter grade. This version of the function *
30 // uses a GradedActivity pointer as its parameter. *
31 //***
32
33 void displayGrade(const GradedActivity *activity)
34 {
35 cout << setprecision(1) << fixed;
36 cout << "The activity's numeric score is "
37 << activity->getScore() << endl;
38 cout << "The activity's letter grade is "
39 << activity->getLetterGrade() << endl;
40 }

Program Output
Test 1:
The activity's numeric score is 88.0
The activity's letter grade is B

Test 2:
The activity's numeric score is 75.0
The activity's letter grade is P

912 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Program 15-13

 1 #include <iostream>
 2 #include <iomanip>
 3 #include "PassFailExam.h"
 4 using namespace std;
 5
 6 // Function prototype
 7 void displayGrade(const GradedActivity *);
 8
 9 int main()
10 {
11 // Constant for the size of an array.
12 const int NUM_TESTS = 4;
13
14 // tests is an array of GradedActivity pointers.
15 // Each element of tests is initialized with the
16 // address of a dynamically allocated object.
17 GradedActivity *tests[NUM_TESTS] =
18 { new GradedActivity(88.0),
19 new PassFailExam(100, 25, 70.0),
20 new GradedActivity(67.0),
21 new PassFailExam(50, 12, 60.0)
22 };
23
24 // Display the grade data for each element in the array.
25 for (int count = 0; count < NUM_TESTS; count++)
26 {
27 cout << "Test #" << (count + 1) << ":\n";
28 displayGrade(tests[count]);
29 cout << endl;
30 }
31 return 0;
32 }
33
34 //***
35 // The displayGrade function displays a GradedActivity object's *
36 // numeric score and letter grade. This version of the function *
37 // uses a GradedActivity pointer as its parameter. *
38 //***
39
40 void displayGrade(const GradedActivity *activity)
41 {
42 cout << setprecision(1) << fixed;
43 cout << "The activity's numeric score is "
44 << activity->getScore() << endl;
45 cout << "The activity's letter grade is "
46 << activity->getLetterGrade() << endl;
47 }

15.6 Polymorphism and Virtual Member Functions 913

Let’s take a closer look at this program. An array named tests is defined in lines 17
through 22. This is an array of GradedActivity pointers. The array elements are initial-
ized with the addresses of dynamically allocated objects. The tests[0] element is initial-
ized with the address of the GradedActivity object returned from this expression:

new GradedActivity(88.0)

The tests[1] element is initialized with the address of the GradedActivity object
returned from this expression:

new PassFailExam(100, 25, 70.0)

The tests[2] element is initialized with the address of the GradedActivity object
returned from this expression:

new GradedActivity(67.0)

Finally, the tests[3] element is initialized with the address of the GradedActivity
object returned from this expression:

new PassFailExam(50, 12, 60.0)

Although each element in the array is a GradedActivity pointer, some of the elements
point to GradedActivity objects and some point to PassFailExam objects. The loop
in lines 25 through 30 steps through the array, passing each pointer element to the
displayGrade function.

Base Class Pointers and References Know Only
About Base Class Members
Although a base class pointer can reference objects of any class that derives from the base
class, there are limits to what the pointer can do with those objects. Recall that the
GradedActivity class has, other than its constructors, only three member functions:
setScore, getScore, and getLetterGrade. So, a GradedActivity pointer can be used

Program Output
Test #1:
The activity's numeric score is 88.0
The activity's letter grade is B

Test #2:
The activity's numeric score is 75.0
The activity's letter grade is P

Test #3:
The activity's numeric score is 67.0
The activity's letter grade is D

Test #4:
The activity's numeric score is 76.0
The activity's letter grade is P

914 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

to call only those functions, regardless of the type of object it points to. For example, look
at the following code.

GradedActivity *exam = new PassFailExam(100, 25, 70.0);
cout << exam->getScore() << endl; // This works.
cout << exam->getLetterGrade() << endl; // This works.
cout << exam->getPointsEach() << endl; // ERROR! Won't work!

In this code, exam is a GradedActivity pointer, and is assigned the address of a
PassFailExam object. The GradedActivity class has only the setScore, getScore, and
getLetterGrade member functions, so those are the only member functions that the exam
variable knows how to execute. The last statement in this code is a call to the
getPointsEach member function, which is defined in the PassFailExam class. Because the
exam variable only knows about member functions in the GradedActivity class, it cannot
execute this function.

The “Is-a” Relationship Does Not Work in Reverse
It is important to note that the “is-a” relationship does not work in reverse. Although the
statement “a final exam is a graded activity” is true, the statement “a graded activity is a
final exam” is not true. This is because not all graded activities are final exams. Likewise,
not all GradedActivity objects are FinalExam objects. So, the following code will not
work.

// Create a GradedActivity object.
GradedActivity *gaPointer = new GradedActivity(88.0);

// Error! This will not work.
FinalExam *fePointer = gaPointer;

You cannot assign the address of a GradedActivity object to a FinalExam pointer. This
makes sense because FinalExam objects have capabilities that go beyond those of a
GradedActivity object. Interestingly, the C++ compiler will let you make such an assign-
ment if you use a type cast, as shown here:

// Create a GradedActivity object.
GradedActivity *gaPointer = new GradedActivity(88.0);

// This will work, but with limitations.
FinalExam *fePointer = static_cast<FinalExam *>(gaPointer);

After this code executes, the derived class pointer fePointer will be pointing to a base
class object. We can use the pointer to access members of the object, but only the members
that exist. The following code demonstrates:

// This will work. The object has a getScore function.
cout << fePointer->getScore() << endl;

// This will work. The object has a getLetterGrade function.
cout << fePointer->getLetterGrade() << endl;

// This will compile, but an error will occur at runtime.
// The object does not have a getPointsEach function.
cout << fePointer->getPointsEach() << endl;

15.6 Polymorphism and Virtual Member Functions 915

In this code fePointer is a FinalExam pointer, and it points to a GradedActivity
object. The first two cout statements work because the GradedActivity object has
getScore and a getLetterGrade member functions. The last cout statement will cause
an error, however, because it calls the getPointsEach member function. The
GradedActivity object does not have a getPointsEach member function.

Redefining vs. Overriding
Earlier in this chapter you learned how a derived class can redefine a base class member
function. When a class redefines a virtual function, it is said that the class overrides the
function. In C++, the difference between overriding and redefining base class functions is
that overridden functions are dynamically bound, and redefined functions are statically
bound. Only virtual functions can be overridden.

Virtual Destructors
When you write a class with a destructor, and that class could potentially become a base
class, you should always declare the destructor virtual. This is because the compiler will
perform static binding on the destructor if it is not declared virtual. This can lead to
problems when a base class pointer or reference variable references a derived class object.
If the derived class has its own destructor, it will not execute when the object is destroyed
or goes out of scope. Only the base class destructor will execute. Program 15-14
demonstrates.

Program 15-14

 1 #include <iostream>
 2 using namespace std;
 3
 4 // Animal is a base class.
 5 class Animal
 6 {
 7 public:
 8 // Constructor
 9 Animal()
10 { cout << "Animal constructor executing.\n"; }
11
12 // Destructor
13 ~Animal()
14 { cout << "Animal destructor executing.\n"; }
15 };
16
17 // The Dog class is derived from Animal
18 class Dog : public Animal
19 {
20 public:
21 // Constructor
22 Dog() : Animal()
23 { cout << "Dog constructor executing.\n"; }
24

(program continues)

916 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

This program declares two classes: Animal and Dog. Animal is the base class and Dog is
the derived class. Each class has its own constructor and destructor. In line 38, a Dog
object is created and its address is stored in an Animal pointer. Both the Animal and the
Dog constructors execute. In line 41 the object is deleted. When this statement executes,
however, only the Animal destructor executes. The Dog destructor does not execute
because the object is referenced by an Animal pointer. We can fix this problem by declar-
ing the Animal class destructor virtual, as shown in Program 15-15.

25 // Destructor
26 ~Dog()
27 { cout << "Dog destructor executing.\n"; }
28 };
29
30 //***
31 // main function *
32 //***
33
34 int main()
35 {
36 // Create a Dog object, referenced by an
37 // Animal pointer.
38 Animal *myAnimal = new Dog;
39
40 // Delete the dog object.
41 delete myAnimal;
42 return 0;
43 }

Program Output
Animal constructor executing.
Dog constructor executing.
Animal destructor executing.

Program 15-15

 1 #include <iostream>
 2 using namespace std;
 3
 4 // Animal is a base class.
 5 class Animal
 6 {
 7 public:
 8 // Constructor
 9 Animal()
10 { cout << "Animal constructor executing.\n"; }
11

Program 15-14 (continued)

15.6 Polymorphism and Virtual Member Functions 917

The only thing that has changed in this program is that the Animal class destructor is
declared virtual in line 13. As a result, the destructor is dynamically bound at runtime.
When the Dog object is destroyed, both the Animal and Dog destructors execute.

A good programming practice to follow is that any class that has a virtual member func-
tion should also have a virtual destructor. If the class doesn’t require a destructor, it should
have a virtual destructor that performs no statements. Remember, when a base class func-
tion is declared virtual, all overridden versions of the function in derived classes auto-
matically become virtual. Including a virtual destructor in a base class, even one that does
nothing, will ensure that any derived class destructors will also be virtual.

12 // Destructor
13 virtual ~Animal()
14 { cout << "Animal destructor executing.\n"; }
15 };
16
17 // The Dog class is derived from Animal
18 class Dog : public Animal
19 {
20 public:
21 // Constructor
22 Dog() : Animal()
23 { cout << "Dog constructor executing.\n"; }
24
25 // Destructor
26 ~Dog()
27 { cout << "Dog destructor executing.\n"; }
28 };
29
30 //***
31 // main function *
32 //***
33
34 int main()
35 {
36 // Create a Dog object, referenced by an
37 // Animal pointer.
38 Animal *myAnimal = new Dog;
39
40 // Delete the dog object.
41 delete myAnimal;
42 return 0;
43 }

Program Output
Animal constructor executing.
Dog constructor executing.
Dog destructor executing.
Animal destructor executing.

918 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

15.7 Abstract Base Classes and Pure Virtual Functions

CONCEPT: An abstract base class cannot be instantiated, but other classes are
derived from it. A pure virtual function is a virtual member function of a
base class that must be overridden. When a class contains a pure virtual
function as a member, that class becomes an abstract base class.

Sometimes it is helpful to begin a class hierarchy with an abstract base class. An abstract
base class is not instantiated itself, but serves as a base class for other classes. The abstract
base class represents the generic, or abstract, form of all the classes that are derived from it.

For example, consider a factory that manufactures airplanes. The factory does not make a
generic airplane, but makes three specific types of planes: two different models of prop-
driven planes, and one commuter jet model. The computer software that catalogs the
planes might use an abstract base class called Airplane. That class has members repre-
senting the common characteristics of all airplanes. In addition, it has classes for each of
the three specific airplane models the factory manufactures. These classes have members
representing the unique characteristics of each type of plane. The base class, Airplane, is
never instantiated, but is used to derive the other classes.

A class becomes an abstract base class when one or more of its member functions is a pure
virtual function. A pure virtual function is a virtual member function declared in a manner
similar to the following:

virtual void showInfo() = 0;

The = 0 notation indicates that showInfo is a pure virtual function. Pure virtual functions
have no body, or definition, in the base class. They must be overridden in derived classes.
Additionally, the presence of a pure virtual function in a class prevents a program from
instantiating the class. The compiler will generate an error if you attempt to define an
object of an abstract base class.

For example, look at the following abstract base class Student. It holds data common to
all students, but does not hold all the data needed for students of specific majors.

Contents of Student.h
 1 // Specification file for the Student class
 2 #ifndef STUDENT_H
 3 #define STUDENT_H
 4 #include <cstring> // For strcpy
 5
 6 // Constants for array sizes
 7 const int NAME_SIZE = 51;
 8 const int ID_SIZE = 21;
 9
10 class Student
11 {

15.7 Abstract Base Classes and Pure Virtual Functions 919

12 protected:
13 char name[NAME_SIZE]; // Student name
14 char idNumber[ID_SIZE]; // Student ID
15 int yearAdmitted; // Year student was admitted
16 public:
17 // Default constructor
18 Student()
19 { name[0] = '\0';
20 idNumber[0] = '\0';
21 yearAdmitted = 0; }
22
23 // Constructor
24 Student(const char *n, const char *id, int year)
25 { set(n, id, year); }
26
27 // The set function sets the attribute data.
28 void set(const char *n, const char *id, int year)
29 { strncpy(name, n, NAME_SIZE); // Copy the name
30 name[NAME_SIZE - 1] = '\0'; // Place a null character
31 strncpy(idNumber, n, ID_SIZE); // Copy the ID number
32 idNumber[ID_SIZE - 1] = '\0'; // Place a null character
33 yearAdmitted = year; } // Assign year admitted
34
35 // Accessor functions
36 const char *getName() const
37 { return name; }
38
39 const char *getIdNum() const
40 { return idNumber; }
41
42 int getYearAdmitted() const
43 { return yearAdmitted; }
44
45 // Pure virtual function
46 virtual int getRemainingHours() const = 0;
47 };
48 #endif

The Student class contains members for storing a student’s name, ID number, and year
admitted. It also has constructors and a mutator function for setting values in the name,
idNumber, and yearAdmitted members. Accessor functions are provided that return the
values in the name, idNumber, and yearAdmitted members. A pure virtual function
named getRemainingHours is also declared.

The pure virtual function must be overridden in classes derived from the Student class. It
was made a pure virtual function because this class is intended to be the base for classes
that represent students of specific majors. For example, a CsStudent class might hold the
data for a computer science student, and a BiologyStudent class might hold the data for
a biology student. Computer science students must take courses in different disciplines
than those taken by biology students. It stands to reason that the CsStudent class will cal-
culate the number of hours taken in a different manner than the BiologyStudent class.

Let’s look at an example of the CsStudent class.

920 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of CsStudent.h
 1 // Specification file for the CsStudent class
 2 #ifndef CSSTUDENT_H
 3 #define CSSTUDENT_H
 4 #include "Student.h"
 5
 6 // Constants for required hours
 7 const int MATH_HOURS = 20; // Math hours
 8 const int CS_HOURS = 40; // Computer science hours
 9 const int GEN_ED_HOURS = 60; // General Ed hours
10
11 class CsStudent : public Student
12 {
13 private:
14 int mathHours; // Hours of math taken
15 int csHours; // Hours of Computer Science taken
16 int genEdHours; // Hours of general education taken
17
18 public:
19 // Default Constructor
20 CsStudent() : Student()
21 { mathHours = 0;
22 csHours = 0;
23 genEdHours = 0; }
24
25 // Constructor
26 CsStudent(const char *n, const char *id, int year) :
27 Student(n, id, year)
28 { mathHours = 0;
29 csHours = 0;
30 genEdHours = 0; }
31
32 // Mutator functions
33 void setMathHours(int mh)
34 { mathHours = mh; }
35
36 void setCsHours(int csh)
37 { csHours = csh; }
38
39 void setGenEdHours(int geh)
40 { genEdHours = geh; }
41
42 // Overridden getRemainingHours function,
43 // defined in CsStudent.cpp
44 virtual int getRemainingHours() const;
45 };
46 #endif

This file declares the following const int member variables in lines 7 through 9:
MATH_HOURS, CS_HOURS, and GEN_ED_HOURS. These variables hold the required number of
math, computer science, and general education hours for a computer science student. The
CsStudent class, which derives from the Student class, declares the following member
variables in lines 14 through 16: mathHours, csHours, and genEdHours. These variables

15.7 Abstract Base Classes and Pure Virtual Functions 921

hold the number of math, computer science, and general education hours taken by the stu-
dent. Mutator functions are provided to store values in these variables. In addition, the
class overrides the pure virtual getRemainingHours function in the CsStudent.cpp file.

Contents of CsStudent.cpp
 1 #include <iostream>
 2 #include "CsStudent.h"
 3 using namespace std;
 4
 5 //**
 6 // The CsStudent::getRemainingHours function returns *
 7 // the number of hours remaining to be taken. *
 8 //**
 9
10 int CsStudent::getRemainingHours() const
11 {
12 int reqHours, // Total required hours
13 remainingHours; // Remaining hours
14
15 // Calculate the required hours.
16 reqHours = MATH_HOURS + CS_HOURS + GEN_ED_HOURS;
17
18 // Calculate the remaining hours.
19 remainingHours = reqHours - (mathHours + csHours +
20 genEdHours);
21
22 // Return the remaining hours.
23 return remainingHours;
24 }

Program 15-16 provides a simple demonstration of the class.

Program 15-16

 1 // This program demonstrates the CsStudent class, which is
 2 // derived from the abstract base class, Student.
 3 #include <iostream>
 4 #include "CsStudent.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // Create a CsStudent object for a student.
10 CsStudent student("Jennifer Haynes", "167W98337", 2010);
11
12 // Store values for Math, Computer Science, and General
13 // Ed hours.
14 student.setMathHours(12); // Student has taken 12 Math hours
15 student.setCsHours(20); // Student has taken 20 CS hours
16 student.setGenEdHours(40); // Student has taken 40 Gen Ed hours
17

(program continues)

922 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Remember the following points about abstract base classes and pure virtual functions:

• When a class contains a pure virtual function, it is an abstract base class.
• Pure virtual functions are declared with the = 0 notation.
• Abstract base classes cannot be instantiated.
• Pure virtual functions have no body, or definition, in the base class.
• A pure virtual function must be overridden at some point in a derived class in

order for it to become nonabstract.

Checkpoint
15.9 Explain the difference between overloading a function and redefining a function.

15.10 Explain the difference between static binding and dynamic binding.

15.11 Are virtual functions statically bound or dynamically bound?

15.12 What will the following program display?

#include <iostream.>
using namespace std;

class First
{
protected:
 int a;
public:
 First(int x = 1)
 { a = x; }

 int getVal()
 { return a; }
};

class Second : public First
{
private:
 int b;
public:
 Second(int y = 5)
 { b = y; }
 int getVal()
 { return b; }
};

18 // Display the number of remaining hours.
19 cout << "The student " << student.getName()
20 << " needs to take " << student.getRemainingHours()
21 << " more hours to graduate.\n";
22
23 return 0;
24 }

Program Output
The student Jennifer Haynes needs to take 48 more hours to graduate.

Program 15-16 (continued)

15.7 Abstract Base Classes and Pure Virtual Functions 923

int main()
{
 First object1;
 Second object2;

 cout << object1.getVal() << endl;
 cout << object2.getVal() << endl;
 return 0;
}

15.13 What will the following program display?

#include <iostream>
using namespace std;

class First
{
protected:
 int a;
public:
 First(int x = 1)
 { a = x; }

 void twist()
 { a *= 2; }
 int getVal()
 { twist(); return a; }
};

class Second : public First
{
private:
 int b;
public:
 Second(int y = 5)
 { b = y; }

 void twist()
 { b *= 10; }
};

int main()
{
 First object1;
 Second object2;

 cout << object1.getVal() << endl;
 cout << object2.getVal() << endl;
 return 0;
}

15.14 What will the following program display?

#include <iostream>
using namespace std;

class First
{
protected:
 int a;

924 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

public:
 First(int x = 1)
 { a = x; }

 virtual void twist()
 { a *= 2; }

 int getVal()
 { twist(); return a; }
};

class Second : public First
{
private:
 int b;
public:
 Second(int y = 5)
 { b = y; }
 virtual void twist()
 { b *= 10; }
};

int main()
{
 First object1;
 Second object2;

 cout << object1.getVal() << endl;
 cout << object2.getVal() << endl;
 return 0;
}

15.15 What will the following program display?

#include <iostream>
using namespace std;

class Base
{
protected:
 int baseVar;
public:
 Base(int val = 2)
 { baseVar = val; }

 int getVar()
 { return baseVar; }
};

class Derived : public Base
{
private:
 int derivedVar;
public:
 Derived(int val = 100)
 { derivedVar = val; }
 int getVar()
 { return derivedVar; }
};

15.8 Multiple Inheritance 925

int main()
{
 Base *optr;
 Derived object;

 optr = &object;
 cout << optr->getVar() << endl;
 return 0;
}

15.8 Multiple Inheritance

CONCEPT: Multiple inheritance is when a derived class has two or more base classes.

Previously we discussed how a class may be derived from a second class that is itself
derived from a third class. The series of classes establishes a chain of inheritance. In such a
scheme, you might be tempted to think of the lowest class in the chain as having multiple
base classes. A base class, however, should be thought of as the class that another class is
directly derived from. Even though there may be several classes in a chain, each class
(below the topmost class) only has one base class.

Another way of combining classes is through multiple inheritance. Multiple inheritance is
when a class has two or more base classes. This is illustrated in Figure 15-6.

In Figure 15-6, class C is directly derived from classes A and B, and inherits the members
of both. Neither class A nor B, however, inherits members from the other. Their members
are only passed down to class C. Let’s look at an example of multiple inheritance. Con-
sider the two classes declared here:

Contents of Date.h
 1 // Specification file for the Date class
 2 #ifndef DATE_H
 3 #define DATE_H
 4
 5 class Date
 6 {

Figure 15-6

Class A Class B

Class C

926 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 7 protected:
 8 int day;
 9 int month;
10 int year;
11 public:
12 // Default constructor
13 Date(int d, int m, int y)
14 { day = 1; month = 1; year = 1900; }
15
16 // Constructor
17 Date(int d, int m, int y)
18 { day = d; month = m; year = y; }
19
20 // Accessors
21 int getDay() const
22 { return day; }
23
24 int getMonth() const
25 { return month; }
26
27 int getYear() const
28 { return year; }
29 };
30 #endif

Contents of Time.h
 1 // Specification file for the Time class
 2 #ifndef TIME_H
 3 #define TIME_H
 4
 5 class Time
 6 {
 7 protected:
 8 int hour;
 9 int min;
10 int sec;
11 public:
12 // Default constructor
13 Time()
14 { hour = 0; min = 0; sec = 0; }
15
16 // Constructor
17 Time(int h, int m, int s)
18 { hour = h; min = m; sec = s; }
19
20 // Accessor functions
21 int getHour() const
22 { return hour; }
23

15.8 Multiple Inheritance 927

24 int getMin() const
25 { return min; }
26
27 int getSec() const
28 { return sec; }
29 };
30 #endif

These classes are designed to hold integers that represent the date and time. They both can
be used as base classes for a third class we will call DateTime:

Contents of DateTime.h
 1 // Specification file for the DateTime class
 2 #ifndef DATETIME_H
 3 #define DATETIME_H
 4 #include "Date.h"
 5 #include "Time.h"
 6
 7 // Constant for string size
 8 const int DT_SIZE = 20;
 9
10 class DateTime : public Date, public Time
11 {
12 protected:
13 char dateTimeString[DT_SIZE];
14 public:
15 // Default constructor
16 DateTime();
17
18 // Constructor
19 DateTime(int, int, int, int, int, int);
20
21 // Accessor function
22 const char *getDateTime() const
23 { return dateTimeString; }
24 };
25 #endif

In line 10, the first line in the DateTime declaration reads

class DateTime : public Date, public Time

Notice there are two base classes listed, separated by a comma. Each base class has its
own access specification. The general format of the first line of a class declaration with
multiple base classes is

The notation in the square brackets indicates that the list of base classes with their access
specifications may be repeated. (It is possible to have several base classes.)

 class DerivedClassName : AccessSpecification BaseClassName,
AccessSpecification BaseClassName [, ...]

928 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Contents of DateTime.cpp
 1 // Implementation file for the DateTime class
 2 #include <cstring> // For strcpy and strcat
 3 #include <cstdlib> // For itoa
 4 #include "DateTime.h"
 5
 6 // Constant for temp array size
 7 const int TEMP_SIZE = 10;
 8
 9 //**
10 // Default constructor *
11 //**
12
13 DateTime::DateTime() : Date(), Time()
14 {
15 strcpy(dateTimeString, "1/1/1900 0:0:0");
16 }
17
18 //**
19 // Constructor *
20 //**
21
22 DateTime::DateTime(int dy, int mon, int yr, int hr, int mt, int sc) :
23 Date(dy, mon, yr), Time(hr, mt, sc)
24 {
25 char temp[TEMP_SIZE]; // Temporary work area for itoa()
26
27 // Store the date in dateTimeString, in the form MM/DD/YY
28 strcpy(dateTimeString, itoa(getMonth(), temp, TEMP_SIZE));
29 strcat(dateTimeString, "/");
30 strcat(dateTimeString, itoa(getDay(), temp, TEMP_SIZE));
31 strcat(dateTimeString, "/");
32 strcat(dateTimeString, itoa(getYear(), temp, TEMP_SIZE));
33 strcat(dateTimeString, " ");
34
35 // Store the time in dateTimeString, in the form HH:MM:SS
36 strcat(dateTimeString, itoa(getHour(), temp, TEMP_SIZE));
37 strcat(dateTimeString, ":");
38 strcat(dateTimeString, itoa(getMin(), temp, TEMP_SIZE));
39 strcat(dateTimeString, ":");
40 strcat(dateTimeString, itoa(getSec(), temp, TEMP_SIZE));
41 }

The class has two constructors: a default constructor and a constructor that accepts argu-
ments for each component of a date and time. Let’s look at the function header for the
default constructor, in line 13:

DateTime::DateTime() : Date(), Time()

15.8 Multiple Inheritance 929

After the DateTime constructor’s parentheses is a colon, followed by calls to the Date
constructor and the Time constructor. The calls are separated by a comma. When using
multiple inheritance, the general format of a derived class’s constructor header is

Look at the function header for the second constructor, which appears in lines 22 and 23:

DateTime::DateTime(int dy, int mon, int yr, int hr, int mt, int sc) :
 Date(dy, mon, yr), Time(hr, mt, sc)

This DateTime constructor accepts arguments for the day (dy), month (mon), year (yr),
hour (hr), minute (mt), and second (sc). The dy, mon, and yr parameters are passed as
arguments to the Date constructor. The hr, mt, and sc parameters are passed as argu-
ments to the Time constructor.

The order that the base class constructor calls appear in the list does not matter. They are
always called in the order of inheritance. That is, they are always called in the order they
are listed in the first line of the class declaration. Here is line 10 from the DateTime.h file:

class DateTime : public Date, public Time

Because Date is listed before Time in the DateTime class declaration, the Date constructor
will always be called first. If the classes use destructors, they are always called in reverse
order of inheritance. Program 15-17 shows these classes in use.

DerivedClassName(ParameterList) : BaseClassName(ArgumentList),
BaseClassName(ArgumentList)[, ...]

Program 15-17

 1 // This program demonstrates a class with multiple inheritance.
 2 #include <iostream>
 3 #include "DateTime.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Define a DateTime object and use the default
 9 // constructor to initialize it.
10 DateTime emptyDay;
11
12 // Display the object's date and time.
13 cout << emptyDay.getDateTime() << endl;
14
15 // Define a DateTime object and initialize it
16 // with the date 2/4/60 and the time 5:32:27.
17 DateTime pastDay(2, 4, 60, 5, 32, 27);
18
19 // Display the object's date and time.
20 cout << pastDay.getDateTime() << endl;
21 return 0;
22 }

(program output continues)

930 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Checkpoint
15.16 Does the following diagram depict multiple inheritance or a chain of inheritance?

15.17 Does the following diagram depict multiple inheritance or a chain of inheritance?

15.18 Examine the following classes. The table lists the variables that are members of
the Third class (some are inherited). Complete the table by filling in the access
specification each member will have in the Third class. Write “inaccessible” if a
member is inaccessible to the Third class.

class First
{
 private:
 int a;
 protected:
 double b;
 public:
 long c;
};

class Second : protected First
{
 private:
 int d;
 protected:
 double e;
 public:
 long f;
};

Program Output
 1/1/1900 0:0:0
 4/2/60 5:32:27

NOTE: It should be noted that multiple inheritance opens the opportunity for a derived
class to have ambiguous members. That is, two base classes may have member variables or
functions of the same name. In situations like these, the derived class should always redefine
or override the member functions. Calls to the member functions of the appropriate base
class can be performed within the derived class using the scope resolution operator(::). The
derived class can also access the ambiguously named member variables of the correct base
class using the scope resolution operator. If these steps aren’t taken, the compiler will
generate an error when it can’t tell which member is being accessed.

Program 15-17 (continued)

Class A

Class B

Class C

Class BClass A

Class C

15.8 Multiple Inheritance 931

class Third : public Second
{
 private:
 int g;
 protected:
 double h;
 public:
 long i;
};

15.19 Examine the following class declarations:

class Van
{
protected:
 int passengers;
public:
 Van(int p)
 { passengers = p; }
};

class FourByFour
{
protected:
 double cargoWeight;
public:
 FourByFour(float w)
 { cargoWeight = w; }
};

Write the declaration of a class named SportUtility. The class should be
derived from both the Van and FourByFour classes above. (This should be a case
of multiple inheritance, where both Van and FourByFour are base classes.)

Member Variable Access Specification in Third Class
 a

 b

 c

 d

 e

 f

 g

 h

 i

932 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Review Questions and Exercises

Short Answer
1. What is an “is a” relationship?

2. A program uses two classes: Dog and Poodle. Which class is the base class and which
is the derived class?

3. How does base class access specification differ from class member access specification?

4. What is the difference between a protected class member and a private class member?

5. Can a derived class ever directly access the private members of its base class?

6. Which constructor is called first, that of the derived class or the base class?

7. What is the difference between redefining a base class function and overriding a base
class function?

8. When does static binding take place? When does dynamic binding take place?

9. What is an abstract base class?

10. A program has a class Potato, which is derived from the class Vegetable, which is
derived from the class Food. Is this an example of multiple inheritance? Why or why not?

11. What base class is named in the line below?

class Pet : public Dog

12. What derived class is named in the line below?

class Pet : public Dog

13. What is the class access specification of the base class named below?

class Pet : public Dog

14. What is the class access specification of the base class named below?

class Pet : Fish

15. Protected members of a base class are like __________ members, except they may be
accessed by derived classes.

16. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

17. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

In a private base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

Review Questions and Exercises 933

18. Complete the table below by filling in private, protected, public, or inaccessible in the
right-hand column:

Fill-in-the-Blank

19. A derived class inherits the __________ of its base class.

20. When both a base class and a derived class have constructors, the base class’s con-
structor is called __________ (first/last).

21. When both a base class and a derived class have destructors, the base class’s construc-
tor is called __________ (first/last).

22. An overridden base class function may be called by a function in a derived class by
using the __________ operator.

23. When a derived class redefines a function in a base class, which version of the func-
tion do objects that are defined of the base class call? __________

24. A(n) __________ member function in a base class expects to be overridden in a
derived class.

25. __________ binding is when the compiler binds member function calls at compile time.

26. __________ binding is when a function call is bound at runtime.

27. __________ is when member functions in a class hierarchy behave differently, depend-
ing upon which object performs the call.

28. When a pointer to a base class is made to point to a derived class, the pointer ignores
any __________ the derived class performs, unless the function is __________.

29. A(n) __________ class cannot be instantiated.

30. A(n) __________ function has no body, or definition, in the class in which it is declared.

31. A(n) __________ of inheritance is where one class is derived from a second class,
which in turn is derived from a third class.

32. __________ is where a derived class has two or more base classes.

33. In multiple inheritance, the derived class should always __________ a function that
has the same name in more than one base class.

In a protected base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

In a public base class, this base class
MEMBER access specification…

…becomes this access specification
in the derived class.

private

protected

public

934 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

Algorithm Workbench

34. Write the first line of the declaration for a Poodle class. The class should be derived
from the Dog class with public base class access.

35. Write the first line of the declaration for a SoundSystem class. Use multiple inherit-
ance to base the class on the CDplayer class, the Tuner class, and the
CassettePlayer class. Use public base class access in all cases.

36. Suppose a class named Tiger is derived from both the Felis class and the
Carnivore class. Here is the first line of the Tiger class declaration:
 class Tiger : public Felis, public Carnivore

Here is the function header for the Tiger constructor:

 Tiger(int x, int y) : Carnivore(x), Felis(y)

Which base class constructor is called first, Carnivore or Felis?

37. Write the declaration for class B. The class’s members should be

• m, an integer. This variable should not be accessible to code outside the class or to
member functions in any class derived from class B.

• n, an integer. This variable should not be accessible to code outside the class, but
should be accessible to member functions in any class derived from class B.

• setM, getM, setN, and getN. These are the set and get functions for the member
variables m and n. These functions should be accessible to code outside the class.

• calc, a public virtual member function that returns the value of m times n.

Next write the declaration for class D, which is derived from class B. The class’s mem-
bers should be
• q, a float. This variable should not be accessible to code outside the class but

should be accessible to member functions in any class derived from class D.
• r, a float. This variable should not be accessible to code outside the class, but

should be accessible to member functions in any class derived from class D.
• setQ, getQ, setR, and getR. These are the set and get functions for the member

variables q and r. These functions should be accessible to code outside the class.
• calc, a public member function that overrides the base class calc function. This

function should return the value of q times r.

True or False
38. T F The base class’s access specification affects the way base class member func-

tions may access base class member variables.

39. T F The base class’s access specification affects the way the derived class inherits
members of the base class.

40. T F Private members of a private base class become inaccessible to the derived class.

41. T F Public members of a private base class become private members of the
derived class.

42. T F Protected members of a private base class become public members of the
derived class.

43. T F Public members of a protected base class become private members of the
derived class.

Review Questions and Exercises 935

44. T F Private members of a protected base class become inaccessible to the
derived class.

45. T F Protected members of a public base class become public members of the
derived class.

46. T F The base class constructor is called after the derived class constructor.

47. T F The base class destructor is called after the derived class destructor.

48. T F It isn’t possible for a base class to have more than one constructor.

49. T F Arguments are passed to the base class constructor by the derived class
constructor.

50. T F A member function of a derived class may not have the same name as a mem-
ber function of the base class.

51. T F Pointers to a base class may be assigned the address of a derived class object.

52. T F A base class may not be derived from another class.

Find the Errors

Each of the class declarations and/or member function definitions below has errors. Find as
many as you can.

53. class Car, public Vehicle
{
 public:
 Car();
 ~Car();
 protected:
 int passengers;
}

54. class Truck, public : Vehicle, protected
{
 private:
 double cargoWeight;
 public:
 Truck();
 ~Truck();
};

55. class SnowMobile : Vehicle
{
 protected:
 int horsePower;
 double weight;
 public:
 SnowMobile(int h, double w), Vehicle(h)
 { horsePower = h; }
 ~SnowMobile();
};

56. class Table : public Furniture
{
 protected:
 int numSeats;

936 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

 public:
 Table(int n) : Furniture(numSeats)
 { numSeats = n; }
 ~Table();
};

57. class Tank : public Cylinder
{
 private:
 int fuelType;
 double gallons;
 public:
 Tank();
 ~Tank();
 void setContents(double);
 void setContents(double);
};

58. class Three : public Two : public One
{
 protected:
 int x;
 public:
 Three(int a, int b, int c), Two(b), Three(c)
 { x = a; }
 ~Three();
};

Programming Challenges
1. Employee and ProductionWorker Classes

Design a class named Employee. The class should keep the following information in
member variables:

• Employee name
• Employee number
• Hire date

Write one or more constructors and the appropriate accessor and mutator functions
for the class.

Next, write a class named ProductionWorker that is derived from the Employee
class. The ProductionWorker class should have member variables to hold the follow-
ing information:

• Shift (an integer)
• Hourly pay rate (a double)

The workday is divided into two shifts: day and night. The shift variable will hold an
integer value representing the shift that the employee works. The day shift is shift 1
and the night shift is shift 2. Write one or more constructors and the appropriate
accessor and mutator functions for the class. Demonstrate the classes by writing a
program that uses a ProductionWorker object.

Solving the
Employee and
Production-

Worker Classes
Problem

Review Questions and Exercises 937

2. ShiftSupervisor Class

In a particular factory a shift supervisor is a salaried employee who supervises a
shift. In addition to a salary, the shift supervisor earns a yearly bonus when his or
her shift meets production goals. Design a ShiftSupervisor class that is derived
from the Employee class you created in Programming Challenge 1. The
ShiftSupervisor class should have a member variable that holds the annual salary
and a member variable that holds the annual production bonus that a shift supervi-
sor has earned. Write one or more constructors and the appropriate accessor and
mutator functions for the class. Demonstrate the class by writing a program that
uses a ShiftSupervisor object.

3. TeamLeader Class

In a particular factory, a team leader is an hourly paid production worker who leads a
small team. In addition to hourly pay, team leaders earn a fixed monthly bonus. Team
leaders are required to attend a minimum number of hours of training per year.
Design a TeamLeader class that extends the ProductionWorker class you designed in
Programming Challenge 1. The TeamLeader class should have member variables for
the monthly bonus amount, the required number of training hours, and the number of
training hours that the team leader has attended. Write one or more constructors and
the appropriate accessor and mutator functions for the class. Demonstrate the class by
writing a program that uses a TeamLeader object.

4. Time Format

In Program 15-17, the file Time.h contains a Time class. Design a class called
MilTime that is derived from the Time class. The MilTime class should convert time
in military (24-hour) format to the standard time format used by the Time class. The
class should have the following member variables:

milHours: Contains the hour in 24-hour format. For example, 1:00 pm would
be stored as 1300 hours, and 4:30 pm would be stored as 1630
hours.

milSeconds: Contains the seconds in standard format.

The class should have the following member functions:

Constructor: The constructor should accept arguments for the hour and seconds,
in military format. The time should then be converted to standard
time and stored in the hours, min, and sec variables of the Time
class.

setTime: Accepts arguments to be stored in the milHour and milSeconds
variables. The time should then be converted to standard time and
stored in the hours, min, and sec variables of the Time class.

getHour: Returns the hour in military format.

getStandHr: Returns the hour in standard format.

Demonstrate the class in a program that asks the user to enter the time in military for-
mat. The program should then display the time in both military and standard format.

Input Validation: The MilTime class should not accept hours greater than 2359, or
less than 0. It should not accept seconds greater than 59 or less than 0.

938 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

5. Time Clock

Design a class named TimeClock. The class should be derived from the MilTime class
you designed in Programming Challenge 4. The class should allow the programmer to
pass two times to it: starting time and ending time. The class should have a member
function that returns the amount of time elapsed between the two times. For example,
if the starting time is 900 hours (9:00 am), and the ending time is 1300 hours (1:00
pm), the elapsed time is 4 hours.

Input Validation: The class should not accept hours greater than 2359 or less than 0.

6. Essay class

Design an Essay class that is derived from the GradedActivity class presented in
this chapter. The Essay class should determine the grade a student receives on an
essay. The student’s essay score can be up to 100, and is determined in the following
manner:

• Grammar: 30 points
• Spelling: 20 points
• Correct length: 20 points
• Content: 30 points

Demonstrate the class in a simple program.

7. PersonData and CustomerData classes

Design a class named PersonData with the following member variables:

• lastName
• firstName
• address
• city
• state
• zip
• phone

Write the appropriate accessor and mutator functions for these member variables.

Next, design a class named CustomerData, which is derived from the PersonData
class. The CustomerData class should have the following member variables:

• customerNumber
• mailingList

The customerNumber variable will be used to hold a unique integer for each cus-
tomer. The mailingList variable should be a bool. It will be set to true if the cus-
tomer wishes to be on a mailing list, or false if the customer does not wish to be on
a mailing list. Write appropriate accessor and mutator functions for these member
variables. Demonstrate an object of the CustomerData class in a simple program.

8. PreferredCustomer Class

A retail store has a preferred customer plan where customers may earn discounts on
all their purchases. The amount of a customer’s discount is determined by the amount
of the customer’s cumulative purchases in the store.

• When a preferred customer spends $500, he or she gets a 5% discount on all
future purchases.

Review Questions and Exercises 939

• When a preferred customer spends $1,000, he or she gets a 6% discount on all
future purchases.

• When a preferred customer spends $1,500, he or she gets a 7% discount on all
future purchases.

• When a preferred customer spends $2,000 or more, he or she gets a 10% dis-
count on all future purchases.

Design a class named PreferredCustomer, which is derived from the CustomerData
class you created in Programming Challenge 7. The PreferredCustomer class should
have the following member variables:

• purchasesAmount (a double)
• discountLevel (a double)

The purchasesAmount variable holds the total of a customer’s purchases to date. The
discountLevel variable should be set to the correct discount percentage, according to
the store’s preferred customer plan. Write appropriate member functions for this class
and demonstrate it in a simple program.

Input Validation: Do not accept negative values for any sales figures.

9. File Filter

A file filter reads an input file, transforms it in some way, and writes the results to an out-
put file. Write an abstract file filter class that defines a pure virtual function for transform-
ing a character. Create one derived class of your file filter class that performs encryption,
another that transforms a file to all uppercase, and another that creates an unchanged
copy of the original file. The class should have the following member function:

void doFilter(ifstream &in, ofstream &out)

This function should be called to perform the actual filtering. The member function
for transforming a single character should have the prototype:

char transform(char ch)

The encryption class should have a constructor that takes an integer as an argument
and uses it as the encryption key.

10. File Double-Spacer

Create a derived class of the abstract filter class of Programming Challenge 9 that
double-spaces a file: that is, it inserts a blank line between any two lines of the file.

11. Course Grades

In a course, a teacher gives the following tests and assignments:

• A lab activity that is observed by the teacher and assigned a numeric score.
• A pass/fail exam that has 10 questions. The minimum passing score is 70.
• An essay that is assigned a numeric score.
• A final exam that has 50 questions.

Write a class named CourseGrades. The class should have a member named grades
that is an array of GradedActivity pointers. The grades array should have four ele-
ments, one for each of the assignments previously described. The class should have
the following member functions:

940 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

setLab: This function should accept the address of a GradedActivity
object as its argument. This object should already hold the
student’s score for the lab activity. Element 0 of the grades array
should reference this object.

setPassFailExam: This function should accept the address of a PassFailExam
object as its argument. This object should already hold the
student’s score for the pass/fail exam. Element 1 of the grades
array should reference this object.

setEssay: This function should accept the address of an Essay object as its
argument. (See Programming Challenge 6 for the Essay class. If
you have not completed Programming Challenge 6, use a
GradedActivity object instead.) This object should already
hold the student’s score for the essay. Element 2 of the grades
array should reference this object.

setPassFailExam: This function should accept the address of a FinalExam object
as its argument. This object should already hold the student’s
score for the final exam. Element 3 of the grades array should
reference this object.

print: This function should display the numeric scores and grades for
each element in the grades array.

Demonstrate the class in a program.

12. Ship, CruiseShip, and CargoShip Classes

Design a Ship class that has the following members:

• A member variable for the name of the ship (a string)
• A member variable for the year that the ship was built (a string)
• A constructor and appropriate accessors and mutators
• A virtual print function that displays the ship’s name and the year it was built.

Design a CruiseShip class that is derived from the Ship class. The CruiseShip class
should have the following members:

• A member variable for the maximum number of passengers (an int)
• A constructor and appropriate accessors and mutators
• A print function that overrides the print function in the base class. The

CruiseShip class’s print function should display only the ship’s name and the
maximum number of passengers.

Design a CargoShip class that is derived from the Ship class. The CargoShip class
should have the following members:

• A member variable for the cargo capacity in tonnage (an int).
• A constructor and appropriate accessors and mutators.
• A print function that overrides the print function in the base class. The

CargoShip class’s print function should display only the ship’s name and the
ship’s cargo capacity.

Demonstrate the classes in a program that has an array of Ship pointers. The array
elements should be initialized with the addresses of dynamically allocated Ship,

Review Questions and Exercises 941

CruiseShip, and CargoShip objects. (See Program 15-13, lines 17 through 22, for an
example of how to do this.) The program should then step through the array, calling
each object’s print function.

13. Pure Abstract Base Class Project

Define a pure abstract base class called BasicShape. The BasicShape class should
have the following members:

Private Member Variable:

area, a double used to hold the shape’s area.

Public Member Functions:

getArea. This function should return the value in the member variable area.

calcArea. This function should be a pure virtual function.

Next, define a class named Circle. It should be derived from the BasicShape class.
It should have the following members:

Private Member Variables:

centerX, a long integer used to hold the x coordinate of the circle’s center.

centerY, a long integer used to hold the y coordinate of the circle’s center.

radius, a double used to hold the circle’s radius.

Public Member Functions:

constructor—accepts values for centerX, centerY, and radius. Should call the
overridden calcArea function described below.

getCenterX—returns the value in centerX.

getCenterY—returns the value in centerY.

calcArea—calculates the area of the circle (area = 3.14159 * radius * radius)
and stores the result in the inherited member area.

Next, define a class named Rectangle. It should be derived from the BasicShape
class. It should have the following members:

Private Member Variables:

width, a long integer used to hold the width of the rectangle.

length, a long integer used to hold the length of the rectangle.

Public Member Functions:

constructor—accepts values for width and length. Should call the overridden
calcArea function described below.

942 Chapter 15 Inheritance, Polymorphism, and Virtual Functions

getWidth—returns the value in width.

getLength—returns the value in length.

calcArea—calculates the area of the rectangle (area = length * width) and stores
the result in the inherited member area.

After you have created these classes, create a driver program that defines a Circle
object and a Rectangle object. Demonstrate that each object properly calculates and
reports its area.

Group Project

14. Bank Accounts

This program should be designed and written by a team of students. Here are some
suggestions:

• One or more students may work on a single class.
• The requirements of the program should be analyzed so each student is given

about the same work load.
• The parameters and return types of each function and class member function

should be decided in advance.
• The program will be best implemented as a multi-file program.

Design a generic class to hold the following information about a bank account:

Balance

Number of deposits this month

Number of withdrawals

Annual interest rate

Monthly service charges

The class should have the following member functions:

Constructor: Accepts arguments for the balance and annual interest rate.

deposit: A virtual function that accepts an argument for the amount of the
deposit. The function should add the argument to the account bal-
ance. It should also increment the variable holding the number of
deposits.

withdraw: A virtual function that accepts an argument for the amount of the
withdrawal. The function should subtract the argument from the bal-
ance. It should also increment the variable holding the number of
withdrawals.

calcInt: A virtual function that updates the balance by calculating the
monthly interest earned by the account, and adding this interest to
the balance. This is performed by the following formulas:

Monthly Interest Rate = (Annual Interest Rate / 12)
Monthly Interest = Balance * Monthly Interest Rate
Balance = Balance + Monthly Interest

Review Questions and Exercises 943

monthlyProc: A virtual function that subtracts the monthly service charges from
the balance, calls the calcInt function, and then sets the variables
that hold the number of withdrawals, number of deposits, and
monthly service charges to zero.

Next, design a savings account class, derived from the generic account class. The sav-
ings account class should have the following additional member:

status (to represent an active or inactive account)

If the balance of a savings account falls below $25, it becomes inactive. (The status
member could be a flag variable.) No more withdrawals may be made until the bal-
ance is raised above $25, at which time the account becomes active again. The savings
account class should have the following member functions:

withdraw: A function that checks to see if the account is inactive before a with-
drawal is made. (No withdrawal will be allowed if the account is not
active.) A withdrawal is then made by calling the base class version
of the function.

deposit: A function that checks to see if the account is inactive before a
deposit is made. If the account is inactive and the deposit brings the
balance above $25, the account becomes active again. The deposit is
then made by calling the base class version of the function.

monthlyProc: Before the base class function is called, this function checks the num-
ber of withdrawals. If the number of withdrawals for the month is
more than 4, a service charge of $1 for each withdrawal above 4 is
added to the base class variable that holds the monthly service charges.
(Don’t forget to check the account balance after the service charge is
taken. If the balance falls below $25, the account becomes inactive.)

Next, design a checking account class, also derived from the generic account class. It
should have the following member functions:

withdraw: Before the base class function is called, this function will determine if a
withdrawal (a check written) will cause the balance to go below $0. If
the balance goes below $0, a service charge of $15 will be taken from
the account. (The withdrawal will not be made.) If there isn’t enough
in the account to pay the service charge, the balance will become nega-
tive and the customer will owe the negative amount to the bank.

monthlyProc: Before the base class function is called, this function adds the monthly
fee of $5 plus $0.10 per withdrawal (check written) to the base class
variable that holds the monthly service charges.

Write a complete program that demonstrates these classes by asking the user to enter
the amounts of deposits and withdrawals for a savings account and checking account.
The program should display statistics for the month, including beginning balance,
total amount of deposits, total amount of withdrawals, service charges, and ending
balance.

NOTE: You may need to add more member variables and functions to the classes than
those listed above.

This page intentionally left blank

945

A
P

P
E

N
D

IX

Nonprintable ASCII Characters
 Dec Hex Oct Name of Character

0 0 0 NULL
1 1 1 SOTT
2 2 2 STX
3 3 3 ETY
4 4 4 EOT
5 5 5 ENQ
6 6 6 ACK
7 7 7 BELL
8 8 10 BKSPC
9 9 11 HZTAB
10 a 12 NEWLN
11 b 13 VTAB
12 c 14 FF
13 d 15 CR
14 e 16 SO
15 f 17 SI
16 10 20 DLE
17 11 21 DC1
18 12 22 DC2
19 13 23 DC3
20 14 24 DC4
21 15 25 NAK
22 16 26 SYN
23 17 27 ETB
24 18 30 CAN
25 19 31 EM
26 1a 32 SUB
27 1b 33 ESC
28 1c 34 FS
29 1d 35 GS
30 1e 36 RS
31 1f 37 US
127 7f 177 DEL

Printable ASCII Characters
Dec Hex Oct Character

32 20 40 (Space)
33 21 41 !
34 22 42 “
35 23 43 #
36 24 44 $
37 25 45 %
38 26 46 &
39 27 47 ‘
40 28 50 (
41 29 51)
42 2a 52 *
43 2b 53 +
44 2c 54 ,
45 2d 55 -
46 2e 56 .
47 2f 57 /
48 30 60 0
49 31 61 1
50 32 62 2
51 33 63 3
52 34 64 4
53 35 65 5
54 36 66 6
55 37 67 7
56 38 70 8
57 39 71 9
58 3a 72 :
59 3b 73 ;
60 3c 74 <
61 3d 75 =
62 3e 76 >
63 3f 77 ?
64 40 100 @
65 41 101 A
66 42 102 B
67 43 103 C

The ASCII Character SetA

946 Appendix A: The ASCII Character Set

68 44 104 D
69 45 105 E
70 46 106 F
71 47 107 G
72 48 110 H
73 49 111 I
74 4a 112 J
75 4b 113 K
76 4c 114 L
77 4d 115 M
78 4e 116 N
79 4f 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5a 132 Z
91 5b 133 [
92 5c 134 \
93 5d 135]
94 5e 136 ^
95 5f 137 _
96 60 140 `
97 61 141 a
98 62 142 b
99 63 143 c

100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6a 152 j
107 6b 153 k
108 6c 154 l
109 6d 155 m
110 6e 156 n
111 6f 157 o
112 70 160 p
113 71 161 q

Printable ASCII Characters
Dec Hex Oct Character

114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x
121 79 171 y
122 7a 172 z
123 7b 173 {
124 7c 174 |
125 7d 175 }
126 7e 176 ~

Extended ASCII Characters
Dec Hex Oct Character

128 80 200 Ç
129 81 201 ü
130 82 202 é
131 83 203 â
132 84 204 ä
133 85 205 à
134 86 206 å
135 87 207 ç
136 88 210 ê
137 89 211 ë
138 8a 212 è
139 8b 213 ï
140 8c 214 î
141 8d 215 ì
142 8e 216 Ä
143 8f 217 Å
144 90 220 É
145 91 221 æ
146 92 222 Æ
147 93 223 ô
148 94 224 ö
149 95 225 ò
150 96 226 û
151 97 227 ù
152 98 230 ÿ
153 99 231 Ö
154 9a 232 Ü
155 9b 233 ¢

Printable ASCII Characters
Dec Hex Oct Character

Appendix A: The ASCII Character Set 947

156 9c 234 £
157 9d 235 ù
158 9e 236 û
159 9f 237 ƒ
160 a0 240 á
161 a1 241 í
162 a2 242 ó
163 a3 243 ú
164 a4 244 ñ
165 a5 245 Ñ
166 a6 246 ª
167 a7 247 º
168 a8 250 ¿
169 a9 251 ©
170 aa 252 Ñ
171 ab 253 ´
172 ac 254 ¨
173 ad 255 ¡
174 ae 256
175 af 257 »
176 b0 260 ∞
177 b1 261 ±
178 b2 262 ≤
179 b3 263 ≥
180 b4 264 ¥
181 b5 265 μ
182 b6 266 ∂
183 b7 267 ∑
184 b8 270 ∏
185 b9 271 π
186 ba 272 ∫
187 bb 273 a
188 bc 274 o
189 bd 275 Ω
190 be 276 æ
191 bf 277 ø
192 c0 300 ¿
193 c1 301 ¡
194 c2 302 ¬
195 c3 303 √
196 c4 304 ƒ
197 c5 305 ≈
198 c6 306 Δ
199 c7 307
200 c8 310 »
201 c9 311 …
202 ca 312 _
203 cb 313 À
204 cc 314 Ã
205 cd 315 Õ

Extended ASCII Characters
Dec Hex Oct Character

206 ce 316 Œ
207 cf 317 œ
208 d0 320 –
209 d1 321 —
210 d2 322 “
211 d3 323 ”
212 d4 324 ‘
213 d5 325 ’
214 d6 326 ÷
215 d7 327 ◊
216 d8 330 ÿ
217 d9 331 Ÿ
218 da 332 ⁄
219 db 333
220 dc 334 ‹
221 dd 335 ›
222 de 336 fi
223 df 337 fl
224 e0 340 ‡
225 e1 341 ·
226 e2 342 ‚
227 e3 343 „
228 e4 344 ‰
229 e5 345 Â
230 e6 346 Ê
231 e7 347 Á
232 e8 350 Ë
233 e9 351 È
234 ea 352 Í
235 eb 353 Î
236 ec 354 Ï
237 ed 355 Ì
238 ee 356 Ó
239 ef 357 Ô
240 f0 360
241 f1 361 Ò
242 f2 362 Ú
243 f3 363 Û
244 f4 364 Ù
245 f5 365 ı
246 f6 366 ˆ
247 f7 367 ˜
248 f8 370 ¯
249 f9 371 ˘
250 fa 372 ˙
251 fb 373 •
252 fc 374 ¸
253 fd 375 ˝
254 fe 376 ˛
255 ff 377

Extended ASCII Characters
Dec Hex Oct Character

This page intentionally left blank

949

A
P

P
E

N
D

IX Operator Precedence
and Associativity

The operators are shown in order of precedence, from highest to lowest.

Operator Associativity

:: unary: left to right

binary: right to left

() [] -> . left to right

++ – + - ! ~ (type) * & sizeof right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= |= <<= >>= right to left

, left to right

B

This page intentionally left blank

951

Index

Symbols
- (negation operator), 59, 89–90
- (subtraction operator), 60, 89–90
--, 241–246
-=, 109–111
-> (object pointer), 724
-> (structure pointer), 616
!, 195, 200–201
!=, 160–162
#, 30
%, 60–61, 88–89
%=, 109–111
& (address operator), 491–493
& (bitwise AND), see Appendix

I on the Student CD
& (reference variables), 347
&&, 195–197, 201–202
(), 30
* (indirection operator), 497
* (multiplication operator), 60, 62,

89–91
* (pointer variable declaration), 496
*=, 109–111
. (dot operator), 594, 619
/, 60, 89–91
/* */, 66–67
//, 27, 30, 66–67
/=, 109–111
::, 716
;, 14, 30
?:, 214–217
\\, 35
\', 35
\", 35
\a, 35
\b, 35
\n, 35
\r, 35

\t, 35
^, see Appendix I on the Student CD
{, 29
|, see Appendix I on the

Student CD
||, 195, 198–199, 201–202
}, 30
~ (bitwise negation), see Appendix I

on the Student CD
 (destructor), 750
+, 60, 62, 89–91
++, 241–246
+=, 109–111
<, 160–162
<>, 30
<< (bitwise left shift), see Appendix I

on the Student CD
<< (stream insertion), 31, 140
<=, 160–162
=, 39–40, 57, 171–172
==, 160–162, 171–172
>, 160–162
>=, 160–162
>> (bitwise right shift), see Appendix I

on the Student CD
>> (stream extraction), 80–81, 141

A
abs library function, 127
abstract array data type case study,

771–775
abstract base classes, 918–922
abstract data type (ADT), 589–591
access specifiers, 712–713

base class, 876–877
accessors, 716–717
accumulator, 272–273
actual arguments, 309
actual parameters, 309

addition operator (+), 60, 62,
89–91

address, 4, 15, 491
address operator (&), 491–493
ADT, see abstract data type
aggregation, 848–853

has-a relationship, 851
UML, depicted in, 853

algebraic expressions, 91
algorithm, 7
ALU, 3
AND

& bitwise operator, see Appendix
I on the Student CD

&& logical operator, 195–197,
201–202

anonymous enum, 628
anonymous unions, 623–625
append member function, string

class, 578
application software, 5–6
argument, 91–92, 309

command-line, see Appendix G
on the Student CD

default, 343–346
arithmetic expressions, 87–93
arithmetic logic unit (ALU), 3
arithmetic operators, 59–62
arrays

accessing elements, 375–382
assigning one to another, 392–393
averaging values in, 394
binary search, 454–457
bounds checking, 382–384
bubble sort, 465–468
char, 84–85
comparing, 397–398
defining, 84, 373–374
duplicating, 525–527

952 Index

arrays (continued)
element, 374
as function arguments, 401–410,

416–417
highest and lowest values, 395
implicit sizing, 388
initialization, 385–390, 415
initialization, partial, 387–388
inputting and outputting, 377–382
linear search, 451–454
loops, using with, 378
memory address, 392
memory requirements, 374–375
of objects, 760–762
off-by-one error, 384
parallel, 398–400
partially filled, 395–397
passing to functions, 401–410
and pointers, 500–504
printing contents of, 393–394
reading from a file into, 380–381
selection sort, 469–472
size declarator, 374, 376
strings, 419–421, 550–551
strings, initializing with, 389–390
of structures, 603–606
subscript, 375–376
summing values in, 394, 417–419
three or more dimensions,

421–422
two-dimensional, 412–419
using an enum with, 629–630
writing contents to a file, 381–382

arrow operator (->), 616, 724
ascending order, 465
ASCII, 49
assign member function,

string class, 578
assignment

combined, 108–111
memberwise, 814–815
multiple, 108–109
operator (=), 57
statement, 38–39, 57

associative containers, 425
associativity, 90, 160, 201–202
at member function

string class, 578
vector, 436

atof library function, 559–560
atoi library function, 559–560
atol library function, 559–560
attributes, 706

B
bad member function,

file stream, 663
base class, 872

abstract, 918–922
access specification, 876–877,

884–885

multiple, 925–930
pointers, 911–914

BASIC, 9
begin member function, string

class, 578
binary digit (bit), 4, see also Appendix

I on the Student CD
binary files, 674–679
binary numbers, 7, see also Appendix

I on the Student CD
binary operator, 59
binary search, 454–457

efficiency, 457
binding, 905

dynamic, 905
static, 905

bit, 4
working with, see Appendix I on

the Student CD
bitwise operators, see Appendix I on

the Student CD
block scope, 205
blueprints, classes as, 709–710
bool, 55, 172–173

returning from a function,
330–332

Boole, George, 55
Boolean expression, 55, 160
bounds checking, arrays, 382–384
brace, 29, 30
break statement, 220, 282–284
bubble sort, 465–468
buffer, keyboard, 83
buffer overrun, 122
byte, 4

C
C#, 9
C programming language, 8–9
C-strings, 49–51, 84, see also string

appending one to another, 552,
554–555

arrays, 419–421
char array for holding, 84–85
comparing with strcmp, 209–213
concatenation, 552, 554–555
copying, 553–555
functions to handle, writing,

564–569
internal storage of, 548–551
length, getting, 551–552
library functions to work with,

551–558
null terminator, 49, 84, 548–549
numeric conversion functions,

559–564
searching within, 554–555
sorting, 213

call, function, 91
calling a function, 300–305

capacity member function
string class, 578
vector, 436

capitalization of variable names, 42
case conversion, character, 545–547
case statement, 218
case study

abstract array data type, 771–775
Demetris Leadership Center,

458–464, 472–480
dollarFormat function,

580–581
General Crates, 133–136
Home Software Company,

580–581, 764–771
National Commerce Bank,

423–425
United Cause, 529–533

cast expression, 100
casting, type, 100–102
central processing unit (CPU), 3–4
char, 47–51
char array, 84–85
character case conversion, 545–547

tolower function, 545
toupper function, 545

character literal, 48–50
character testing, 541–545

isalnum function, 542
isalpha function, 542
isdigit function, 542
islower function, 542
isprint function, 542
ispunct function, 542
isspace function, 542
isupper function, 542

cin, 17, 79–84
get member function, 124–127
getline member function,

123–124, 126, 550
ignore member function,

125–126
keyboard buffer, 83
reading a character, 123–125
reading a line of input, 123–124
reading multiple values, 81–82
setw manipulator with,

121–123
strings, reading, 84–85
width member function, see

Appendix K on the
Student CD

class, 708–728
abstract, 918–920
access specifiers, 712–713
accessors, 716–717
aggregation, 848–853
arguments to constructors,

742–750
array of objects, 760–762

Index 953

base, 872
base class access, 876–877,

884–885
as blueprint, 709–710
collaborations, 854–858
const member functions,

714, 717
constructor overloading, 754–758
constructors, 738–750
conversion, object, 846–848
copy constructor, 815–819
declaration, 712
default constructor, 742,

749–750, 758
derived, 872
destructors, 750–753, 758
dot operator (.), 717
dynamically allocated objects,

725–727
finding, 778–786
forward declaration, 811
friend functions, 809–813
getter function, 716
“has-a” relationship, 851
hierarchies, 897–903
implementation file, 730
include guard, 730–731
inheritance, 871–880
inline member functions,

735–737
instance, defining, 717
instance variables, 801–802
is-a relationship, 872, 814–815
member functions, defining,

715–716
memberwise assignment,

814–815
mutators, 716
objects vs., 708–710
operator overloading, 819–846
overloading member functions,

758
placement of public and private

members, 714–715
pointers, 724–727
polymorphism, 903–917
private member functions,

758–760
private members, 712–713,

728–729
problem domain, 779
protected members, 880–883
public member functions,

717–718
public members, 712–713
responsibilities, identifying, 804
scope resolution operator (::),

716
separating specification from

implementation, 729–734
setter function, 716

specification file, 729
stale data, avoiding, 724
static member functions,

810–813
static member variables,

806–810
this pointer, 824
UML, 775–778
virtual functions, 905–911
whole-part relationship, 851

clear member function
file stream objects, 663
string class, 578
vector, 443–444, 436

close member function, file stream
objects, 139–140

closing a file, 139–140
cmath header file, 92, 127
COBOL, 9
code reuse, 298
coercion, 97
collaborations, class, 854–858
combined assignment operators,

108–111
command-line arguments, see

Appendix G on the
Student CD

comment, 27, 66–67
//, 66–67
/* */, 66–67
multi-line, 66–67
single line, 66–67

compact disc (CD), 5
compare member function,

string class, 579
compiler, 10–11, 652
concatenate, 552
conditional loop, 262
conditional operator, 214–217
conditionally-executed code,

164–165, 173–175
console, 31, 80
console output, 31
const, 103–105, 247, 513–515

member functions, 714, 717
constant pointers, 516–517
constants

global, 334–339
named, 103–105
pointers to, 513–515

constructor, 738–750
arguments passed to,

742–750
base and derived classes, in,

886–891
copy, 815–819
default, 742, 749–750, 758
default arguments with, 748
overloading, 754–758

containers, 425
continue statement, 284–285
control unit, 3
control variable, loop, 249
conversion

by casting, 100–102
object, 846–848
string/numeric, 559–564
type, 97

copy constructor, 815–819
default, 819

copy member function,
string class, 579

cos library function, 127
count-controlled loop, 262
counters, 255–257
cout, 17, 29, 31–35

fixed manipulator with,
117–120

left manipulator with,
119–120

precision member function,
see Appendix K on the
Student CD

right manipulator with,
119–120

setf member function, see
Appendix K on the
Student CD

setprecision manipulator
with, 115–117, 120

setw manipulator with,
113–114, 120

showpoint manipulator with,
119–120

unsetf member function, see
Appendix K on the
Student CD

width member function, see
Appendix K on the
Student CD

CPU, 3–4
CRC cards, 857–858
cstdlib header file,

129, 357, 559
cstring header file, 210, 551
ctime header file, 129

D
data hiding, 706–707
data type, 40–42

abstract, 589–591
bool, 55
casting, 100–102
char, 47–51
coercion, 97
conversion, 97, 100–102
demotion, 97
double, 52–55
float, 52–55

954 Index

data type (continued)
floating-point, 52–55
int, 43–44
integers, 42–46
long, 43–44
long double, 52–54
numeric, 42–43
primitive, 590
promotion, 97
ranking, 96–97
short, 43–44
size of, determining, 56
unsigned int, 43–44
unsigned long, 43–44
unsigned short, 43–44

database management systems, 651
debugging

desk-checking, 20
hand-tracing, 131–132
stubs and drivers, 359–361

decimal point, digits displayed after,
115–119

decision structure, 164
declaration, 16
decode, 4
decrement operator (--), 241–246

mathematical expressions,
in, 245

postfix mode, 242–245
prefix mode, 242–245
relational expressions, in,

245–246
default

arguments, 343–346, 748
constructor, 742, 749–750,

758
copy constructor, 819

default statement, 219
#define directive, 105–107, 731
definition, variable, 16, 37–38,

205–207
delete operator, 520
Demetris Leadership Center case

study, 458–464, 472–480
demotion, type, 97
dereferencing pointers, 497
derived class, 872
descending order, 465
designing a program, 17–21
desk-checking, 20
destructors, 750–753, 758

base and derived classes, in,
886–891

virtual, 915–917
digits displayed after decimal point,

115–119
directive, preprocessor, 28, 36
disk drive, 5
divide and conquer, 297–298

division
integer, 60, 197–198
operator (/), 60, 89–90
remainder of, 60–61
by zero, 178

do-while loop, 257–261, 279
with menus, 259–261
posttest, 257–258

dollarFormat function case study,
580–581

dot operator (.), 604, 717
double, 52–55
double precision, 52–53
drivers and stubs, 359–361
dynamic binding, 905
dynamic memory allocation,

518–522
objects, 725–727, 742, 753
structures, 628–629

E
E notation, 52–53
EBCDIC, 47
editor, text, 10–11
element, 374

working with, 375–382
elements, language, 12–16
else, 178

trailing, 188, 192–193
empty member function

string class, 579
vector, 434–436

encapsulation, 126, 706
end member function, string

class, 579
end-of-file marker, 654
#endif directive, 730–731
endl, 33
endless loop, 250
enum, 625–635

anonymous, 628
assigning an integer to an enum

variable, 627
combining declaration and

definition, 635
comparing enumerators, 627
defining an enum variable, 626
enumerators, 626
math operators with, 629
outputting values with an enum,

631–632
scope and enumerators, 634
specifying enumerator values,

633–634
stepping through an array with,

629–630
enumerated data types, 625–635,

see also enum
enumerators, 626

eof member function, file stream,
663

equal-to operator (==), 160–162
erase member function, string

class, 579
error

logical, 20
syntax, 10

error testing, files, 663
escape sequence, 34

\\, 35
\', 35
\", 35
\a, 35
\b, 35
\n, 34–35
\r, 35
\t, 35

newline, 34
exception, 519

dynamic memory allocation, 519
exclusive OR, bitwise, see Appendix I

on the Student CD
executable

code, 10–11
file, 10–11

execute, 4
exit code, 357
exit library function, 356–357
EXIT_FAILURE constant, 357
EXIT_SUCCESS constant, 357
exp library function, 127
exponents, 91
expression, 87

algebraic, 91
arithmetic, 87–93
Boolean, 55, 160
cast, 100
initialization, for loop, 262–263,

267, 268–269
mathematical, 87–93
relational, 160
test, for loop, 262–263
update, for loop, 262–263, 267,

268–269

F
fail member function, file stream,

227, 663
fetch, 4
fetch/decode/execute cycle, 4
field, bit, see Appendix I on the

Student CD
field width, 113, 121–122
file access flags, 653

ios::app, 653
ios::ate, 653
ios::badbit, 663
ios::binary, 653

Index 955

ios::eofbit, 663
ios::failbit, 663
ios::goodbit, 663
ios::hardfail, 663
ios::in, 653
ios::out, 653
ios::trunc, 653

file buffer, 139
file I/O

append mode, 653
binary files, 674–679
buffer, 139
closing a file, 139–140
end-of-file marker, 654
error testing, 227, 663–665
existence of a file, checking for,

656–657
file stream objects, 137, 652
fstream header file, 137
general process, 137
introduction, 136–144
multiple files, opening, 673
opening a file, 138–139
opening for both input and

output, 692–694
output formatting, 658–661
passing stream objects to

functions, 661–662
random-access, 684–692
read position, 142
reading a character, 670
reading a line, 667
reading from a file,

141–144
reading from a file into an array,

380–381
reading with a loop, 276–278
records, 680–684
rewinding, 691–692
setting a program up for,

137–138
writing a character, 672
writing an array to a file,

381–382
writing to a file, 140–141

file names, 657–659
file stream objects, 137

member functions, 666–671
passing to functions,

661–662
find member function, string

class, 579
finding the classes, 778–786
fixed manipulator, 117–119, 658
fixed point notation, 117–118
flag, 172–173
flash memory, 5
float, 52–53
floating-point data types, 52–55

comparing, 169–170

flowchart, 19, see also Appendix C
on the Student CD

fmod library function, 127
for loop, 262–271, 279

arrays and, 378
header, 262
initialization expression,

262–263, 267, 268–269
instead of while or do-while,

265–266
pretest, 266
test expression, 262–263
update expression, 262–263, 267,

268–269
user-controlled, 267–268

formal argument, 309
formatted input, 121–126
formatting output, 112–120
FORTRAN, 9
forward declaration, 811
friend

class, 813
functions, 809–813
key word, 809

fstream header file, 137–138
fstream objects, 653
functions, 28

arguments, 91–92, 309
body, 299
bool value, returning, 330–332
call, 91, 300–305, 324–327
code reuse, 298
declaration, 307
default arguments, 343–346, 747
definition, 299–300
file stream objects as arguments,

661–662
friend, 809–813
header, 299
inline, 735–737
local variables, 323, 332–334
main, 28–29
member, 706
modular programming, 297–298
names, 299
overloading, 352–356
overriding, 915
parameter list, 299
parameters, 309
passing by reference,

346–351, 509
passing by value, 314–315
pointers as parameters, 509–513
prototypes, 307–308
pure virtual, 918
redefining base class, 893–897
reference variables as parameters,

346–351
return statement, 320–321, 323
return type, 299

returning a structure, 603–605
returning a value from, 322–332
returning pointers from, 522–524
sending data into, 309–313
signature, 353
static local variables, 340–343
static member, 806–809
string handling, 564–569
structures as arguments, 610–613
stubs and drivers, 359–361
value-returning, 322–332
virtual, 905–911, 918
void, 299–300

G
g++ command, 10
General Crates case study,

133–136
generalization and specialization,

871
get member function

cin, 124–127
file streams, 670

getline member function
cin, 123–124, 126, 550
file streams, 667

getter function, 716
global variables and constants,

334–339
good member function,

file stream, 663
greater-than operator (>), 160–162
greater-than or equal-to operator

(>=), 160–162

H
hand-tracing, 131–132
hard disk, 5
hardware, 2–5

CPU, 2–4
input devices, 2, 5
main memory, 2, 4
output devices, 2, 5
secondary storage, 2, 4–5

“has-a” relationship, 851
header file, 28

cmath, 92, 129
cstdlib, 131, 357, 559
cstring, 210, 551
ctime, 131
fstream, 137–138
iostream, 28, 36–37
prestandard style, 69
string, 570

hexadecimal literals, 46
hierarchies, class, 897–903
hierarchy chart, 19
high-level languages, 8
Home Software Company case study,

580–581, 764–771

956 Index

I
IDE, 11
identifiers, 41–42

capitalization, 42
legal, 42

if/else statement, 177–179
if/else if statement, 187–191

trailing else, 188, 190–191
if statement, 164–175

conditionally-executed code,
165–166, 173–175

expanding, 173–175
floating point comparisons,

169–170
indentation, 169
nested, 180–187
programming style, 169

#ifndef directive, 730–731
ifstream objects, 138, 652, 656

>> used with, 141
close member function,

139–140
fail member function, 227
open member function, 138–139

ignore member function, cin,
125–126

implementation file, class, 730
implicit sizing, arrays, 388
#include directive, 28, 36–37, 733
include file directory, 733
include guard, 730–731
increment operator (++), 241–246

mathematical expressions, in, 245
postfix mode, 242–245
prefix mode, 242–245
relational expressions, in,

245–246
indentation, 67–68, 169, 251
indirection operator, 497
infinite loop, 250
inheritance, 871–880

base class, 872
class hierarchies, 897–903
constructors and destructors,

886–891
derived class, 872
“is-a” relationship, 872
multiple, 925–930
redefining functions, 893–897

initialization, 58
arrays, 385–390, 415
arrays of objects, 761
list, 385
partial, array, 387–389
pointers, 506
structure, 599–602
structure array, 606
variable, 58

initialization expression (for loop),
262–263, 267, 268–269

inline
expansion, 737
member functions, 735–737

input, 16–17
with cin, 79–85
devices, 5
formatted, 121–126
validation, 193, 203–204,

253–255
input-output stream library, 36
insert member function, string

class, 579
instance, 593

class, 717
variables, 801–802

instantiation, 717
int, 43–44
integer

data types, 42–43
division, 60, 99–100

IntegerList class, 771–775
integrated development environment

(IDE), 11
ios::app access flag, 653
ios::ate access flag, 653
ios::badbit status flag, 663
ios::binary access flag,

653, 675
ios::eofbit status flag, 663
ios::failbit status flag, 663
ios::goodbit status flag, 663
ios::hardfail status flag, 663
ios::in access flag, 653
ios::out access flag, 653
iostream header file, 28, 36–37
ios::trunc access flag, 653
“is-a” relationship, 872, 914–915
isalnum library function, 542
isalpha library function, 542
isdigit library function, 542
islower library function, 542
isprint library function, 542
ispunct library function, 542
isspace library function, 542
isupper library function, 542
iteration, loop, 248
itoa library function, 559–561

J
Java, 9
JavaScript, 9

K
key words, 13–14, 41–42
keyboard

buffer, 85
input with cin, 80–86

L
language elements, 12–16
left manipulator, 119–120

length member function, string
class, 576–577, 579

less-than operator (<), 160–162
less-than or equal-to operator (<=),

160–162
library, runtime, 10
library function, 91

abs, 127
atof, 559–560
atoi, 559–560
atol, 559–560
cos, 127
exit, 356–357
exp, 127
fmod, 127
isalnum, 542
isalpha, 542
isdigit, 542
islower, 542
isprint, 542
ispunct, 542
isspace, 542
isupper, 542
itoa, 559–561
log, 127
log10, 127
mathematical, 127–128
pow, 91–93
rand, 129–130
sin, 127
sqrt, 127
srand, 127
strcat, 552–553, 557
strcmp, 209–213, 558
strcpy, 553–554, 557
strlen, 551–552, 557
strncat, 554–555, 558
strncpy, 554–555, 558
strstr, 555, 558
tan, 127
time, 127
tolower, 545
toupper, 545

lifetime, 334
linear search, 451–454

efficiency, 454
lines and statements, 14–15
linker, 10–11
Linux, 10
literal, 39–40

character, 48–50
double, 53–54
float, 53–54
floating-point, 53
hexadecimal, 46
integer, 45–46
long integer, 45–46
octal, 46
string, 29, 39–40, 49, 548

local scope, 205

Index 957

local variables, 323, 332–334
static, 340–343

log library function, 127
log10 library function, 127
logical error, 20
logical operators, 195–202

! (NOT), 195, 200–201
&& (AND), 195–197, 201–202
|| (OR), 195, 198–199, 201–202
associativity, 201–202
precedence, 201–202
short-circuit evaluation, 196, 198

long, 43–44
long double, 52–53
loops, 246

accumulator variable, 272–273
arrays and, 378
breaking out of, 282–284
conditional, 262
conditionally-executed body, 247
continue statement, 284–285
control variable, 249
count-controlled, 262
counters, 255–257
counting iterations, 255–257
deciding which to use, 279
do-while, 257–261, 279
for, 262–271, 279
indentation, 251
infinite, 250
iteration, 244
nested, 279–281
posttest, 257–258
pretest, 249, 266
programming style, 251
reading a file with, 276–278
running total, 272–273
sentinels, 275–276
user-controlled, 259, 267–268
while, 246–247, 279

low-level languages, 8
lowercase conversion, character,

545–547
lvalue, 57

M
machine language, 7
main function, 28–29
main memory, 4
managed C++, see Appendix F on the

Student CD
manipulator, stream, 33
mantissa, 52–53
mathematical expressions, 87–93
mathematical library functions,

127–130
member functions, 126–127, 706

binding, 905
dynamic binding, 905
overriding, 915

redefining, 893–897, 915
static, 806–809
static binding, 905
this pointer, 824
virtual, 905–915

memberwise assignment, 814–815
memory

address, 4, 15, 491
bit, 4
byte, 4
flash, 5
main, 4
random-access, 4, 15

memory allocation, dynamic,
518–522

menus, 191–193, 223–224, 259–261,
316–318

message, 22
methods, 707
Microsoft Visual C++ 2008 Express

Edition, see Appendix L on
the Student CD

modular programming, 297–298
modulus operator (%), 60–61, 89–90
multiple assignment, 108–109
multiple inheritance, 929–930
multiplication operator (*), 60, 62,

89, 91
multitasking, 6
multiuser operating system, 6
mutators, 716

N
named constants, 105–107
namespaces, 28, see also Appendix E

on the Student CD
National Commerce Bank case study,

423–425
negation operator (-), 59
negative numbers, in binary, see

Appendix I on the
Student CD

nested
if statements, 180–187
loops, 279–282
structures, 606–609

.NET Framework, see Appendix F on
the Student CD

new operator, 518–520
newline, printing, 33–34
not equal-to operator (!=), 160–162
NOT (!) operator, 195,

200–201
null

character, 49, 84, 548–549
pointer, 520
statement, 168
terminator, 49, 84, 548–549

numeric data, 42–43

O
object, 706

aggregation, 848–853
array of, 760–762
attributes, 706
class vs., 708–710
code, 10–11
conversion, 846–848
data hiding, 706–707
dynamically allocated, 725–727,

742, 753
encapsulation, 706
file, 10–11
methods, 707
pointers, 724–727
reusability, 708
state, 721

object-oriented design
aggregation, 848–853
class collaborations, 854–858
classes, finding, 778–786
CRC cards, 857–858
generalization and specialization,

871
inheritance, 871–880
problem domain, 779
responsibilities, identifying, 784
UML, 775–778, 853

object-oriented programming (OOP),
21–22, 127, 705–711

octal literals, 46
off-by-one error, 384
ofstream objects, 138, 652, 656

<< used with, 140
close member function,

139–140
fail member function, 227
open member function,

138–139
OOP, 21–22, 127, 705–711
open member function, file stream

objects, 128–139
opening a file, 128–139
operands, 57
operating systems, 5–6

multitasking, 6
multiuser, 6
single tasking, 5
single user, 6

operator, 13–14
- (negation), 59, 89–90
- (subtraction), 60, 89–90
--, 241–237
-=, 109–111
-> (object pointer), 724
-> (structure pointer), 616
!, 195, 200–201
!=, 160–162
%, 60, 62, 89–90
%=, 109–111

958 Index

operator (continued)
& (address), 491–493
&&, 195–197, 201–202
* (indirection), 497
* (multiplication), 60, 62, 89–91
*=, 109–111
. (dot operator), 596, 717
/, 60, 89–90
/=, 109–111
?: (conditional), 214–217
||, 195, 198–199, 201–202
+, 60, 62, 89–90
++, 241–246
+=, 109–111
<, 160–162
<<, 31
<=, 160–162
=, 38–39, 171–172
==, 160–162, 171–172
>, 160–162
>=, 160–162
>>, 80–81
arithmetic, 59–62
associativity, 90, 160, 201–202
binary, 59
bitwise, see Appendix I on the

Student CD
combined assignment, 108–111
conditional, 210–213
delete, 520
logical, 195–202
new, 518–522
overloading, 819–846
precedence, 89, 201–202
relational, 159–163
scope resolution (::), 716
sizeof, 56
ternary, 59
unary, 59

operator overloading, 819–846
dummy parameter, 832
general issues, 825–826
overloading =, 820–824
overloading [], 840–846
overloading >> and <<, 836–840
overloading math operators,

826–831
overloading postfix ++, 832
overloading prefix ++, 831
overloading relational operators,

834–836
OR

^ bitwise exclusive, see
Appendix I on the Student
CD

| bitwise operator, see Appendix
I on the Student CD

|| logical operator, 195,
198–199, 201–202

output, 16–17
output devices, 5

output formatting, 112–120
files, 658–661

overflow, 98–99
overloading, operator, 819–846
overloading functions, 352–356

constructors, 754–758
member functions, 758

overriding, 915
overrun, buffer, 122

P
parallel arrays, 398–400
parameters, 309

pointers as, 509–513
reference variables as, 346–351

parentheses, grouping with, 90
Pascal, 9
passing by reference, 346–351, 509
passing by value, 314–315
pointers, 493

address operator (&), 491–493
arithmetic with, 504–505
and arrays, 500–504
base class, 911–914
comparing, 507–509
constant pointers, 516–517
constant pointers to constants,

517
to constants, 513–515
delete operator, 520
dynamic memory allocation,

518–522
as function parameters, 509–513
indirection operator (*), 497
initializing, 506
new operator, 518–522
null, 520
to objects, 724–727
returning from functions, 522–524
to structure, 616–620
structure pointer operator, 616
variables, 493–500

polymorphism, 903–906
abstract classes, 918–922
base class pointers, 911–914
dynamic binding, 905
overriding, 915
pure virtual function, 918
and references or pointers,

912–914
static binding, 905
virtual destructors, 915–927
virtual functions, 905–911, 918
pop_back member function list,

vector, 432–433, 436
portability, 10
postfix mode, 242–245
posttest loop, 257–258
pow function, 91–93
precedence, operator, 89, 201–202
precision, 119

precision member function,
cout, see Appendix K on
the Student CD

prefix mode, 242–245
preprocessor, 10–11
preprocessor directive, 28
prestandard C++, 69
pretest loop, 249, 266
primitive data types, 590
private member functions, 758–760
private members, class, 758–759,

728–729
problem domain, 779
procedural programming, 21–22,

705–706
processing, 16–17
programmer-defined identifier, 13–14
programming languages, 7–10

high-level, 8
low-level, 8

programming process, 17–21
programming style, 67–68

if statement, 169
loops, 251

promotion, type, 97
prompt, 80
protected members, 880–883
prototype, function, 307–308
pseudocode, 19–20
public member functions, 713–714
public members, class, 712–713
punctuation, 13–14
pure virtual function, 918

push_back member function,
vector, 429, 436

put member function, file streams,
671

Python, 9

R
raising a number to a power, 91–93
RAM, 4, 15
rand library function, 129–130
random-access

files, 684–692
memory, 4, 15

random numbers, 129–130
limiting the range of, 130
seeding, 129
time function with, 129

ranges, numeric, 202
ranking of types, 98–99
read member function, file stream

objects, 676–677
read position, files, 142
records, 680–684
redefining base class functions,

893–897, 915
reference, passing by, 346–351, 509

Index 959

reference variables, 346–351
compared to pointers, 494–495

reinterpret_cast, 678
relational expression, 160
relational operators, 159–163
relationship

has-a, 851
is-a, 872, 914–915
whole-part, 851

remainder of division, 60–61
replace member function, string

class, 579
reserved words, 13–14
resize member function

string class, 579
vector, 437

responsibilities, identifying, 784
return statement, 30, 320–321, 323
returning a value from a function,

322–332
reusability, 708
reuse, code, 298
reverse member function, vector,

437
rewinding a file, 691–692
right manipulator, 119–120
rows and columns, arrays, 412–413
Ruby, 9
running total, 272–273
runtime library, 10
rvalue, 57

S
scientific notation, 52–53
scope, 58–59, 205–207

block, 205
coming into, 206
leaving, 206
local, 205

scope resolution operator (::), 716
search algorithm, 451

binary search, 454–457
linear search, 451–454
sequential search, 451

secondary storage, 4–5
seekg member function, file stream

objects, 684–689
seekp member function, file stream

objects, 684–689
selection sort, 469–472
semicolon, 14, 30
sentinels, 275–276
sequence containers, 425
sequence structure, 164
sequential file access, 684
sequential search, 451
setf member function, cout, see

Appendix K on the
Student CD

setprecision manipulator,
115–117, 658

setter function, 716
setw manipulator, 113–114,

121–123, 659
short, 43–44
short-circuit evaluation, 196, 198
showpoint manipulator, 119
signature, function, 353
significant digits, 115
sin library function, 117
single precision, 52–53
single tasking, 5
single user operating system, 6
size declarator, arrays, 374, 376
size member function

string class, 577, 579
vector, 431

sizeof operator, 56
software, 2, 5–6

application, 5–6
engineering, 21
operating systems, 5–6

sorting, strings, 213
sorting algorithm, 464–465

ascending order, 465
bubble sort, 465–468
descending order, 465
selection sort, 469–472

source code, 10–11
source file, 10–11
specification file, class, 729
spreadsheets, 651
sqrt library function, 127
srand library function, 129
stale data, 724
standard and prestandard C++, 69
Standard Template Library (STL), 425

vector, 425–437, 480–485
state, object, 721
statements, 14–15
static

binding, 905
key word, 803
local variables, 340–343
member functions, 806–809
member variables, 802–806

static_cast, 100–102
STL, see Standard Template Library
storage, secondary, 4–5
strcat library function,

552–553, 557
strcmp library function, 209–213,

558
strcpy library function, 553–554,

557
stream insertion operator, 31
stream manipulator, 33

string
appending one to another, 552,

554–555
arrays, 419–421, 550–551
arrays, initializing with, 389–390
C-string internal storage, 548–551
char array for holding, 84–85
comparing with strcmp, 209–213
concatenation, 552, 554–555
constant, 28, 548
copying a C-string, 553–555
functions to handle, writing,

564–569
input from keyboard, 84–85
length of C-string, getting, 551–552
library functions to work with,

551–552
literal, 29, 39–40, 49, 548
numeric conversion functions,

559–564
reading with cin, 84–85
searching within, 555–557
sorting, 213

string class, 570–571, 711
append member function, 578
assign member function, 578
at member function, 578
begin member function, 578
capacity member function, 578
clear member function, 578
compare member function, 579
comparing and sorting, 572–574
constructors, 575, 754
copy member function, 579
data member function, 579
defining a string object,

570–571, 574–575
empty member function, 579
end member function, 579
erase member function, 579
find member function, 579
input, reading into a string

object, 572
insert member function, 579
length member function,

576–577, 579
member functions, using,

576–579
operators, supported, 575
replace member function, 579
resize member function, 579
size member function,

575, 577
substr member function, 579
swap member function, 579

string header file, 570
strlen library function, 551–552,

557
strncat library function,

554–555, 558

960 Index

strncpy library function,
554–555, 558

strstr library function, 555–558
struct, 591, see also structure
structure, 591

arrays of, 603–606
comparing variables, 598
as constant reference

parameters, 613
dynamically allocating, 618–619
as function argument, 620–623
initializing, 599–602
instances of, 593
members, 592
nested, 606–609
pointers to, 616–620
records, creating with, 680–684
returning from a function, 613–615
strings as members, 598
tag, 592
variable definition, 592–593

stubs and drivers, 359–361
style, programming, 67–68, 169, 251
subscript, array, 375–376
substr member function, string

class, 579
subtraction operator (-), 60, 89–90
swap member function

string class, 579
vector, 437

switch statement, 218–225
break, 220
case, 218
default, 219
with menus, 223–225

syntax, 13
error, 10

T
tag, structure, 592
tan library function, 127
tellg member function, file stream

objects, 689–691
tellp member function, file stream

objects, 689–691
ternary operator, 59
test expression (for loop), 262–263
text editor, 10–11
this pointer, 824
time library function, 127
tolower library function, 545
top-down design, 19
toupper library function, 545
trailing else, 188, 190–191
trailing zeroes, displaying, 119
true and false values, 162–163, 170
truncation, 54
truth, what is?, 162–163, 170
two-dimensional arrays, 412–419

initializing, 415

passing to functions, 416–417
summing columns, 418–419
summing elements of, 417–418
summing rows, 418

type
casting, 100–102
coercion, 97
conversion, 97

U
UML, see Unified Modeling Language
unary operator, 59
underflow, 98–99
Unified Modeling Language (UML),

775–778, 853, see also
Appendix D on the
Student CD

access specification, showing,
776–777

aggregation, showing, 853
class diagram, 775–776
constructors, showing, 778
data type notation, 777
destructors, showing, 778
parameter notation, 777

unions, 621–625
anonymous, 621–625

United Cause case study, 529–533
unsetf member function, cout, see

Appendix K on the Student
CD

unsigned int, 43–44
unsigned long, 43–44
unsigned short, 43–44
update expression (for loop),

262–263, 267, 268–269
uppercase conversion, character,

545–547
USB port, 5
user-controlled loop, 259, 267–268
using namespace statement, 28,

69, see also Appendix E on
the Student CD

V
validation, input, 193, 203–204,

253–255
value, passing by, 314–315
value-returning functions, 322–332

calling, 324–327
variables, 15–16, 37–40

accumulator, 272–273
counter, 255–257
declaration, 16
definition, 16, 37–38, 58, 205–207
flag, 173–174
global, 324–329
initialization, 58
instance, 801–802
legal names, 42
lifetime, 334

local, 323, 332–334
loop control, 249
names, 15, 41–42
pointer, 493–500
reference, 346–351, 494–495
scope, 58–59, 205–206
shadowing, 339
static members, 802–806

vector, 425–437, 480–485
[] operator, 427–429
at member function, 436
capacity member function, 436
clear member function,

433–434, 436
clearing, 433–434
defining, 426
empty member function, 434–436
initialization value, 426
pop_back member function,

432–433, 436
push_back member function,

429, 436
removing elements from, 432–433
resize member function, 437
reverse member function, 437
searching and sorting, 480–485
size, determining, 431
size member function, 431
starting size, 426
storing and retrieving values in,

427–429
swap member function, 437

virtual destructors, 915–917
virtual function, 905–911, 918

pure, 918
Visual Basic, 9
Visual C++ 2008 Express Edition, see

Appendix L on the Student
CD

void functions, 299–300

W
while loop, 246–255, 279

body, 247
header, 247
input validation, 253–255
pretest, 249
programming style, 251

whitespace character, 123
whole-part relationship, 851
width member function, cout and

cin, see Appendix K on the
Student CD

word processors, 651
write member function, file stream

objects, 675–676

X
X-Window System, 10

Z
zeroes, trailing, 119

C++ Quick Reference (continued)

The for LLoop
Form: EExample :
for (initialization; test; update) for (count = 0; count < 10; count++)

statement; cout << count << endl;

for (initialization; test; update) for (count = 0; count < 10; count++)
{ {

statement; cout << "The value of count is ";
statement; cout << count << endl;

} }

The switch/case CConstruc t
Form: EExample :
switch (integer-expression) switch (choice)
{ {

case integer-constant: case 0 :
statement(s); cout << "You selected 0.\n";
break; break;

case integer-constant: case 1 :
statement(s); cout << "You selected 1.\n";
break; break;

default : default :
statement; cout << "You did not select 0 or 1.\n";

} }

Using cout
Requires <iostream> header file.

CCommon ly used st ream manipula tors
Name DDescrip t ion
endl advances output to the beginning

of the next line.
fixed sets fixed point notation
left sets left justification
right sets right justification
setprecision sets the number of significant

digits
setw sets field width
showpoint forces decimal point & trailing

zeros to display

EExample :

cout << setprecision(2) << fixed
<< left << x << endl;

MMember funct ion s for output for mat t ing
NName Descrip t ion
.precision sets the number of significant digits
.setf sets one or more ios flags
.unsetf clears one or more ios flags
.width sets field width

EExample :
cout.precision(2);

Using cin
Requires <iostream> header file
CCommon ly used st ream manipula tors
NName Descrip t ion
setw sets field width
MMember funct ion s for input format t ing
Name DDescrip t ion
.getline reads a line of input
.get reads a character
.ignore ignores the last character entered
.width sets field width

Some CCommon ly Used Library Func t ions
Name DDescrip t ion
(The following require <cstdlib>)
atof Converts C-string to float
atoi Converts C-string to int
atol Converts C-string to long int
rand Generates a pseudo-random number
srand Sets seed value for random numbers
(The following require <cctype>)
islower Returns true if char argument is lowercase
isupper Returns true if char argument is uppercase
tolower Returns the lowercase equivalent of the char

argument
toupper Returns the uppercase equivalent of the char

argument
(The following require <cmath>)
pow Raises a number to a power
sqrt Returns square root of a number
(The following require <cstring>)
strcat Appends a C-string to another C-string
strcpy Copies a C-string
strlen Returns the length of a C-string

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents
	Table of Location of videonotes
	Preface
	CHAPTER 1 Introduction to Computers and Programming
	1.1 Why Program?
	1.2 Computer Systems: Hardware and Software
	1.3 Programs and Programming Languages
	1.4 What Is a Program Made of?
	1.5 Input, Processing, and Output
	1.6 The Programming Process
	1.7 Procedural and Object-Oriented Programming

	CHAPTER 2 Introduction to C++
	2.1 The Parts of a C++ Program
	2.2 The cout Object
	2.3 The #include Directive
	2.4 Variables and Literals
	2.5 Identifiers
	2.6 Integer Data Types
	2.7 The char Data Type
	2.8 Floating-Point Data Types
	2.9 The bool Data Type
	2.10 Determining the Size of a Data Type
	2.11 Variable Assignments and Initialization
	2.12 Scope
	2.13 Arithmetic Operators
	2.14 Comments
	2.15 Focus on Software Engineering: Programming Style
	2.16 If You Plan to Continue in Computer Science: Standard and Prestandard C++

	CHAPTER 3 Expressions and Interactivity
	3.1 The cin Object
	3.2 Mathematical Expressions
	3.3 When You Mix Apples and Oranges: Type Conversion
	3.4 Overflow and Underflow
	3.5 Type Casting
	3.6 Named Constants
	3.7 Multiple Assignment and Combined Assignment
	3.8 Formatting Output
	3.9 Formatted Input
	3.10 Focus on Object-Oriented Programming: More About Member Functions
	3.11 More Mathematical Library Functions
	3.12 Focus on Debugging: Hand Tracing a Program
	3.13 Focus on Problem Solving: A Case Study
	3.14 Introduction to File Input and Output

	CHAPTER 4 Making Decisions
	4.1 Relational Operators
	4.2 The if Statement
	4.3 Flags
	4.4 Expanding the if Statement
	4.5 The if/else Statement
	4.6 Nested if Statements
	4.7 The if/else if Statement
	4.8 Menus
	4.9 Logical Operators
	4.10 Checking Numeric Ranges with Logical Operators
	4.11 Focus on Software Engineering: Validating User Input
	4.12 More About Variable Definitions and Scope
	4.13 Comparing Strings
	4.14 The Conditional Operator
	4.15 The switch Statement
	4.16 Testing for File Open Errors

	CHAPTER 5 Looping
	5.1 The Increment and Decrement Operators
	5.2 Introduction to Loops: The while Loop
	5.3 Using the while Loop for Input Validation
	5.4 Counters
	5.5 The do-while Loop
	5.6 The for Loop
	5.7 Keeping a Running Total
	5.8 Sentinels
	5.9 Using a Loop to Read Data from a File
	5.10 Focus on Software Engineering: Deciding Which Loop to Use
	5.11 Nested Loops
	5.12 Breaking Out of a Loop
	5.13 The continue Statement

	CHAPTER 6 Functions
	6.1 Focus on Software Engineering: Modular Programming
	6.2 Defining and Calling Functions
	6.3 Function Prototypes
	6.4 Sending Data into a Function
	6.5 Passing Data by Value
	6.6 Focus on Software Engineering: Using Functions in a Menu-Driven Program
	6.7 The return Statement
	6.8 Returning a Value from a Function
	6.9 Returning a Boolean Value
	6.10 Local and Global Variables
	6.11 Static Local Variables
	6.12 Default Arguments
	6.13 Using Reference Variables as Parameters
	6.14 Overloading Functions
	6.15 The exit() Function
	6.16 Stubs and Drivers

	CHAPTER 7 Arrays
	7.1 Arrays Hold Multiple Values
	7.2 Accessing Array Elements
	7.3 No Bounds Checking in C++
	7.4 Array Initialization
	7.5 Processing Array Contents
	7.6 Focus on Software Engineering: Using Parallel Arrays
	7.7 Arrays as Function Arguments
	7.8 Two-Dimensional Arrays
	7.9 Arrays of Strings
	7.10 Arrays with Three or More Dimensions
	7.11 Focus on Problem Solving and Program Design: A Case Study
	7.12 If You Plan to Continue in Computer Science: Introduction to the STL vector

	CHAPTER 8 Searching and Sorting Arrays
	8.1 Focus on Software Engineering: Introduction to Search Algorithms
	8.2 Focus on Problem Solving and Program Design: A Case Study
	8.3 Focus on Software Engineering: Introduction to Sorting Algorithms
	8.4 Focus on Problem Solving and Program Design: A Case Study
	8.5 If You Plan to Continue in Computer Science: Sorting and Searching vectors

	CHAPTER 9 Pointers
	9.1 Getting the Address of a Variable
	9.2 Pointer Variables
	9.3 The Relationship Between Arrays and Pointers
	9.4 Pointer Arithmetic
	9.5 Initializing Pointers
	9.6 Comparing Pointers
	9.7 Pointers as Function Parameters
	9.8 Focus on Software Engineering: Dynamic Memory Allocation
	9.9 Focus on Software Engineering: Returning Pointers from Functions
	9.10 Focus on Problem Solving and Program Design: A Case Study

	CHAPTER 10 Characters, Strings, and the string Class
	10.1 Character Testing
	10.2 Character Case Conversion
	10.3 Review of the Internal Storage of C-Strings
	10.4 Library Functions for Working with C-Strings
	10.5 String/Numeric Conversion Functions
	10.6 Focus on Software Engineering: Writing Your Own C-String-Handling Functions
	10.7 The C++ string Class
	10.8 Focus on Problem Solving and Program Design: A Case Study

	CHAPTER 11 Structured Data
	11.1 Abstract Data Types
	11.2 Focus on Software Engineering: Combining Data into Structures
	11.3 Accessing Structure Members
	11.4 Initializing a Structure
	11.5 Arrays of Structures
	11.6 Focus on Software Engineering: Nested Structures
	11.7 Structures as Function Arguments
	11.8 Returning a Structure from a Function
	11.9 Pointers to Structures
	11.10 Focus on Software Engineering: When to Use ., When to Use ->, and When to Use *
	11.11 Unions
	11.12 Enumerated Data Types

	CHAPTER 12 Advanced File Operations
	12.1 File Operations
	12.2 File Output Formatting
	12.3 Passing File Stream Objects to Functions
	12.4 More Detailed Error Testing
	12.5 Member Functions for Reading and Writing Files
	12.6 Focus on Software Engineering: Working with Multiple Files
	12.7 Binary Files
	12.8 Creating Records with Structures
	12.9 Random-Access Files
	12.10 Opening a File for Both Input and Output

	CHAPTER 13 Introduction to Classes
	13.1 Procedural and Object-Oriented Programming
	13.2 Introduction to Classes
	13.3 Defining an Instance of a Class
	13.4 Why Have Private Members?
	13.5 Focus on Software Engineering: Separating Class Specification from Implementation
	13.6 Inline Member Functions
	13.7 Constructors
	13.8 Passing Arguments to Constructors
	13.9 Destructors
	13.10 Overloading Constructors
	13.11 Private Member Functions
	13.12 Arrays of Objects
	13.13 Focus on Problem Solving and Program Design: An OOP Case Study
	13.14 Focus on Object-Oriented Programming: Creating an Abstract Array Data Type
	13.15 Focus on Object-Oriented Design: The Unified Modeling Language (UML)
	13.16 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities

	CHAPTER 14 More About Classes
	14.1 Instance and Static Members
	14.2 Friends of Classes
	14.3 Memberwise Assignment
	14.4 Copy Constructors
	14.5 Operator Overloading
	14.6 Object Conversion
	14.7 Aggregation
	14.8 Focus on Object-Oriented Design: Class Collaborations

	CHAPTER 15 Inheritance, Polymorphism, and Virtual Functions
	15.1 What Is Inheritance?
	15.2 Protected Members and Class Access
	15.3 Constructors and Destructors in Base and Derived Classes
	15.4 Redefining Base Class Functions
	15.5 Class Hierarchies
	15.6 Polymorphism and Virtual Member Functions
	15.7 Abstract Base Classes and Pure Virtual Functions
	15.8 Multiple Inheritance

	Appendix A: The ASCII Character Set
	Appendix B: Operator Precedence and Associativity
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

